
42 Problems in Scientific Computing





Contents

1. Arithmetic 1

1.1 Finite precision 1

1.2 Square and other roots 2

1.3 Continued fractions and curlicues 2

1.4 Ada Lovelace’s program 3

1.5 Machin’s formula 3

2. Sequences 5

2.6 Gamow’s diamonds 5

2.7 Eight Queens 5

2.8 Sequence alignment 6

3. Primes 8

3.9 The distribution of primes 8

3.10 Modular arithmetic and pseudo-primes 8

3.11 RSA encryption 10

4. Matrices 13

4.12 Circuit equations and the resistor-cube problem 13

4.13 Daylight 14

5. Polynomials 17

5.14 Newton-Cotes formulas 17

5.15 Arbitrary integration intervals 18

5.16 Legendre polynomials 19

5.17 Chebyshev polynomials and Gauss-Chebyshev quadrature 20

6. Fourier transforms 22

6.18 Fourier transform 22

6.19 Fourier series 23

6.20 Hilbert spaces 25

6.21 Schroedinger equation 26

7. Random walks and Markov chains 28

7.22 Quasi-random numbers 28

7.23 Random Walks and the Central Limit Theorem 28

7.24 Arnold’s five-minute problem 30

7.25 Turing and ESP 30

7.26 Hypothesis Testing 30

7.27 Vermeer’s window 32

7.28 Markov chain Monte-Carlo 33

iii Version of 16 Sept 2014



Contents iv

8. Some dynamical systems 36

8.29 Euler and Runge-Kutta integrators 36

8.30 The Lotka-Volterra equations 37

8.31 The Lorenz equations 38

8.32 Chandrasekhar’s limit 39

8.33 Vampires 40

8.34 Pattern formation 40

9. Hamiltonians 41

9.35 Driven pendulum 41

9.36 Cyclotrons 43

9.37 Three-body problem 45

9.38 Near a black hole 47

9.39 Vortices 47

10. Perspective 49

10.40 Interactive graphics: triangle-interior test 49

10.41 Flight paths on the globe 50

10.42 Dancing polyhedron 52

Version of 16 Sept 2014



1. Arithmetic

Our first group of problems are not science problems in themselves. But they do deal
with broad issues that lurk in the background when solving computational science prob-
lems. Some of them are also fun to think about, and help practise programming.

These notes will freely mix mathematical notation with Python fragments. The meaning
will always be clear from context. For example

x = x + y
y = x − y
x = x − y

(1.1)

is clearly not mathematics, but it makes sense as Python. Can you work out what it
does?

1.1 Finite precision

Computers work internally in binary, but most of the time the binary is hidden from us.
We can, however, see something of what is going on internally by examining arithmetic
operations in Python.

Since integers are stored in binary,

pow(2, n) (1.2)

is a trivial operation. At some point, Python will go to long integers. When this happens
depends on how many bits (32 or 64) are being used for integers.

Python had no Y2K problem, because time is expressed in seconds from 1. January
1970 (UTC). As we can see from the following

from time import ctime

ctime(946681200)
(1.3)

the millenium had no special significance for the machine. But something analogous to
the Y2K bug may occur later in the future, when a 32-bit integer is no longer enough to
store the time. If 64-bit integers are standard by then, Python will have no problems.

Floating-point numbers are stored in the form ±m × 2±p. The components m and p
are known as the mantissa and exponents respectively. Floating-point underflow is a
situation of the type

1 + eps == 1 (1.4)

where eps is small but nonzero.

Work out the following by experimenting with arithmetic operations.

(i) When is the deadline for changing to 64-bit integers?

(ii) How many bits are used to store the mantissa and exponent?
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1. Arithmetic 2

Write a short note explaining your conclusions.

1.2 Square and other roots

One often needs to solve equations of the form f (x) = 0. This is conveniently provided
for us by scipy.optimize.brentq but it is interesting to implement a root-finder ourselves.

One elegant method, going back to Newton and his contemporary Joseph Raphson, is
to iterate

xn+1 = xn −
f (xn)

f ′(xn)
(1.5)

Use the Newton-Raphson method to implement

def nroot(x, n = 2) :
# returns n-th root of x > 0

(1.6)

Try to make your function deliver the most accurate answer possible in floating point.
That is, have it iterate to underflow.

1.3 Continued fractions and curlicues

In Figure 1.1 we see a curlicue pattern produced by connecting the partial sums of

L

∑
n=1

exp(iπn2/µ) (1.7)

The curls are encoded in the continued-fraction expansion of the parameter µ. Contin-
ued fractions are often written as a list of integers

[a0, a1, a2, . . .] ≡ a0 +
1

a1 +
1

a2 + . . .

(1.8)

Replacing L by L/µ and removing the first term in the continued-fraction expansion of
µ gives approximately a scaled and reflected version of the same curlicue.

Figure 1.1: Curlicues from (1.7) with L going up to 10000 and µ = [2, 4, 8, 16, 32, . . .] in the continued-
fraction notation (1.8).
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1. Arithmetic 3

This example lends itself well to Python’s functional-programming features. Note espe-
cially reduce() which concisely does not only sums

reduce(lambda s, n : s + n, range(101), 0) (1.9)

and continued fractions

p = [292, 1, 15, 7, 3]
reduce(lambda s, n : n + 1/s, p, 1.)

(1.10)

but also partial sums.

reduce(lambda s, n : s + [s[−1] + n], range(101), [0]) (1.11)

Use pylab .plot() to plot a curlicue as in Figure 1.1. Try to use reduce() for the continued
fractions as well as for the partial sums, avoiding loops.

1.4 Ada Lovelace’s program

To be written

1.5 Machin’s formula

Machin’s formula is a very simple but surprisingly powerful formula for π, and readily
yields hundreds or thousands of digits.

π

4
= 4 arctan(1/5) − arctan(1/239) (1.12)

The Taylor expansion

arctan x = x − x3

3
+

x5

5
− x7

7
+ . . . (1.13)

means that for x = 1
5 the series delivers better than one digit per term.

To derive Machin’s formula we make use of the identity

tan(a + b) =
tan a + tan b

1 − tan a tan b
(1.14)

First define q by
q ≡ tan(4 arctan(1/5) − π/4) (1.15)

Using (1.14) we can evaluate tan(2 arctan 1
5 ) =

5
12 and then tan(4 arctan 1

5 ) =
120
119 . We

know arctan π
4 = 1. Substituting in (1.14) again gives q = 1

239 .

Implement Machin’s formula and compute π to roundoff accuracy.

If you find that too easy, implement the sum as fractions, using integer arithmetic to
keep track of numerators and denominators, and derive 1000 decimal digits. It helps to
reduce all fractions to their lowest terms, by dividing the numerator and denominator
in each case by their greatest common divisor. The compute the latter, the lazy way
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1. Arithmetic 4

def gcd(a, b) :
if b == 0 :

return a
r = a%b
return gcd(b, r)

(1.16)

is good enough for this problem. If the machine complains that you are overusing
recursion, try this.

import sys
sys.setrecursionlimit(10000)

(1.17)
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2. Sequences

2.6 Gamow’s diamonds

In the years between the structure of DNA being discovered and the genetic code being
correctly unravelled, there were several proposals for what the genetic code could be.
They are mostly forgotten now, but one is still remembered, because though it was
wrong, it was very ingenious.

George Gamow guessed (correctly!) that codons of three bases would map to 20 amino
acids. Then he suggested that a sequence of bases would form a sort of cage for an
amino acid. Different codons would give differently shaped cages, and each shape of
cage would be just right for amino acid.

Consider a codon, say ACG. On the other strand there would be TGC. Now consider
the inclined ‘diamond’ ACCG made from both strands. This is what Gamow suggested
might be a cage for an amino acid. Now, the 43 = 64 possible codons correspond to
64 possible diamonds. But some these are equivalent by symmetry. Tracing the ACCG
diamond backwards, we have AGCC, and starting from the other side we have CCAG
and CGAC.

Show that allowing for the symmetries leaves exactly 20 different Gamow diamonds.

2.7 Eight Queens

A classic problem in elementary combinatorics is to place eight queens on a chessboard
such that no two are attacking each other. A more subtle problem is to find all the
independent solution, meaning solutions not related by rotations and/or reflection.

The solutions can be enumerated in several ways. One convenient method is recursive
backtracking. In this, we start with one queen per column, then move up the rows
in odometer fashion. For example, if (say) queen 4 has moved to the end of rows 4,
we backtrack to queen 3. On a 4 × 4 chessboard we easily find that the only possible
solutions are [2, 4, 1, 3] and [3, 1, 4, 2] where each list element represents a column and
its value the row.

The two above solutions are, however, not independent: they are related by reflection.
Each solution also happens to be invariant under rotation by 90◦, so the two solutions
are related by rotation as well. How to represent these operations?

On the complex plane, rotation and reflection are very easy. To take advantage of
this, let us put the chessboard on the complex plane, centred at the origin. Assuming
(arbitrarily) that that each square is two units on a side, the solution [2, 4, 1, 3] can then
be expressed as

[−3 − i, −1 + 3i, 1 − 3i, 3 + i ] (2.1)

while its complex conjugate represents [3, 1, 4, 2].

5 Version of 16 Sept 2014



2. Sequences 6

In the complex representation, the order is arbitrary: we are free to sort. In fact,
(2.1) is already sorted by increasing real part. To represent rotation and reflection,
the operations we need to do are multiplication by i,−1,−i and complex-conjugation,
followed in each case by sorting. As is easy to verify, all these operations leave the
complex list invariant.

Using the above strategy (or another algorithm, if you prefer) find all the independent
solutions on an 8 × 8 chessboard.

2.8 Sequence alignment

The comparison of gene sequences (or protein sequences) in different species is a fun-
damental problem in bioinformatics. We will consider the simplest form of sequence
comparison: pairwise dot plots of matching sub-sequences. Figure 2.1 shows an exam-
ple comparing two strings.

Figure 2.1: Alignment of two strings. A dot is plotted whenever a five-character region matches.

To apply the idea to genomic sequences, we need to get the data from one of several
large databases. The following imports a protein sequence from www.uniport.org

using the Biopython library.

from Bio import ExPASy, SeqIO

sid = raw input("Sequence id? ")
try :

handle = ExPASy.get sprot raw(sid)
seq = SeqIO.read(handle, "swiss")
SeqIO.write(seq, sid + ".genbank", "genbank")
print "Sequence length", len(seq)

except Exception :
print "Sequence not found"

(2.2)
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2. Sequences 7

This saves the data into a text file in the so-called Genbank format. One can use another
Biopython function to extract the sequence, or simply read it directly from the file.

Biopython also has a nice function to draw phylogenetic trees. If you write a text file
tree.txt like

(chimpanzee,(neanderthal,human))

in the so-called Newick format, the following code will draw the tree for you.

from Bio import Phylo

tree = Phylo.read("tree.txt", "newick")
tree.rooted = True

Phylo.draw(tree)

(2.3)

Choose a gene found in many species and make some dot plots comparing the corre-
sponding amino-acid sequence in different pairs of species. Try and infer the phyloge-
netic relationships of a few species from the dot plots, express it in Newick, and hence
produce a phylogenetic tree.
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3. Primes

3.9 The distribution of primes

A simple but still reasonably efficient way to generate primes is the ancient sieve of
Eratosthenes: one removes multiples of 2, then multiples of 3, and so on, and this
leaves the primes. A convenient way to implement the sieve is to keep two lists: one
list {p1, p2, . . . , pk} of all primes below some n, and a second list stepping through
multiples of those primes. If n avoids getting on the second list, it is prime.

Figure 3.1: Distribution of primes.

Implement the sieve of Eratosthenes and plot pk versus k ln(pk), going further than
Figure 3.1.

You can also try evaluating the product form of the Riemann zeta function for some
values of z.

ζ(z) = ∏
p prime

1/(1 − p−z) =
∞

∑
n=1

n−z (3.1)

For example ζ(2) = π2/6. The infinite product converges rather slowly.

3.10 Modular arithmetic and pseudo-primes

Some of the previous problems remind us that, powerful as computers are, computer
arithmetic is always finite. It turns out that finite arithmetic has some interesting prop-
erties, and we will now explore a few of them. For this purpose, we will use Python’s
modular power function.

pow(a, n, N) # an (mod N) (3.2)

All arguments here must be integers, and n must be non-negative. The answer is always
between 0 and N. In particular, for any integer m
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3. Primes 9

pow(a + m ∗ N, n, N) == pow(a, n, N) (3.3)

First we need to introduce some finite-group theory. Finite groups have the following
basic property.

Lagrange’s theorem: for any subgroup S of a group G, N (S) divides N (G). (3.4)

We are using N to denote the order of a group.

To prove Lagrange’s theorem, we consider cosets of S and note the following.

(i) Any a ∈ G belongs to some coset.

(ii) For s1, s2 ∈ S we have as1 = as2 ⇒ s2 = s2. In words, distinct s ∈ S give distinct
coset elements. Hence N (aS) = N (S).

(iii) For b ∈ G we have as1 = bs2 ⇒ a(s1S) = b(s2S) ⇒ aS = bS. That is to say, cosets
are either equal or disjoint.

Combining these points proves the theorem.

Let us now definite an interesting finite group.

GN ≡ {a = 1, . . . , N − 1, for all a coprime with N} (3.5)

To see that GN is a group under multiplication, we reason as follows. Closure and
identity obvious, the only non-trivial thing is to prove an inverse exists. To derive the
inverse we use the so-called Bizout identity

ax + by = gcd(a, b) (3.6)

Given a, b we can find x, y to satisfy the Bizout identity using the extended Euclidean
algorithm.

def bizout(a, b) :
if b == 0 :

return (1, 0)
q = a/b
r = a − q ∗ b
x, y = bizout(b, r)
return (y, x − q ∗ y)

(3.7)

As this function goes down the recursion, it replaces (a, b) by (b, r) where r = a −
qb. This preserves common factors, and hence the recursion terminates at gcd(a, b).
Coming out of the recursion, the function replaces (x, y) by (y, x− qy). Since bx+ ry =
ay + b(x − qy) coming out of the recursion preserves the Bizout identity.

Calling bizout(a, N)[0] returns the inverse of a in GN. Hence GN is a group.

We now note that {1, a, a2, . . . , ak−1} is a subgroup of GN for some k. Applying La-
grange’s theorem, we have
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3. Primes 10

# Theorem: for any a ∈ GN

pow(a, k, N) == 1
# for some k that divides N (GN).

(3.8)

A corollary of (3.8) is Fermat’s little theorem.

pow(a, p − 1, p) == 1
# for any prime p and any a not a multiple of p.

(3.9)

To prove this, we proceed as follows.

(i) For a ∈ {1, . . . , p − 1} we have a ∈ Gp.

(ii) For larger a, we recall the identity (3.3).

The converse of Fermat’s little theorem is not true: there exist non-prime numbers q for
which

pow(a, q − 1, q) == 1 # for all a coprime with q (3.10)

Such q are known as Carmichael numbers, and they are rare (1729 is an example).

To find Carmichael numbers, one needs to have a list of primes, or some other test of
primality. You may wish to use the sieve (Section 3.9).

Find the first few Carmichael numbers.

3.11 RSA encryption

Theorem (3.8) has more corollaries. Consider two primes p, q. Counting up elements,
we have

N (Gpq) = pq − 1 − (p − 1) − (q − 1) = (p − 1)(q − 1) (3.11)

and hence the following.

# Corollary: For primes p, q and a ∈ Gpq

pow(a, (p − 1)(q − 1), pq) == 1 # Implicit ∗ signs
(3.12)

A slight modification removes the restriction on a.

# Corollary: For primes p, q and any a
pow(a, 1 + s(p − 1)(q − 1), pq) == a

(3.13)

To prove this we must consider several cases.

(i) From identity (3.3) it is enough to consider a ≤ pq.

(ii) If a = pq the identity is trivially true.

(iii) For a ∈ Gpq, validity follows from the previous corollary.

(iv) The remaining case is a = mq, a 6= kp. Then as(q−1) ∈ Gp. Applying Fermat’s little
theorem we have as(q−1)(p−1) = 1 + np. This implies a1+s(p−1)(q−1) = a + mqnp
which is the desired result.
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3. Primes 11

The well-known RSA public-key encryption method is based on the corollary (3.13). It
is traditionally expressed in terms of two protagonists called Alice and Bob.

Bob selects two prime numbers p, q. These would typically have 200 or more decimal
digits. Then he chooses two numbers c, d ∈ G(p−1)(q−1) that are mutually inverse. That
is to say

cd = 1 + s(p − 1)(q − 1) (3.14)

From (3.13) we can see that the following holds for arbitrary a.

b = pow(a, c, N) # N ≡ pq
pow(b, d, N) == a

(3.15)

Bob now announces N, c as his public key, and keeps d as his private key. (The individ-
ual primes p, q he also keeps secret.)

Now Alice can securely send Bob an integer a. Using the first line of (3.15) Alice
encrypts her plaintext a to b. She then sends the cyphertext b over an open channel to
Bob. Bob decrypts using the second line of (3.15). If a happens to be a multiple of p
or q then gcd(a, N) will reveal p and q, thus breaking the encryption — but for large
numbers that is very unlikely.

The same basic scheme can also be used for digital signing. One signs (i.e., encrypts)
using a private key, and the signature can be verified using the public key.

The encryption fails if someone (traditionally called Eve for eavesdropper) has enough
computing power to factorize N. In fact, it is enough for Eve to solve a slightly simpler
problem: given the cyphertext b, Eve needs to find r such that

pow(b, r, N) == 1 (3.16)

From the first line of (3.15) it follows that

pow(a, r, N) == 1 (3.17)

We have already assumed that a is coprime with p and q. In other words a ∈ Gpq.
Hence {1, a, a2, . . . , ar−1} is a subgroup of Gpq. So by Lagrange’s theorem, r must divide
(p − 1)(q − 1). Now c ∈ G(p−1)(q−1) is also coprime with (p − 1)(q − 1). Hence c is
coprime with r and c ∈ Gr.

Eve now chooses d′ such that cd′ = 1 + mr. This d′ may or may not be equal to Bob’s
private key d, but it is good enough, because

pow(b, d′, N) == pow(a, cd′, N) == pow(a, 1 + mr, N) == a (3.18)

where the last step follows from (3.17). Hence Eve recovers the plaintext a.

The computationally hard part of breaking RSA encryption is (3.16): finding the period
of the plaintext. Quantum computers can in principle do that very efficiently (Shor’s
algorithm) but nobody knows yet if the technological difficulties can be overcome.
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If the numbers are not too large, RSA encryption can be broken by brute force. Suppose
Alice wishes to send a one-word text message to Bob. It is agreed that the word will be
coded as an integer a, and extracted by the following function.

def word(n) :
str = ""

while n > 0 :
c = chr(n % 32 + 96)
if c < "a" or c > "z" :

c = " "

str += c
n /= 32

return str

(3.19)

For example word(46204290) gives "blabla" and word(969293283) gives "cool ".
This is just an open coding for convenience, not an encryption.

Meanwhile, Bob has announced his public key as N = 1024384027, c = 910510237. Al-
ice encrypts her plaintext a using the public key and send the cyphertext b = 100156265
by an open channel. Bob uses his private key to recover a and hence the word.

Eve sees b = 100156265 on the open channel. She writes a program to solve (3.16) for
r. With r in hand, she recovers a and finally the secret word.

What was the word Alice wanted to send?
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4. Matrices

Linear algebra is an area where software libraries perform particularly well. This makes
it worthwhile to think about how to reduce different kinds of physical problem to matrix
systems. Many large and complicated problems can be rendered trivial in this way. We
now explore some examples.

4.12 Circuit equations and the resistor-cube problem

Imagine twelve 1Ω resistors connected to make up a cube. What will be the resistance
when a voltage is applied diagonally?

There are several clever ways of solving this problem, which you can find by searching
online. But here we are not interested in clever ways that work only for this problem.
We will do something much better: develop a general strategy for reducing electric
circuits to a set of linear equations of the form

AX = B (4.1)

which can be solved numerically, as follows.

from scipy.linalg import solve

X = solve(A, B)
(4.2)

Before trying the resistor-cube, let us try a simpler problem, known as a Wheatstone
bridge, shown in Figure 4.1.

R01

R23

R13

R02

V3
V0

V1

V2

R12 I 3I 0

Figure 4.1: Circuit diagram of a Wheatstone Bridge.

We apply an external voltage, say

V0 = 0

V3 = 1
(4.3)

and we want to know the currents I0, I3. Using Kirchhoff’s current law we can describe
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each point as follows:

(V0 − V1)

R01
+

(V0 − V2)

R02
+ I0 = 0

(V1 − V0)

R01
+

(V1 − V3)

R13
+

(V1 − V2)

R12
= 0

(V2 − V0)

R02
+

(V2 − V3)

R23
+

(V2 − V1)

R12
= 0

(V3 − V1)

R13
+

(V3 − V2)

R23
+ I3 = 0

(4.4)

We now have six equations with six unknowns V0, V1, V2, V3, I0, I3. Of these, the two
equations (4.3) are trivial. Moreover, we know on physical grounds that I3 = −I0.
Hence we could reduce the system to three equations for the unknowns V1, V2, I0. But
it is rather convenient to leave the system as six equations. To see why, let us write the
equations (4.3) and (4.4) in matrix form. For the case of all resistors being unity, the
equations are as follows.

2 −1 −1 0 1 0
−1 3 −1 −1 0 0
−1 −1 3 −1 0 0

0 −1 −1 2 0 1
1 0 0 0 0 0
0 0 0 1 0 0




V0
V1
V2
V3
I0
I3

 =


0
0
0
0
0
1

 (4.5)

The modification for arbitrary resistors is trivial. The 4 × 4 block on the upper left
is what describes the network. It is a symmetric matrix with each row (and column)
haveing zero sum. Such matrices are sometimes called Kirchhoff matrices.

Classically, the Wheatstone bridge was a device for measuring an unknown resistance.
The resistor R12 would have been a galvanometer. Of the other four resistors, three were
known (and one of them adjustable) while one would be unknown. The adjustable
resistor was varied till there zero current through R12. The situation then was V1 = V2.
The circuit equations gave the unknown resistance.

Solve the equations (4.5) for the resistance of a Wheatstone bridge. Generalize to
the resistor-cube problem. Then try out modifications where some of the resistors are
replaced by inductances or capacitors.

4.13 Daylight

Figure 4.2 shows contours of daylight strength on a world map. In this example, we
will generate such a map, with the help of rotation matrices.

For this we need four angular quantities.

(i) The latitude λ.

(ii) The inclination I of the Earth’s axis.
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Figure 4.2: Daylight at noon CEST on 15 April. World map by ‘Strebe’, from Wikimedia commons. The
projection is equirectangular (plate carrée).

(iii) An angular date δ, which is time in units such that 2π represents a year. The zero
point of δ is noon UTC at the equinox.

(iv) The sidereal time σ. This is the longitude in the celestial coordinate system, and
equals time in units such that 2π makes a day, plus the ordinary longitude plus δ.

With the above four angles in hand, the normal component of the Sun is given very
simply in terms of rotation matrices.

( 1 0 0 ) Ry(λ) Rz(σ) Rx(I) Rz(−δ) (4.6)

We start with a unit vector along x. This we take to be the vertical direction at latitude
and longitude of zero (close to Accra in Ghana) at equinox noon. Then we make
consecutive rotations for the latitude λ, sidereal time, the Earth’s inclination, and the
angular date. The new x component is the daylight strength.

The rotation matrices as as follows. Note that angles must always be converted to
radians before evaluating sin and cos.

Rx(φ)

 1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 Rz(φ) =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1

 (4.7)

Ry(φ) =

 cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ

 (4.8)

The rotations are composed from left to right. (If from right to left, all matrices would
be transposed.)

We can get the current time in seconds from the system.
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4. Matrices 16

from time import time
t = int(time()) − 1332331200

(4.9)

By default the system measures time in seconds since midnight on January 1 1970, but
(4.9) sets the zero of time to be noon UTC at the March equinox in 2012. From t we
can easily calculate the date in units such that 2π makes a year.

Write a program to produce something like Figure 4.2, for the current time.
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5. Polynomials

Integrating functions is one of the classical topics in numerical analysis. Nowadays,
libraries such as scipy.integrate have excellent functions and in practice one rarely has
to worry about the details of numerical integration. Nevertheless, it is interesting to
explore the underlying ideas involved.

5.14 Newton-Cotes formulas

The simplest strategy in numerical integration, going back to Newton and his contem-
poraries if not even earlier, is to evaluate the integrand at equally-spaced points and fit
polynomials through them.

To see how this works, let us approximate the integral∫ 1

−1
f (x) dx (5.1)

by the sum
c−1 f (−1) + c0 f (0) + c1 f (1) (5.2)

with suitably chosen constants cp. Now, if we make the formula symmetric (meaning set
c−1 = c1) the odd part of f (x) will automatically integrate correctly to zero between.
So we only need to worry about the even part. Requiring the formula to integrate
f (x) = 1 and f (x) = x2 correctly gives the following condition on the coefficients.( 1

2 1
0 1

)(
c0
c1

)
=

(
1
1
3

)
(5.3)

The solution is
c0 =

4
3

c1 =
1
3

(5.4)

and is called Simpson’s rule (sometimes Kepler’s rule). As we required, it integrates up
to x3 correctly. But if f (x) = x4 the answer is wrong: 2

3 instead of 2
5 .

In practice, one would stack a bunch of Simpson’s-rule blocks to do an integration,
more small blocks for more accuracy.

To improve on Simpson’s rule, let us consider∫ 2

−2
f (x) dx (5.5)

and the approximate sum

c−2 f (−2) + c−1 f (−1) + c0 f (0) + c1 f (1) + c2 f (2) (5.6)

The condition that 1, x2 and x4 are integrated correctly gives 1
2 1 1
0 1 22

0 1 24

 c0
c1
c2

 =

 2
1
3 23

1
5 25

 (5.7)
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The solution is
c0 =

8
15

c1 =
64
45

c2 =
14
45

(5.8)

and is sometimes known as Boole’s rule.

In this way, we can go to arbitrarily high order.

In Simpson’s rule and its higher-order cousins, there is always an evaluation at the
endpoints of the interval. This is undesirable if f (x) has a singularity at an endpoint.
A way to get around this problem is to use a so-called open formula, which does not
evaluate the function at the endpoints. Consider approximating

∫ 3

−3
f (x) dx (5.9)

by the sum
c−2 f (−2) + c0 f (0) + c2 f (2) (5.10)

The condition of integrating 1 and x2 correctly gives( 1
2 1
0 22

)(
c0
c2

)
=

(
3

1
3 33

)
(5.11)

whose solution is
c0 =

3
2

c2 =
9
4

(5.12)

This is an open-type analog of Simpson’s rule.

Generalize the above open-type formula to find the coefficients in

c−4 f (−4) + c−2 f (−2) + c0 f (0) + c2 f (2) + c4 f (4) (5.13)

such that ∫ 5

−5
f (x) dx (5.14)

is integrated correctly up to x5. For the matrix equation involved, the solve() function
from scipy.linalg is convenient.

Try and express the coefficients as fractions, as in (5.8). You can derive a fraction by
first expanding the floating-point values of the coefficients as continued fractions, and
truncating when the terms become extremely large as a result of roundoff error.

5.15 Arbitrary integration intervals

Implement the five-point formula (5.13) as a function.

def fivepoint( f , a, b, B = 1) :
# Compute

∫ b
a f (x) dx

# using B blocks of the 5-point integrator.

(5.15)
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Use the function to numerically compute∫ ∞

−∞
e−x2

dx (5.16)

To do this, you will need to change variable to make the interval finite. (The exact
answer is

√
π.)

5.16 Legendre polynomials

A Legendre polynomial Pn(x) is a polynomial of degree n (the first few are shown in
Figure 5.1) such that ∫ 1

−1
Pm(x) Pn(x) dx =

1
n + 1

2

δmn (5.17)

Legendre polynomials have many nice properties and appear in many physical prob-
lems.

Figure 5.1: Legendre polynomials from P0 to P5.

The orthogonality relation (5.17) is usually considered as a derived property rather
than a definition. However, it is interesting to adopt (5.17) as the definition and derive
the coefficients using numerical integration.

A remark about evaluating polynomials. While it is not wrong to evaluate a polynomial
with something like

def evalp(c, x) :
sum = 0
for k in range(len(c) + 1) :

sum = c[k] ∗ pow(x, k)
return sum

(5.18)

it is considered amateurish. It is better to avoid explicit powers by expressing polyno-
mials as nested sums and products, for example

1 + 2x + 3x2 + 4x3 = 1 + x(2 + x(3 + x(4))) (5.19)
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One way to avoid calling pow() would be as follows.

def evalp(c, x) :
n = len(c) − 1
sum = c[−1]
for k in range(n, 0,−1) :

sum = x ∗ sum + c[k − 1]
return sum

(5.20)

Compute the coefficients of the first few Pn(x) using your implementation of (5.15) and
Gram-Schmidt orthonormalization, and plot the polynomials. It is convenient to first
assume the rhs of (5.17) as simply δmn and apply the factor of (n + 1

2 )
− 1

2 later. Large B
gives more accuracy. But the first few (P0, P1, P2) are correct to roundoff precision even
with B = 1. Why is that?

5.17 Chebyshev polynomials and Gauss-Chebyshev quadrature

Chebyshev polynomials Tn(x) can be defined by the orthogonality relation∫ 1

−1

Tm(x) Tn(x)√
1 − x2

dx =
π

2
δmn (5.21)

except for m = n = 0 when the rhs is π instead. The first few are shown in Fig-
ure fig:chebyshev. Note an interesting difference from the Legendre polynomials: the
Chebyshev polynomials always turn over at ±1. This property makes Chebyshev poly-
nomials very important for approximating functions.

Figure 5.2: Chebyshev polynomials from T0 to T5.

Compute and plot the first few Chebyshev polynomials using (5.15) and Gram-Schmidt
orthonormalization as before.

The Newton-Cotes formulas do not do very well at deriving the Tn, because of the
(1 − x2)−1/2 singularity. The cure is to transform the singularity away:∫ 1

−1

f (x)√
1 − x2

dx =
∫ π

0
f (cos θ) dθ (5.22)
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In fact, we can do even better. We can see from (5.21) that Chebyshev polynomials are
simply cosines in disguise.

Tn(cos θ) = cos(nθ) (5.23)

Now, cosines satisfy a very useful identity

M−1

∑
k=0

cos((k + 1
2 )mπ/M) = 0 for m = 1, . . . , 2M − 1 (5.24)

which is a discrete orthogonality relation. This is the basis of the Discrete Cosine Trans-
form (DCT) used, for example, for jpeg encoding. It is not hard to show from (5.24)
that

π

M

M−1

∑
k=0

f (cos((k + 1
2 )π/M)) =

∫ π

0
f (cos θ) dθ (5.25)

exactly, provided the Fourier series for f (cos θ) has only terms lower than cos(2Mθ).
Formula (5.25) is thus an integration formula that integrates polynomials of degree
2M − 1, using only M evaluations. It is known as Gauss-Chebyshev quadrature (the
general idea is known as Gauss quadrature).

Compute and plot the first few Chebyshev polynomials again, this time using Gauss-
Chebyshev quadrature and Gram-Schmidt orthonormalization. It will turn out that if
n < M (M being the number of evaluations) Tn is given perfectly, but beyond that the
results are garbage. Why is that?
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6.18 Fourier transform

A Fourier transform is defined as

F(k) =
∫ ∞

−∞
exp(ikx) f (x) dx

f (x) =
1

2π

∫ ∞

−∞
exp(−ikx) F(k) dk

(6.1)

It has many interesting properties. Three of these will be particularly useful to us.

(1) The Fourier transform of f ′(k) is −ikF(k). This means that, by going into Fourier
space, we can replace differentiation by multiplication.

(2) The Fourier transform of a Gaussian is also Gaussian.

f (x) =
1√
2πσ

exp
(
− 1

2 x2/σ2) ⇐⇒ F(k) = exp
(
− 1

2 k2σ2) (6.2)

(3) The convolution theorem∫ ∞

−∞
f (y) g(x − y) dy =

1
2π

∫ ∞

−∞
exp(−ikx) F(k) G(k) dx (6.3)

The special case f = g and x = 0 is known as Parseval’s relation.

A discrete Fourier transform is defined as follows. An array fx where x ∈ {0, . . . , N−1}
is transformed into another array Fk of the same size

Fk =
N−1

∑
x=0

exp
(

2πikx
N

)
fx (6.4)

Note that in (6.4) x and k are array indices, whereas in (6.1) they are arguments of
functions. They are related by

∆x ∆k =
2π

N
(6.5)

We can choose any two of ∆x, ∆k and N.

The sum (6.4) is only a first-order approximation to the first integral in (6.1) and one
could do much better. However, the definition (6.4) has two important properties to
recommend it. First, it is exactly unitary, in the sense that reversing the sign of k gives
an exact inverse (apart from a factor of N). Second, it can be computed very efficiently.
As it stands, (6.4) would appear to need O(N2) time to compute. But in fact it can be
computed in O(N ln N) time. To see why, let us split the sum into two sums.

Fk =
N/2−1

∑
x=0

exp
(

2πik(2x)
N

)
f2x +

N/2−1

∑
x=0

exp
(

2πik(2x + 1)
N

)
f2x+1

=
N/2−1

∑
x=0

exp
(

2πikx
N/2

)
f2x + exp

(
2πki

N

) N/2−1

∑
x=0

exp
(

2πikx
N/2

)
f2x+1

(6.6)
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We have replaced the original N-fold sum with two sums of half the size. Now consider
what happens if we replace k with k + N/2. The the sums in the second line of 6.6
remain the same, but the prefactor exp(2πki/N) changes to exp(−πi) exp(2πki/N)
or − exp(2πki/N). Introducing the notation

ωkx
N ≡ exp

(
2πikx

N

)
(6.7)

gives

Fk =
N/2−1

∑
x=0

ωkx
N/2 f2x + ωk

N

N/2−1

∑
x=0

ωkx
N/2 f2x+1

Fk+N/2 =
N/2−1

∑
x=0

ωkx
N/2 f2x − ωk

N

N/2−1

∑
x=0

ωkx
N/2 f2x+1

(6.8)

If N is a power of 2, the sums can be split recursively. Analogous decompositions are
possible1 for any factors of N. But if N is prime, no decomposition is possible.

Fast Fourier transform (FFT) refers to an O(N ln N) implementation of (6.4). It is
conveniently available as fft and ifft in scipy.

from numpy import pi, arange, concatenate

from scipy import fft

N = pow(2, 6)
L = 8
dx = 2. ∗ L/N
x = (arange(N) − N/2) ∗ dx

k = 2 ∗ pi/(N ∗ dx) ∗ (arange(N) − N/2)
f = 1/(1 + x ∗ x)
F = fft( f )
F = concatenate((F[N/2 : N], F[0 : N/2]))

(6.9)

We can plot the results as follows.

from pylab import subplot, plot, show

subplot(212)
plot(x, f )
subplot(211)
plot(k, F.real, color = "blue")
plot(k, F.imag, color = "magenta")
show()

(6.10)

6.19 Fourier series

A Fourier series is in a sense intermediate between the discrete and continuous trans-
forms.

f (x) =
∞

∑
n=−∞

cn e−inx cn =
1

2π

∫ 2π

0
f (x) einx dx (6.11)

1 Gauss remarked on this circa 1805, but nobody seems to have realized what he was talking about until the
1960s.
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Separate real and imaginary parts, write cn = 1
2 (an + ibn) and c−n = 1

2 (an − ibn).

f (x) = 1
2 a0 +

∞

∑
n=1

(an cos nx + bn sin nx)

an =
1
π

∫ π

−π
f (x) cos nx dx bn =

1
π

∫ π

−π
f (x) sin nx dx

(6.12)

As an example, let us consider a square wave

f (x) =
{

1 if x > 0
−1 if x < 0

(6.13)

in the domain [−π, π] and periodic outside. This gives

f (x) =
4
π ∑

n odd

sin nx
n

(6.14)

Figure 6.1: Fourier series for a square wave.

Figure 6.1 shows the square wave and its approximations by its Fourier series. Several
things are noticeable:

(i) even a square wave, which looks very unlike sines and cosines, can be approxi-
mated by them, to any desired accuracy;

(ii) though we only considered the domain [−π, π] the Fourier series automatically
extends the domain to all real x by generating a periodic answer;

(iii) at discontinuities the Fourier series gives the mean value;

(iv) close to discontinuities the Fourier series overshoots.

Properties (i) to (iii) apply whenever f (x) has a finite number of discontinuties and ex-
trema (the Dirichlet conditions). The curious effect (iv) is called Gibbs’ phenomenon—
and adding more terms does not reduce the overshoot, it just moves the overshoot
closer to the discontinuity.
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Putting x = −π
2 in (6.14) gives an unexpected identity:

1 − 1
3 + 1

5 −
1
7 + . . . =

π

4
. (6.15)

Parseval relation
1

2π

∫ π

−π
| f (x)|2 dx =

∞

∑
n=−∞

|cn|2 (6.16)

or
1
π

∫ π

−π
f 2(x) dx = 1

2 a2
0 +

∞

∑
n=1

(a2
n + b2

n) (6.17)

Using this we can derive

1 + 1
32 +

1
52 +

1
72 + . . . =

π2

8
(6.18)

Find a Fourier series for f (x) = x2 and use it to derive another series for π2 and a series
for π4.

6.20 Hilbert spaces

One of the earliest

from numpy.linalg import eig

vals, Vecs = eig(M)
(6.19)

sa = vals.argsort()
vals = vals[sa]
Vecs = Vecs[ : , sa]

(6.20)

Consider
Tlm = 2δlm − δl,m+1 − δl,m−1 (6.21)

We know the eigenvectors

Ekl =
eiklω
√

N
ω =

2π

N
(6.22)

where N is the number of dimensions. Clearly

∑
l

Ekl E∗lm = δkn (6.23)

It is straightforward to verify that

∑
lm

EklTlmE∗mn = 4 sin2( 1
2 kω

)
δkn (6.24)
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Figure 6.2: Eigenvalue spectrum (left) and the first few eigenfunctions (right) of the matrices T (upper)
and H (lower).

For small k, the eigenvalues are λk ≈ k2ω2.

6.21 Schroedinger equation

In this program we solve the 1D Schrödinger equation

i
∂ψ

∂t
= − 1

2
∂2ψ

∂x2 + V(x)ψ (6.25)

Stationary solutions satisfy

− 1
2

∂2ψ

∂x2 + V(x)ψ = Eψ (6.26)

Fourier transforms are a powerful way of solving this type of partial differential equa-
tion. If we introduce the Fourier transform

ψ̃(k) =
∫ ∞

−∞
eikxψ(x) dx (6.27)

equation (6.25) turns into

i
∂ψ̃

∂t
= 1

2 k2ψ̃ +
∫ ∞

−∞
eikx Vψ dx (6.28)

and now the first term on the right is trivial whereas the last term is an operator.

For

i
dψ

dt
= Hψ (6.29)

time evolution can be expressed formally as

exp(−it H) (6.30)
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Given a Hamiltonian
H = A + B (6.31)

where A and B individually are integrable, the Baker-Campbell-Hausdorff identity

exp
( 1

2 τi A
)

exp(τi B) exp
( 1

2 τi A
)
= exp (τiH1)

H1 = H + τ2
(

1
12 [[A, B], B] − 1

24 [A, [A, B]]
)
+ O(τ4)

(6.32)

where the square brackets denote commutators.

Implement a Tkinter animation of time evolution under the Schrödinger equation.
Choose some non-trivial potential, such as the double well V(x) = 1

2 |x − 1|2, which
illustrates quantum tunnelling.
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7.22 Quasi-random numbers

Random numbers on a computer are sometimes called pseudo-random numbers, to
distinguish them from truly random numbers that would arise from a quantum process.
Quasi-random numbers are different again.

A nice example of quasi-random numbers is a Halton sequence. To generate such a
sequence, we write the integers from 1 to N in base 2 or some other prime base, and
move the digits in reverse order to the right of the radix point. This naturally yields a
number in (0, 1). In more than one dimension, we simply use a different prime base for
each dimension. Figure 7.1 illustrates.

Figure 7.1: The first 512 numbers of a two-dimensional Halton sequence, using base 2 for x and base 3
for y.

Compute and plot a Halton sequence in two dimensions, and contrast it with random
numbers.

7.23 Random Walks and the Central Limit Theorem

In Figure 7.2 we the see distribution of endpoints of a random walk. The walk con-
sists of N = steps of unit length but with random orientation. The endpoint has the
probability distribution

p(x, y) =
1

Nπ
e−(x2+y2)/N (7.1)

that is, a Gaussian distribution. The probability distribution for the distance is

p(r) =
2r
N

e−r2/N (7.2)
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Figure 7.2: Endpoints of 104 realizations of a 50-step random walk, shown the Gaussian approximation.
Upper panel shows the distance, middle and lower panels are the x and y distances.

or a Maxwellian distribution.

Random walks are an illustration of the central limit theorem in probability theory.
This theorem asserts that mean of N trials of an arbitrary probability distribution tends
to a Gaussian distribution, with the mean remaining the same and the variance being
reduced by a factor of N. In particular, for the above random walk, it predicts (7.1),
since the variance of a single step is 1

2 .

To prove the central limit theorem, we note first that when we have two independent
trials from some p(x), the probability distribution of the sum is a convolution.

p(sum of two trials = x) =
∫

p(y) p(x − y) dy (7.3)

Hence from the convolution theorem (6.3) we have

p(sum of N trials = x) =
1

2π

∫ ∞

−∞
exp(−ikx) PN(k) dx (7.4)

where P(k) (known as the characteristic function) is the Fourier transform of the prob-
ability distribution p(x). We can write

P(k) =
〈
eikx
〉
= 1 + ik 〈x〉 − k2

2!
〈

x2
〉
+ . . . (7.5)

Assuming 〈x〉 and
〈

x2
〉

exist, it is enough to consider the case of 〈x〉 = 0 and
〈

x2
〉
= 1.

Then
P(k) = 1 − 1

2 k2 + k2θ(k) (7.6)

where the remainder term θ(k)→ 0 as k→ 0. For large N

P(k)→ e−Nk2/2 (7.7)

and using the Fourier-transform identity (6.2) we have

p(sum of N trials = x) =
(

N
2π

) 1
2

exp
(
− x2

2N

)
(7.8)
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It is important to note that the central limit theorem requires that the variance exists.
So-called heavy-tailed distributions like the Lorentzian

p(x) =
1

π(1 + x2)
P(k) = e−|k| (7.9)

do not have a finite variance and the central limit theorem does not apply.

Choose a different type of step and generate a figure, analogous to Figure 7.2, verifying
the Gaussian and Maxwellian properties.

7.24 Arnold’s five-minute problem

The mathematician Vladimir I. Arnold (1937–2010) is famous for his contributions to
dynamical systems, catastrophe theory, and several other areas of mathematics. His
efforts to reform the teaching of mathematics are also rather well known. He once
wrote:

A student who takes much more than five minutes to calculate the mean of
sin100 x with 10% accuracy has no mastery of mathematics, even if he has
studied non-standard analysis, universal algebra, supermanifolds, or embed-
ding theorems.

Show your mastery of mathematics by solving this problem. Since sines and cosines are
periodic, it is enough to estimate ∫ π

−π
cosN x dx (7.10)

assuming N � 1. No programming is required, but the proof of the central limit
theorem suggests one way (not the only way) of estimating the integral.

7.25 Turing and ESP

To be written

7.26 Hypothesis Testing

A variant of the standard random walk is a walk that is constrained to return to its
starting point. It helps introduce the topic of hypothesis testing in statistics.

Imagine a party, where among the other offerings there are two trays of identical choco-
lates, initially an equal number of pieces on each tray. As the chocolates gradually dis-
appear, you are discreetly watching, while entertaining the people around you with a
puppet. Each time a chocolate is taken from one of the trays, you make the puppet
take a step forward; and whenever a chocolate is taken from the other tray, you make
the puppet take a step back. When both trays are empty, the puppet will be back at its
original position. The maximum distance the puppet gets to, whether forward or back,
is known as the Kolmogorov-Smirnov statistic (or KS statistic).
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More formally, the KS statistic is the maximum difference between two cumulative
probability distributions. Think of the distribution of the time that chocolates spend on
a tray before being eaten. The corresponding cumulative distribution gives the number
of chocolates remaining on the tray at any time.

The KS statistic has the following very important property. Provided the two trays have
the same probability distributions (the chocolates are equivalent, and people do not
compare the trays), the KS statistic does not care what that distribution actually is. The
people at the party could be the sort who eat the chocolates very slowly, or complete
gluttons who devour them instantly. It could be that the chocolates disappear very
quickly at first, but then people become shy and eat more slowly. The distribution of
the KS statistic (meaning here a distribution over parties, since the statistic has only one
value per party) will be the same. Think of the puppet randomly taking a forward or
backward step. This property makes the KS statistic a good test for when the probability
distributions are not the same. What matters is whether the KS statistic has a typical
or extreme value. We can ask questions of the type “Is dark chocolate more (or less)
popular than milk chocolate?” and answer them from even a single party.

Figure 7.3 shows the distribution of the KS statistic: the histogram is a sort of Monte-
Carlo over many parties, while the curve is an asymptotic formula derived in different
ways by Kolmogorov and Smirnov.

pKS(s) = 2
∞

∑
k=0

(−1)k e−2(k+1)2µ2s2

µ ' ν + 0.12 + 0.11/ν ν =
√

DM/(D + M)

(7.11)

The initial number of chocolates in the two trays is allowed to be different: D and M.
We allow for this by making the forward steps longer (or shorter) than the backward
steps, such that the puppet still ends up at the origin when all the chocolates are gone.

Figure 7.3: The Kolmogorov-Smirnov statistic and its improbability for the case of N1 = 24, N2 = 36. The
histogram is from a simulation and the curve is 1 − pKS(s) from the formula (7.11)
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From Figure 7.3 we can read off the following. If we put down two dozen dark choco-
lates and three dozen milk chocolates, and then find that the dark chocolates are all
gone when half the milk chocolates are still left, then we would infer that dark choco-
late is significantly more popular; but if only a quarter of the milk chocolates were left,
there would be no such inference.

Write a program to simulate the distribution of the KS statistic and verify against the
formula (7.11). The invent your own statistic, based on the puppet’s walk, and compute
its distribution.

7.27 Vermeer’s window

The paintings of Johannes Vermeer are considered some of the supreme representations
of light and shadows in art. Some of his paintings also illustrate striking examples of
perspective, and it thought that Vermeer may have used some form of pinhole camera.2

In this section, we choose a picture and try to reconstruct the location and orientation
of the pinhole camera.

Figure 7.4: Detail from De soldaat en het lachende meisje (painted by Vermeer circa 1660) with grid overlaid.

Figure 7.4 shows an example3 of a painting with strong perspective. The perspective
is evident in several aspects of the picture, but in the window it is especially clear.
The window seems to consist of square glass panes. Let us assume the glass panes are
identical squares. The magenta grid overlaid on the picture mimics the perspective.

Consider the following steps.

(1) We start by selecting an image file and measuring the pixel coordinates of nine
points on the image, on which we want to overlay the grid.

2 http://www.essentialvermeer.com/camera obscura/co one.html

3 See also http://www.googleartproject.com/museums/frick/officer-and-laughing-girl-6
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(2) Next, we initialize a square grid.

(−1, 1) (0, 1) (1, 1)
(−1, 0) (0, 0) (1, 0)
(−1,−1) (0,−1) (1,−1)

(7.12)

Choosing 1 for the grid size amounts to taking the size of the glass panes as the
unit of length.

(3) Next, rotate this grid around a vertical axis by 90◦. Quaternions are convenient
for this, but not essential. If you like, you can adjust the rotation axis and rotation
angle (with additional parameters) but rotation about a vertical axis by 90◦ turns
out to be a very good approximation.

(4) Then, translate the rotated grid in the room. This part needs three parameters,
and is basically the placement of the pinhole camera with respect to the window.

(5) Finally, put the grid on the image using the perspective formula (10.14). The ob-
server distance is a fourth parameter, and represents the distance between pinhole
and the picture in our units of length (the glass-pane size), times the number pixels
in a length unit.

Work out the four parameters described above, using a least-squares fit to the measured
pixels. The leastsq function from scipy.optimize will do the numerical hard work for
you.

7.28 Markov chain Monte-Carlo

A general type of random walk would be to walk from point to point according to some
probability distribution:

p(x → y) ∑y p(x → y) = 1 (7.13)

being the probability of stepping from x to y. If such a random walk satisfies the so-
called micro-reversibility condition

f (x) p(x → y) = f (y) p(y→ x) (7.14)

for some function f (x), then the random walk tends to sample f (x).

To show the above property, let us consider a sequence function fn(x) related by

fn+1(x) = ∑y fn(y) p(y→ x) (7.15)

If fn(x) = f (x) we can apply the microreversibility condition (7.14) to (7.15). Then
it follows from (7.13) that fn+1(x) = fn(x). In other words, if fn(x) has converged to
f (x), further iterates will stay there.

To see why fn(x) tends to approach f (x), we take

| f (x) − fn+1(x)| =
∣∣∣ f (x) − ∑y fn(y) p(y→ x)

∣∣∣ (7.16)
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Using (7.13) and (7.14) we can replace

f (x) = ∑
y

f (x) p(x → y) = ∑
y

f (y) p(y→ x) (7.17)

This gives
| f (x) − fn+1(x)| =

∣∣∣∑y

(
f (y) − fn(y)

)
p(y→ x)

∣∣∣ (7.18)

and then, the triangle inequality tells us that

| f (x) − fn+1(x)| ≤ ∑y | f (y) − fn(y)| p(y→ x) (7.19)

Summing now over x, we get

∑
x
| f (x) − fn+1(x)| ≤∑

y
| f (y) − fn(y)| (7.20)

which implies convergence.

There are many techniques for sampling based on random walks with the micro-reversi-
bility property (7.14). These are known as Markov chain Monte-Carlo (or simply
MCMC) methods. The best known of these is the Metropolis algorithm, which pro-
ceeds as follows. From a point xn, propose a random trial step ∆x and then set

xn+1 =

{
xn + ∆x if r < f (xn + ∆x)/ f (xn)

xn otherwise
(7.21)

A simple but interesting application of the Metropolis algorithm is the Bayesian light-
house problem. Imagine lighthouse out at sea, near a straight length of shoreline. Let
the x axis represent the shoreline, and let the lighthouse be at (a, b). The lighthouse
has a rotating beacon which sends out flashes in random directions φ. These flashes are
observed along the shoreline.

The above scenario generates a sequence of random numbers {xi} distributed according
to

x = a + b tan φ (7.22)

where φ is uniform random. For definiteness we assume b > 0 and x ∈ [−1, 1]. Rear-
ranging (7.22) we have

φ = arctan
x − a

b
(7.23)

and because φ is uniform random, it follows that the distribution of x is

p(x) =
dφ

dx
(7.24)

Here p(x) is really a probability density along x. The condition that x ∈ [−1, 1] gives
the normalization

p(x|x ∈ [−1, 1]) =
p(x)∫ 1
−1 p(x)

(7.25)
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which simplifies to

p(x|x ∈ [−1, 1]) =
dφ/dx

φ|x=1 − φ|x=−1
(7.26)

The joint probability of a data set {x1, . . . , xN} is

p({x1, . . . , xN}) =
N

∏
i=1

p(xi) (7.27)

Figure 7.5: Lighthouse with 100 flashes with a = −0.5, b = 0.7. The top panel is a histogram of the x
values. The middle and lower panels are the inferred probability distributions of a and b respectively.

Choose some values for a, b and then generate a simulated data set {x1, . . . , xN}. Then
use the Metropolis algorithm to infer the values of a, b with uncertainties. On the way,
you will need to derive an expression for the probability (7.26) in terms of a and b.
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8.29 Euler and Runge-Kutta integrators

An integral can also be thought of as a differential equation.

Ordinary differential equations have the general form

dy
dx

= f (y, x) (8.1)

where y can be a vector, but x is a scalar variable. If the right hand side depends only on
x, in other words, f = f (x), we have an integral. Since differential equations appear
in just about any area of science, and scipy offers tools to solve them numerically.
Consider the following example.

from scipy.integrate import odeint

from numpy import exp

def f (y, x) :
return exp(−x ∗ x/4)

res = odeint( f , 0, range(12))

(8.2)

This computes ∫ X

0
e−x2/4 dx (8.3)

for different values of the upper limit, so we can see convergence to the answer for
X → ∞.

Before using the library methods, we will try to understand how they work, by imple-
menting some basic algorithms for solving ordinary differential equations numerically.

The simplest such method is based on truncating the Taylor series after one term:

y(x + h) = y(x) + h f (y(x), x) + O(h2) (8.4)

since y′ = f (y, x). The algorithm is

yn+1 = yn + h f (yn, xn) (8.5)

where yn means y(x) and yn+1 means y(x + h). The error term will be 1
2 h2 f ′(yn). Over

a given interval in x the error will be O(h). This method is very crude and only useful
for the simplest problems.4

One can improve on (8.5) by using the value of f (y, x) at some other point to get
an estimate of f ′(y, x). This is the strategy behind the Runge-Kutta integrators. For
notational simplicity we now assume f (y, x) has no explicit dependence on x. This

4 It is called Euler’s method, but it is hard to believe Euler could not invent anything better.
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is to say we look at problems like dy/dx = 2y (whose solution is y = e2x), but not
dy/dx = 2xy (which has a solution y = ex2

). In the later case, we could include x as
one of the components of y, so there is no loss of generality in the assumption.

The simplest Runge-Kutta integrator is

yn+1 = yn + h f
(
yn +

1
2 h f (yn)

)
(8.6)

and by Taylor expanding (and substituting 8.1) we can see that

yn+1 = yn + h f (yn) +
1
2 h2 f ′(yn) + O(h3) (8.7)

Over a given interval, the error is O(h2) and the method is second order. Many high-
order Runge-Kutta formulas are in wide use. The best known is fourth-order Runge-
Kutta

f1 = f (yn)

f2 = f (yn +
1
2 h f1)

f3 = f (yn +
1
2 h f2)

f4 = f (yn + h f3)

yn+1 = yn +
1
6 h( f1 + 2 f2 + 2 f3 + f4)

(8.8)

Chebyshev polynomials satisfy the differential equation

(1 − x2)T′′n − xT′n + n2Tn = 0 (8.9)

with the initial conditions

Tn(0) = cos(nπ/2) T′n(0) = n sin(nπ/2) (8.10)

This differential equation can be used as an alternative definition of the Chebyshev
polynomials.

Implement one or more of the above numerical methods.

8.30 The Lotka-Volterra equations

A simple example of ordinary differential equations requiring numerical solution is the
Lotka-Volterra system

dx
dt

= αx − xy

dy
dt

= xy − y
(8.11)

with α being a constant parameter. (Note that the independent variable is t and not
x.) These equations are a simple model for the population dynamics of two species: a
predator y and its prey x. In isolation, x would grow exponentially as eαt and y would
die out as e−t. But when they are present together, individuals from x and y encounter
each other at a rate proportional to xy, and y grows by feeding on x.
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The Lotka-Volterra equations are usually written with four parameters, for example as

1
x

dx
dt

= A − By

1
y

dy
dt

= Cx − D
(8.12)

But three of the parameters can be eliminated by rescaling

t← Dt x ← (C/D)x y← (B/D)y (8.13)

Basically, we have chosen units so as to make the problem simpler.

There is another interesting way of writing the Lotka-Volterra equations. Defining

p = ln x q = ln y H(p, q) = ep + eq − p − αq (8.14)

it is easy to verify that

ṗ = − ∂H
∂q

q̇ =
∂H
∂p

(8.15)

are equivalent to the original equations (8.11). The equations (8.15) are known as
Hamilton’s equation while the function H(p, q) is known as the Hamiltonian. This may
seem a contrived way of writing, but it reveals interesting properties about the system.
In particular, we have

Ḣ =
∂H
∂p

ṗ +
∂H
∂q

q̇ +
∂H
∂t

=
∂H
∂t

(8.16)

Hence H is a constant. In other words x + y − ln(xyα) is a constant.

Solve the Lotka-Volterra system.

8.31 The Lorenz equations

Our last example is not a Hamiltonian system, but we include it because it is the
archetypical chaotic dynamical system. It consists of three nonlinear differential equa-
tions

Ẋ = σ(Y − X)

Ẏ = rX − Y − XZ

Ż = XY − bZ

(8.17)

with (σ, r, b) being constant parameters. The equations originally appeared as a simple
model of fluid flow5 but were later found to describe other systems as well.

In the original context, X, Y, Z describe a simplified atmosphere model: X represents
the amount of convection, Y the temperature difference between the rising and falling

5 You can easily find Lorenz’s paper from 1963 by searching for the title: Deterministic Nonperiodic Flow. As
well as being a scientific classic, it is very readable.
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currents, and Z is how much the temperature gradient differs from linear. The param-
eter σ is a scaled viscosity, r a scaled temperature, and b a geometric factor. The values

σ = 10 r = 28 b = 8/3 (8.18)

produce especially interesting behaviour.

One can infer some properties of the solution by considering the linearized equations Ẋ
Ẏ
Ż

 =

 −σ σ 0
r − Z −1 −X

Y X −b

X
Y
Z

 (8.19)

It follows that the divergence of a small volume (X, Y, Z) of phase space is

∂Ẋ
∂X

+
∂Ẏ
∂Y

+
∂Ż
∂Z

= −(σ + b + 1) (8.20)

Because the divergence is always negative, the system is said to have an attractor. At the
time, when a system had an attractor, people expected it would go to a fixed point or a
periodic orbit. There is an obvious fixed point at the origin, but if r > 0 it is not a stable
fixed point. For r > 1 there are two additional fixed points X = Y = ±

√
b(r − 1), Z =

r − 1, but if σ > b + 1 these also become unstable for large-enough r. For values such
as (8.18) the system has a chaotic or strange attractor.

Write a program to show the Lorenz strange attractor in screensaver style. You can
make a Tkinter Canvas fill the screen as follows. (A top bar may remain, depending on
the operating system.)

screen = Tk()
wd, ht = screen.winfo screenwidth(), screen.winfo screenheight()
screen.geometry("%dx%d+0+0"%(wd, ht))
canv = Canvas(screen, height = ht, width = wd, background = "black")
canv.pack()
update() # Draw a frame
screen.mainloop()

(8.21)

8.32 Chandrasekhar’s limit

dM(r)
dr

= 4πr2ρ(r)

dP(r)
dr

= −M(r)ρ(r)
r2

(8.22)

ne =
1

3π2

( pF

h̄

)3
ρ = µne (8.23)

P =
1

3π2

∫ pF

0

( pF

h̄

)3
v(p) dp v =

pc√
p2 + m2

e c2
(8.24)
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This gives
dP
dr

= nev(pF)
dpF

dr
(8.25)

dM
dr

= 4πr2µne(pF)

dpF

dr
= − GMµ

r2v(pF)

(8.26)

r =
LM2

meµ
× x

M =
M3

µ2 × Y

pF = mec × Z

(8.27)

M =

(
h̄c
G

)1/2

L =

(
h̄3

cG

)1/2

(8.28)

dY
dx

=
4

3π
x2 Z3

dZ
dx

= − Y
x2

(
1 + 1/Z2)1/2

(8.29)

8.33 Vampires

To be written.

8.34 Pattern formation

To be written.
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9.35 Driven pendulum

Many physical systems have their dynamics described by a Hamiltonian. In this and the
next few sections we will explore some contrasting examples.

Consider the Hamiltonian

H(p, q, t) = 1
2 p2 − cos q − ε cos(q − ωt) (9.1)

The first two terms are well known: they describe a pendulum. The last term is not
so familiar. In fact, it corresponds to putting the pendulum on a vertical wheel and
spinning the wheel at a constant rate.

To derive the physical meaning of (9.1) let us consider a pendulum of length l in a
gravitational field g. This is mounted on a wheel of radius b, spinning with angular
speed ω. The coordinates of the pendulum bob, measured from the centre of the wheel,
are as follows.

x = b sin ωt + l sin q

y = −b cos ωt − l cos q
(9.2)

From the equation

q̇ =
∂H
∂p

= p (9.3)

it is clear that p is the angular velocity of the pendulum. We need to show that

ṗ = − ∂H
∂q

= − sin q − ε sin(q − ωt) (9.4)

is the angular acceleration.

There are two forces on the pendulum bob, from gravity and a fictitious force from the
wheel. The acceleration is

(ẍ, ÿ) = (0,−g) − (ẍ, ÿ)wheel = (0,−g) − bω2(− sin ωt, cos ωt) (9.5)

The radial part of this acceleration is balanced by the pendulum tension, the tangen-
tial part equals l ṗ. Since the tangential direction with respect to the pendulum is
(cos q, sin q) we have

l ṗ = −gl − bω2 sin(q − ωt) (9.6)

If we choose
g
l
= 1 ε =

b
l

ω2 (9.7)

we recover the desired form (9.4).
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An alternative strategy is to proceed using the usual machinery of Lagrangian and
Hamiltonian mechanics. The Lagrangian is

L(q, q̇, t) = 1
2 ẋ2 + 1

2 ẏ2 − gy

= 1
2 ω2b2 + 1

2 l2 q̇2 + gl cos q + lbωq̇ cos(q − ωt) + gb cos t
(9.8)

The first term in the second line is constant and has no effect. The last term is of the
form dS/dt and hence can also be dropped from a Lagrangian. Dividing by l2 and
substituting from (9.7) gives

L = 1
2 q̇2 + cos q + (ε/ω) q̇ cos(q − ωt) (9.9)

Now we apply

L→ L − d
dt

sin(q − ωt) (9.10)

which results in modifying the last term, leaving us with

L = 1
2 q̇2 + cos q + ε cos(q − ωt) (9.11)

The Hamiltonian (9.1) then follows.

Another way of describing the system is to artificially go to higher dimensions

H(p, q) = 1
2 p2

1 + ωp2 − cos q1 − ε cos(q1 − q2) (9.12)

Then Hamilton’s equations

ṗ = − ∂H
∂q

q̇ =
∂H
∂p

(9.13)

give q2 equals ωt plus a constant, along with the original equations. There is nothing
physically new here, but formally H has no functional dependence on t. Hence, by the
argument following equation (8.16), H(p, q) is a constant of motion.

The equations of motion can be integrated by any of the general purpose method. But
there is a particularly simple integration method that exploits the special form of the
Hamiltonian, namely that

H(p, q) = HA(p) + HB(q) (9.14)

Both HA and HB are exactly soluble in isolation. An integrator for the whole system
proceeds as (i) evolve under HA for half a time step, (ii) evolve under HB for a full time
step, (iii) (i) evolve under HA for half a time step again.

q1, q2 = (q1 + p1 ∗ dt/2, q2 + omega ∗ dt/2)
s1, s2 = (sin(q1), eps ∗ sin(q1 − q2))
p1, p2 = (p1 − (s1 + s2) ∗ dt, p2 + s2 ∗ dt)
q1, q2 = (q1 + p1 ∗ dt/2, q2 + omega ∗ dt/2)

(9.15)
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Figure 9.1: Surface of section (q, p) at ωt = nπ for the Hamiltonian (9.1) with ω = −2, ε = 0.3.

This is known as leapfrog.

Another interesting quantity in this type of system is a surface of section. Figure 9.1
shows an example. This was plotted by integrating Hamilton’s equations from p =
pini, q = 0, t = 0 (for many different pini) whenever ωt = 2nπ.

Integrate the dynamical equations for a driven pendulum and try to find some interest-
ing sorts of behaviour, such as resonances or chaos.

9.36 Cyclotrons

Particle accelerators use combinations of time-varying electric and magnetic fields to
accelerate charged particle to high energies. In this section we will study a Hamiltonian
system which is a simple model for a particle accelerator.

The Hamiltonian we will study is

H =
√

1 + (px + y)2 + (py − x)2 − αy cos ωt (9.16)

With respect to Hamilton’s equations (9.13) for motion in two dimensions, we identify
x, y with q and px , py with p.

The Hamiltonian (9.16) represents a relativistic charged particle in a constant magnetic
field along Bz and an alternating electric field along y. Let us see why.

In special relativity, the Hamiltonian for a particle of mass m is√
(mc2)2 + p2c2 (9.17)

Differentiating to get Hamilton’s equation for q̇ (which we write as v), and then rear-
ranging, we get

p =
mv√

1 − v2/c2
(9.18)
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which is the usual expression for relativistic momentum. The non-relativistic limit is
p� mc, in which case the Hamiltonian reduces to

mc2 +
p2

2m
(9.19)

giving the Newtonian equations of motion.

If the particle has charge e and is in an electric field E and magnetic field B, both of
which may depend on position and on time time, the Hamiltonian is modified in two
ways. For the electric field, one simply adds the electric potential energy e Φ, where
E = −∇Φ. For the magnetic field, we need the vector potential A where B = ∇×A.
Then p in the Hamiltonian is replaced by p − eA.

For an alternating electric field along y, we have

Φ = −E0y cos ωt → E = (0, E0 cos ωt, 0) (9.20)

For a constant magnetic field Bz, we have

A = Bz
(
− 1

2 y, 1
2 x, 0

)
→ B = (0, 0, Bz) (9.21)

The full Hamiltonian is therefore

H =

√
(mc2)2 + c2

(
px +

1
2 eBzy

)2
+ c2

(
py − 1

2 eBzx
)2 − eE0y cos ωt (9.22)

We have three constant parameters with dimensions as follows.

mc2 ML2T−2

1
2 eBz MT−1

eE0 MLT−2
(9.23)

If we choose our units of mass, length and time, respectively as

m
2mc
eBz

2m
eBz

(9.24)

we can set the first two constants to unity. Our implied unit of force is 1
2 ceBz and since

the last constant is a force, we can introduce

α =
2E0

cBz
(9.25)

and bring the Hamiltonian into the form (9.16).

In the non-relativistic limit, we have

H = mc2 +

(
px +

1
2 eBzy

)2
+
(

py − 1
2 eBzx

)2

2m
− eE0y cos ωt (9.26)
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We can now drop the constant mc2 term and make a still more drastic choice of units
of mass, length, and time

m
(

2m
eBz

)2 eE0

m
2m
eBz

(9.27)

we get
H = 1

2 (px + y)2 + 1
2 (py − x)2 − y cos ωt (9.28)

The non-relativistic Hamiltonian (9.28) is in fact exactly soluble. Writing down Hamil-
ton’s equations and eliminating px , py gives

ẍ = 2ẏ ÿ = −2ẋ + cos ωt (9.29)

We can recognize the forces due to a constant magnetic field along z and an alternating
electric field along y. The solution is

x(t) = a sin(2t + k) +
2 sin(ωt)

ω(4 − ω2)
y(t) = 1

2
d
dt

x(t) (9.30)

where a and k are integration constants. (Two further integration constants can be
added to x and y.) Two limiting cases are particularly interesting.

• For ω =→ 0 the particle moved on a cycloid (if starting at rest, in general a
trochoid). The curious feature is, that on average, it moved sideways to the electric
field.

• For ω =→ 2 the spirals outwards. This is the principle of a cyclotron.

Compute and plot a few particle trajectories in (9.28) and (9.16). There are some
interesting differences. First, for the non-relativistic case, changing α simply rescales
the trajectory, but in relativity α is not a simply scaling. Second, for ω = 2, the particle
can be accelerated to arbitrarily high speeds, but in relativity that does not happen.

9.37 Three-body problem

Another interpretation of the magnetic force (9.29) is the Coriolis force in a frame
rotating with unit angular velocity. If we now add 1

2 (x2+y2) to the Hamiltonian (9.28),
that amounts to adding a centrifugal force. The resulting Hamiltonian

H = 1
2 p2

x +
1
2 p2

y + ypx − xpy (9.31)

corresponds to a particle in a rotating frame. If we now add a potential V(x, y)

H = 1
2 p2

x +
1
2 p2

y + ypx − xpy + V(x, y) (9.32)

we have the Hamiltonian of a particle in a rotating potential. An important example
has

V = − 1 − µ√
(x + µ)2 + y2

− µ√
(x − 1 + µ)2 + y2

(9.33)
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The potential represents two gravitating bodies, with masses in the ratio (µ, 1 − µ) in
a circular orbit (the origin is chosen as the centre of mass). The Hamiltonian (9.32)
describes a test particle in the combined gravitational field.

The Hamiltonian (9.32) can also be derived more formally, using the machinery of
Hamiltonian dynamics. To do this, we recall that Hamilton’s equations derive from a
variational principle

δ
∫

p · dq − H(p, q, t) dt = 0 (9.34)

with q, t fixed at the ends. Consider a new set of variables P, Q and let the Hamiltonian
in terms of these be H(P, Q, t). [Note that H(p, q, t) and H(P, Q, t) will have different
functional forms. It simplifies notation if we use the same symbol H for both functions,
letting the argument list specify which function we mean.] In these variables, we can
write down a variational principle

δ
∫

P · dQ − H(P, Q, t) dt = 0 (9.35)

The condition for both variational equations to represent the same dynamics is that
their integrands differ by an exact differential. Let us write this exact differential as
d(p · q) − dS(p, Q, t).

p · dq − H(p, q, t) dt = P · dQ − H(P, Q, t) dt + d(q · p) − dS(p, Q, t) (9.36)

where S(p, Q, t) is an arbitrary function. Expanding this out and comparing coefficients
we have

q =
∂S
∂p

P =
∂S
∂Q

H(p, q, t) = H(P, Q, t) +
∂S
∂t

(9.37)

which gives (p, q) → (P, Q) implicitly. This is known as a canonical transformation
and S(p, Q, t) is called the generating function.

Now let us identify P, Q with some cartesian variables X, Y, PX , PY. In particular, let us
assume that

H = 1
2 (P2

X + P2
Y) + V(X, Y, t) (9.38)

generates the Newtonian equations of motion in a time-dependent potential. Let p, q
with some other variables px , py, x, y and let us choose

S =

(
px
py

)
M
(

X
Y

)
(9.39)

where

M ≡
(

cos t − sin t
sin t cos t

)
(9.40)

The transformation generated is(
x
y

)
= M

(
X
Y

) (
px
py

)
= M

(
Px
Py

)
(9.41)
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from which it is clear that x, y are rotating with respect to X, Y at unit angular velocity.
The Hamiltonians are related by

H(px , py, x, y) = H(PX , PY , X, Y) + ( px py )
∂M
∂t

M−1
(

x
y

)
(9.42)

to the Hamiltonian. The last expression simplifies to ypx − xpy.

Numerically integrate the Hamilton’s equations for (9.32) and plot the resulting orbits
for some values of µ and the initial conditions. For example, µ = 0.2 with initial
(x, y, px , py) = (0, 0, 0, 1) gives an orbit around the larger mass. Try to find some orbits
around the smaller mass, and some chaotic orbits.

9.38 Near a black hole

The trajectory of a particle near a black hole is given by the Hamiltonian.

2H = (1 − 2/r) p2
r +

p2
φ

r2 − (1 − 2/r)−1 (9.43)

Distances are in units of GM/c2, the so-called gravitational radius of the back hole.

We can transform to a more convenient form for integration as follows. Referring back
to the canonical transformation (9.37), let us identify (p, q) with (px , py, x, y) and iden-
tify (P, Q) with (r, φ, pr , pφ). Choosing

S = (r cos φ) px + (r sin φ) py (9.44)

gives
x = r cos φ , y = r sin φ , (9.45)

as desired for polar coordinates. The momentum components become

pr =
xpx + ypy

r
, pφ = xpy − ypx . (9.46)

and transforms the Hamiltonian to

H = 1
2 p2

x +
1
2 p2

y − 1
2 (1 − 2/r)−1 −

(xpx + ypy)2

r3 (9.47)

Note that now r is to be considered a function of x, y.

Numerically integrate Hamilton’s equations for the Hamiltonian (9.47) and plot some
orbits, starting from a few different initial conditions. For example, if (x, y, px , py) =
(25, 0, 0, 0.2) initially, the result is very similar to a Newtonian circular orbit.

9.39 Vortices

This example concerns a curious analogue of a gravitational N-body problem, arising
from fluid mechanics.
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Let v(r) be the velocity field of a fluid. If the fluid is incompressible, ∇ · v = 0 and we
can introduce the so called stream function, a vector field ψ such that

v = ∇× ψ, ∇ · ψ = 0 (9.48)

The stream function satisfies
∇2ψ = −ω (9.49)

where ω ≡ ∇× v and is called the vorticity. In the case of flow without viscosity (“dry
water”) vorticity is conserved, and the flow satisfies

dω

dt
= ω · ∇v (9.50)

There is an analogy with magnetic fields: v is like a magnetic field, ψ is like the vector
potential, and ω is like current.

For two-dimensional flow, some interesting things can happen. First, suppose ω is zero
except at some discrete vortex points, z1, . . . , zN. Then the stream function will have
the solution

ψ(z) = −∑
n

ln |z − zn| (9.51)

There is an arbitrary coefficient with each vortex term, but we take all the vorticities
equal here. Also, ω is naturally normal to the flow and hence

dω

dt
= 0 (9.52)

which is to say, ω moves with the fluid. Hence the vortices move with v, or

żm = ∇× ψ(zm) (9.53)

Now, if we identify zn with (qn, pn), we can write Hamilton’s equations as

żm = ∇m × H(zn, z̄n) (9.54)

Hence we have an effective Hamiltonian for the N-vortex problem:

H = − ∑
m 6=n

ln |zm − zn| (9.55)

We can thus interpret the (x, y) of each vortex as a phase-space location (q, p) and
evolve these under the Hamiltonian. The vortices behave like interacting particles,
even though they have no kinetic energy and it’s really the stream function that makes
them move. There are three integrals of motion

H ∑
n

zn ∑
n
|zn|2 (9.56)

which are like energy, momentum, and angular momentum. As a result, the three-
vortex problem is integrable, for four or more we will find chaos.
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10.40 Interactive graphics: triangle-interior test

Given four complex numbers a, b, c and p, does p lie inside the triangle joining a, b, c?
This problem, versions of which are pervasive in computer visualization, is a good place
to introduce interactive graphics.

There are several libraries for doing interactive graphics with Python. The simplest one
is Tkinter . A simple program to respond to mouse clicks and mouse dragging looks like
this.

from Tkinter import Tk, Canvas, ALL

# code for clicked() and moved()
root = Tk()
canv = Canvas(root, width = 300, height = 300)
canv.bind("<Button-1>", clicked)
canv.bind("<B1-Motion>", moved)
canv.pack()
root.mainloop()

(10.1)

The above code binds mouse events to functions which must be defined. The following
example lets the user draw a little pendulum on the canvas with the mouse.

def clicked(event) :
global xo, yo

xo = event.x
yo = event.y

def moved(event) :
canv.delete(ALL)
x = event.x
y = event.y
canv.create line(xo, yo, x, y)
canv.create oval(x − 4, y − 4, x + 4, y + 4)

(10.2)

As we see, Tkinter .canv has a coordinate system defined. The origin is that the upper
left and the units are pixels.

The Tkinter library also allows animation. Here is some code to make a ball bounce
around in a window.
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from Tkinter import Tk, Canvas, ALL

# Initialize ht, wd, rad, x, y, vx, vy

def update() :
global x, y, vx, vy

canv.delete(ALL)
d = canv.create oval(x − rad, y − rad, x + rad, y + rad, fill = "blue")
canv.update()
# Reverse vx,vy if necessary
x += vx

y += vy

canv.after(40, update) # wait 40 msec
window = Tk()
canv = Canvas(window, height = ht, width = wd)
canv.pack()
update()
window.mainloop()

(10.3)

We will not attempt to combine user-interaction and animation.

Let us now return to the triangle-interior problem at the start of this section. There are
several ways of solving the problem, and here is one. Let us take a straight line from the
midpoint (b+ c)/2 to p and keep going. If p is inside the triangle, we will intersect one
of the sides a-to-b or a-to-c. If p is outside the triangle, we will need to go backwards to
intersect, or we will intersect outside the triangle.

Writing down expressions for the lines, it is not difficult to see that the condition for
intersecting the side a-tob is γ > 0 and 0 < β < 1 in

p + γ(p − (b + c)/2) = a + β(b − a) (10.4)

For the side a-to-c an analogous pair of conditions applies. If either pair of conditions
holds, p is in the triangle, otherwise it is outside.

Write a GUI implementing the following on a Tkinter canv .

(i) A triangle is drawn, which can be modified by dragging the mouse to shift a chosen
corner.

(ii) Clicking anywhere on the canvas causes a dot to appear at that point. The dot
should be green if inside the triangle and red if outside.

10.41 Flight paths on the globe

There are numerous ways of projecting the globe to two dimensions. The Hammer-
Aitoff projection is a particularly important one, because it preserves areas with com-
paratively little shape-distortion. The transformation is

x =
2
√

2 sin θ sin 1
2 φ√

1 + sin θ cos 1
2 φ

y =
2 cos θ√

1 + sin θ cos 1
2 φ

(10.5)
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and the inverse is defined with the help of an auxiliary variable u as

u =
√

1 − x2/16 − y2/4

θ = arccos(uy)

φ = 2 arctan(ux/(4u2 − 2))

(10.6)

Figure 10.1: Zurich and Sapporo are at similar latitudes, but the shortest route between them goes far to
the North. Consecutive dots are 1000 km apart, except for the last pair, which are closer.

Figure 10.1 shows a world map in Hammer-Aitoff projection, and as we can see, the
shortest between two points can take unexpected shapes. We want to find the shortest
route between two points. An elegant way of doing so involves going to four dimen-
sions.

Complex numbers have a non-commmutative but useful generalization to four dimen-
sions, known as quaternions. There are many ways of representing quaternions, and
one is to use Pauli matrices.

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(10.7)

The Pauli matrices behave as generalizations of
√
−1. A general quaternion has the

form
Q = α + i(xσ1 + yσ2 + zσ3) (10.8)

where the components α, x, y, z are all real. The norm is defined as

|Q|2 = α2 + x2 + y2 + z2 (10.9)

Once the matrices σ1, σ2, σ2 have been initialized, we can forget the details in (10.7).
Everything can be done with matrix operations. In particular, the various components
can be extracted by

α = 1
2 Tr(Q) x = Tr(σ1Q)/(2i) (10.10)

and similarly for y and z. Quaternions can be multiplied by matrix multiplication, and
the norm of a product is the product of the norms. We can also express Q in a kind of
polar form

r(cos θ + i sin θ n) (10.11)
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where r is real and n is a traceless unit quaternion. This form lets us take arbitrary
powers.

Clearly, any three-dimensional vector can be represented by a traceless quaternion. If
we have two such quaternions P and Q, the product PQ encodes both the dot and
cross products: the dot product is − 1

2 Tr(PQ), and the traceless part of PQ represents
the cross product. So everything in three-dimensional vector algebra can be done with
quaternions, often more concisely.

Quaternions also have two other properties, which make them very important in visu-
alization.

The first of these is spherical interpolation, known as slerp. Let P and Q be two traceless
unit quaternions (that is, points on a unit sphere). Now consider

P
(
P−1Q

)s
= P (−PQ)s (10.12)

with s varying from 0 to 1. This interpolates from P to Q while remaining on a sphere.

The second property is that rotations become very simple. Let P be a traceless quater-
nion. Then

(cos θ + i sin θ n)Q (cos θ − i sin θ n) (10.13)

rotates Q by an angle 2θ around the axis defined by n.

10.42 Dancing polyhedron

In this example we show a cube or other polyhedron in perspective, spinning about an
arbitrary axis.

The basic formula for perspective is very simple. We put the observer at the origin and
the screen at distance d in the z direction. The screen coordinates (X, Y) of a spatial
point (x, y) are then

X = xd/z Y = yd/z (10.14)

If we want X, Y in pixels, then d must be in pixels.

Write an animation showing a spinning wire-frame cube or tetrahedron in perspective.
The perspective is visually more effective if you draw covered lines (that is, lines with
a face in front of them) differently. To test if an edge of a regular polyhedron is cov-
ered, it is enough to do the test for the midpoint of the edge. Try and reduce the
problem of testing whether any given point is covered to the triangle-interior test from
section 10.40.
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