NUST MISIS, Russia, Moscow

## Lecture 12, 20.02.2019

# Systematic Uncertainties: The NA48 Experiment at CERN

# **Olaf Steinkamp**

### University of Zurich olafs@physik.uzh.ch







University of Zurich<sup>™™</sup>

### **Olaf Steinkamp**

Born in Bremen (Germany) Studied physics in Bonn (D) PhD thesis work at CERN (GE) 1<sup>st</sup> PostDoc at CEA Saclay (F) NA48 experiment at CERN

2<sup>nd</sup> PostDoc at NIKHEF Amsterdam (NL)

HERA-B experiment at DESY (Hamburg)

Since 2000 at University of Zurich:

LHCb experiment at CERN (new: also Mu3e at PSI)

Lectures on data analysis & experimental techniques

















### **CP** Violation

- Charge conjugation C:  $q \rightarrow -q$  for all charge-like quantum numbers
- Parity P:  $(x,y,z) \rightarrow (-x,-y,-z)$
- Time reversal *T*:  $t \rightarrow -t$
- all three conserved in strong and electromagnetic interactions
- C and P maximally violated in weak interactions
  - predicted in 1950 (Nobel 1957)
  - first observed in 1953 in decays of polarized <sup>60</sup>Co nuclei
- violation of combined symmetry CP in weak interactions
  - discovered 1964 in K<sup>0</sup> decays (Nobel 1980)
  - explained by a single complex phase in 3×3 CKM matrix (Nobel 2008)









### **Neutral Kaon System**

<u>Transitions  $K^0 \leftrightarrow \overline{K}^0$  through exchange of two *W* bosons ("box diagrams")</u>



•  $K^0$  (or  $\overline{K}^0$ ) produced at time t=0 will evolve into a mixed state at time t>0

$$\psi(t) = a(t) \cdot |\kappa^{0}\rangle + b(t) \cdot |\bar{\kappa}^{0}\rangle$$

Can define mixed states that are Eigenstates of the CP operator

$$|\mathbf{K}_{1}\rangle \equiv \frac{1}{\sqrt{2}} \cdot \{|\overline{\mathbf{K}}^{0}\rangle + |\mathbf{K}^{0}\rangle\} \implies CP |\mathbf{K}_{1}\rangle = \frac{1}{\sqrt{2}} \cdot \{|\mathbf{K}^{0}\rangle + |\overline{\mathbf{K}}^{0}\rangle\} = + |\mathbf{K}_{1}\rangle$$
$$|\mathbf{K}_{2}\rangle \equiv \frac{1}{\sqrt{2}} \cdot \{|\mathbf{K}^{0}\rangle - |\overline{\mathbf{K}}^{0}\rangle\} \implies CP |\mathbf{K}_{2}\rangle = \frac{1}{\sqrt{2}} \cdot \{|\overline{\mathbf{K}}^{0}\rangle - |\mathbf{K}^{0}\rangle\} = - |\mathbf{K}_{2}\rangle$$

these are also Eigenstates of the weak interaction, if CP is conserved





University of Zurich<sup>uz+</sup>

### **Neutral Kaon System**

#### Look at decay of Kaons into two pions

- Kaons and pions are spin-0 mesons
- conservation of angular momentum in the decay
- $CP(\pi\pi) = -1^L \Rightarrow 2\pi$  final state is CP even

#### If CP is conserved in weak interactions

- $K_2$  (CP odd) cannot decay into  $2\pi$
- other decay channels for  $K_2$  also suppressed
  - $K_2 \rightarrow 3\pi$  by phase space
  - $K_2 \rightarrow \pi^{\pm} \ell^{\mp} v_{\ell}$  by parity violation
- $K_2$  has much longer lifetime than  $K_1$ 
  - this has been observed:
  - measure τ (K<sub>2</sub>) ≈ 500 × τ (K<sub>1</sub>)









### **Neutral Kaon System**

### <u>**K**<sup>0</sup>/<del>K</del><sup>0</sup> propagating in vacuum</u> • $K_1$ component decays $\Rightarrow$ pure $K_2$ state • e.g. after 20 × $K_1$ -lifetime: • $K_1$ intensity down to 2 x 10<sup>-9</sup> of initial intensity • $K_2$ intensity still at 96% If K<sub>2</sub> beam traverses material $|\boldsymbol{K}_2\rangle \equiv \frac{1}{\sqrt{2}} \cdot \{|\boldsymbol{K}^0\rangle - |\bar{\boldsymbol{K}}^0\rangle\}$

- K<sup>0</sup> (ds) and K<sup>0</sup> (ds) have different strong interaction cross sections
- $\overline{K}^0/K^0$  mixture changes
- regeneration of a K<sub>1</sub> component





K<sup>0</sup>

$$\mathbf{x}_{1}^{\mathbf{x}_{1}} = \mathbf{x}_{2}^{\mathbf{x}_{1}} + \mathbf{x}_{2}^{\mathbf{x}_{2}} + \mathbf{x}_{2}^{\mathbf{x}_{2}}$$

10

30

7

 $m(\pi^{+}\pi^{-}) < m(K^{0})$ 

NW

### **Discovery of CP Violation**

<u>Observation of decays  $K_2 \rightarrow \pi^+ \pi^-$  (Christenson, Cronin, Fitch, Turlay, 1964)</u>

- search for  $\pi^+\pi^-$  decays in a pure  $K_2$  beam
- to identify  $\pi^+ \pi^-$  decays use
  - energy conservation: invariant mass of  $\pi^+ \pi^-$  pair
  - momentum conservation: momentum balance



### **Discovery of CP Violation**

Interpretation: Kaon mass eigenstates are not identical to CP eigenstates

long lived mass Eigenstate (K<sub>L</sub>) has small admixture from CP-even state K<sub>1</sub>



measure |ε| through decay width ratios of CP forbidden and allowed decays

$$\begin{split} \eta_{+-} &\equiv \frac{\Gamma\left(\mathcal{K}_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(\mathcal{K}_{S} \rightarrow \pi^{+} \pi^{-}\right)} \; = \; (2.286 \pm 0.017) \cdot 10^{-3} \; \approx \; |\epsilon| \\ \eta_{00} &\equiv \; \frac{\Gamma\left(\mathcal{K}_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(\mathcal{K}_{S} \rightarrow \pi^{0} \pi^{0}\right)} \; = \; (2.274 \pm 0.017) \cdot 10^{-3} \; \approx \; |\epsilon| \end{split}$$





University of Zurich<sup>™</sup>

## **CP** Violation in the Standard Model

#### 3 quark generations: 3x3 quark mixing matrix (Kobayashi-Maskawa, 1973)

$$\begin{pmatrix} \mathbf{d}' \\ \mathbf{s}' \\ \mathbf{b}' \end{pmatrix} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$



- 9 complex numbers = 18 parameters
  - 9 unitarity constraints ( $V^{\dagger}V = VV^{\dagger} = 1$ )
  - 5 arbitrary ("unphysical") phases
  - = 4 free parameters: 3 rotation angles + 1 complex phase







### **CP** Violation in the Standard Model

#### 3 quark generations: 3x3 quark mixing matrix (Kobayashi-Maskawa, 1973)

$$\begin{pmatrix} \mathbf{d}' \\ \mathbf{s}' \\ \mathbf{b}' \end{pmatrix} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$

- 9 complex numbers = 18 parameters
  - 9 unitarity constraints ( $V^{\dagger}V = VV^{\dagger} = 1$ )
  - 5 arbitrary ("unphysical") phases
  - = 4 free parameters: 3 rotation angles + 1 complex phase

$$\left. \begin{array}{c} \boldsymbol{u}_{i} \rightarrow \boldsymbol{e}^{i \varphi_{i}} \boldsymbol{u}_{i} \\ \boldsymbol{d}_{j} \rightarrow \boldsymbol{e}^{i \varphi_{j}} \boldsymbol{d}_{j} \end{array} \right\} \Leftrightarrow \boldsymbol{V}_{ij} \rightarrow \boldsymbol{e}^{i (\varphi_{j} - \varphi_{i})} \boldsymbol{V}_{ij}$$







11

### **CP** Violation in the Standard Model

#### 3 quark generations: 3x3 quark mixing matrix (Kobayashi-Maskawa, 1973)

$$\begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$





### Indirect and Direct CP Violation

### Explains "indirect" CP violation in Kaon mixing

- interference of box diagrams with different quarks (= different weak phases) in the loop
- Predicts "direct" CP violation in Kaon decays
- due to interference of "Tree" and "Penguin" diagrams with different weak phases
- can be measured by comparing

$$\eta_{+-} = \frac{\Gamma \left( K_{L} \rightarrow \pi^{+} \pi^{-} \right)}{\Gamma \left( K_{s} \rightarrow \pi^{+} \pi^{-} \right)} = \epsilon + \epsilon'$$
  
$$\eta_{00} = \frac{\Gamma \left( K_{L} \rightarrow \pi^{0} \pi^{0} \right)}{\Gamma \left( K_{s} \rightarrow \pi^{0} \pi^{0} \right)} = \epsilon - 2 \epsilon'$$

- $\varepsilon' \equiv 0$  if *CP* violation only in mixing
- expect ε'/ε ≈ 10<sup>-3</sup> in Standard Model











### Indirect and Direct CP Violation

**K**<sup>0</sup>

### Explains "indirect" CP violation in Kaon mixing

 interference of box diagrams with different quarks (= different weak phases) in the loop

#### Predicts "direct" CP violation in Kaon decays

- due to interference of "Tree" and "Penguin" diagrams with different weak phases
- can be measured by comparing

$$\eta_{+-} = \frac{\Gamma \left( K_{L} \rightarrow \pi^{+} \pi^{-} \right)}{\Gamma \left( K_{s} \rightarrow \pi^{+} \pi^{-} \right)} = \epsilon + \epsilon'$$
  
$$\eta_{00} = \frac{\Gamma \left( K_{L} \rightarrow \pi^{0} \pi^{0} \right)}{\Gamma \left( K_{s} \rightarrow \pi^{0} \pi^{0} \right)} = \epsilon - 2 \epsilon'$$

- $\varepsilon' \equiv 0$  if *CP* violation only in mixing
- expect ε'/ε ≈ 10<sup>-3</sup> in Standard Model









<u>Measure Re ( $\epsilon'/\epsilon$ ) through "double ratio" of decay widths</u>

$$\boldsymbol{R} \equiv \left| \frac{\eta_{00}}{\eta_{+-}} \right|^{2} = \frac{\Gamma \left( \boldsymbol{K}_{L} \rightarrow \pi^{0} \pi^{0} \right) / \Gamma \left( \boldsymbol{K}_{s} \rightarrow \pi^{0} \pi^{0} \right)}{\Gamma \left( \boldsymbol{K}_{L} \rightarrow \pi^{+} \pi^{-} \right) / \Gamma \left( \boldsymbol{K}_{s} \rightarrow \pi^{+} \pi^{-} \right)} \approx 1 - 6 \cdot \operatorname{Re} \left( \frac{\varepsilon}{\varepsilon} \right)$$

**Experiment: count number of events** 

$$R_{exp} = \frac{N(K_{L} \to \pi^{0} \pi^{0}) / N(K_{s} \to \pi^{0} \pi^{0})}{N(K_{L} \to \pi^{+} \pi^{-}) / N(K_{s} \to \pi^{+} \pi^{-})} \quad \text{with} \quad N = \int_{t} \Phi(t) \cdot \Gamma \cdot A(t) dt$$
$$\Phi(t) : \text{particle flux (accelerator)} \quad ; \quad A(t) : \text{efficiency (detector)}$$

 double ratio: many systematic uncertainties cancel to first order, if the four event rates are measured at the same time in the same experiment

$$R = \int_{t} \frac{\left[ \Phi_{\kappa_{L}}(t) \cdot \Gamma(\kappa_{L} \to \pi^{0} \pi^{0}) \cdot A_{\pi^{0} \pi^{0}}(t) \right] / \left[ \Phi_{\kappa_{s}}(t) \cdot \Gamma(\kappa_{s} \to \pi^{0} \pi^{0}) \cdot A_{\pi^{0} \pi^{0}}(t) \right]}{\left[ \Phi_{\kappa_{L}}(t) \cdot \Gamma(\kappa_{L} \to \pi^{+} \pi^{-}) \cdot A_{\pi^{+} \pi^{-}}(t) \right] / \left[ \Phi_{\kappa_{s}}(t) \cdot \Gamma(\kappa_{s} \to \pi^{+} \pi^{-}) \cdot A_{\pi^{+} \pi^{-}}(t) \right]} dt$$







<u>Measure Re ( $\epsilon'/\epsilon$ ) through "double ratio" of decay widths</u>

$$\boldsymbol{R} \equiv \left| \frac{\eta_{00}}{\eta_{+-}} \right|^{2} = \frac{\Gamma \left( \boldsymbol{K}_{L} \rightarrow \pi^{0} \pi^{0} \right) / \Gamma \left( \boldsymbol{K}_{s} \rightarrow \pi^{0} \pi^{0} \right)}{\Gamma \left( \boldsymbol{K}_{L} \rightarrow \pi^{+} \pi^{-} \right) / \Gamma \left( \boldsymbol{K}_{s} \rightarrow \pi^{+} \pi^{-} \right)} \approx 1 - 6 \cdot \operatorname{Re} \left( \frac{\varepsilon}{\varepsilon} \right)$$

**Experiment: count number of events** 

$$R_{exp} = \frac{N(K_{L} \to \pi^{0} \pi^{0}) / N(K_{s} \to \pi^{0} \pi^{0})}{N(K_{L} \to \pi^{+} \pi^{-}) / N(K_{s} \to \pi^{+} \pi^{-})} \quad \text{with} \quad N = \int_{t} \Phi(t) \cdot \Gamma \cdot A(t) dt$$
$$\Phi(t) : \text{particle flux (accelerator)} \quad ; \quad A(t) : \text{efficiency (detector)}$$

 double ratio: many systematic uncertainties cancel to first order, if the four event rates are measured at the same time in the same experiment

$$R = \int_{t} \frac{\left\{ \Phi_{\kappa_{L}}(t) \cdot \Gamma(\kappa_{L} \to \pi^{0} \pi^{0}) \cdot A_{\pi^{0} \pi^{0}}(t) \right\} / \left\{ \Phi_{\kappa_{s}}(t) \cdot \Gamma(\kappa_{s} \to \pi^{0} \pi^{0}) \cdot A_{\pi^{0} \pi^{0}}(t) \right\}}{\left\{ \Phi_{\kappa_{L}}(t) \cdot \Gamma(\kappa_{L} \to \pi^{+} \pi^{-}) \cdot A_{\pi^{+} \pi^{-}}(t) \right\} / \left\{ \Phi_{\kappa_{s}}(t) \cdot \Gamma(\kappa_{s} \to \pi^{+} \pi^{-}) \cdot A_{\pi^{+} \pi^{-}}(t) \right\}} dt$$







<u>Measure Re ( $\epsilon'/\epsilon$ ) through "double ratio" of decay widths</u>

$$\boldsymbol{R} \equiv \left| \frac{\eta_{00}}{\eta_{+-}} \right|^{2} = \frac{\Gamma \left( \boldsymbol{K}_{L} \rightarrow \pi^{0} \pi^{0} \right) / \Gamma \left( \boldsymbol{K}_{s} \rightarrow \pi^{0} \pi^{0} \right)}{\Gamma \left( \boldsymbol{K}_{L} \rightarrow \pi^{+} \pi^{-} \right) / \Gamma \left( \boldsymbol{K}_{s} \rightarrow \pi^{+} \pi^{-} \right)} \approx 1 - 6 \cdot \operatorname{Re} \left( \frac{\varepsilon}{\varepsilon} \right)$$

**Experiment: count number of events** 

$$R_{exp} = \frac{N(K_L \to \pi^0 \pi^0) / N(K_s \to \pi^0 \pi^0)}{N(K_L \to \pi^+ \pi^-) / N(K_s \to \pi^+ \pi^-)} \quad \text{with} \quad N = \int_t \Phi(t) \cdot \Gamma \cdot A(t) dt$$

 $\Phi(t)$  : particle flux (accelerator) ; A(t) : efficiency (detector)

 double ratio: many systematic uncertainties cancel to first order, if the four event rates are measured at the same time in the same experiment

$$R = \int_{t} \underbrace{\left( \begin{array}{c} \Psi_{\mathcal{K}_{L}} \\ \Psi_{\mathcal{K}_{L}} \\$$



### **Ideal Experiment**



### **Real Experiment**



### **Backgrounds**

#### **K<sub>L</sub>: large backgrounds from CP-conserving 3-body decays**

- $K_{L} \rightarrow \pi^{\pm} e^{\mp} \nu$  (39%)
- $K_{L} \rightarrow \pi^{\pm} \mu^{\mp} \nu$  (27%)
- $K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}$  (13%)
- $K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}$  (21%)
- $K_{L} \rightarrow \pi^{+}\pi^{-}$  (0.206%)
- $K_L \to \pi^0 \pi^0$  (0.09%)

#### backgrounds for $\pi^+\pi^-$ reconstruction

- neutrino leaves no trace in the detector
- $\pi^0$  could be missed
- background for  $\pi^0 \pi^0$  reconstruction
  - one  $\pi^0$  could be missed
  - photon clusters from two  $\pi^0$ 's could merge
- apply selection cuts on event topology, kinematics, particle identification to suppress these backgrounds
- K<sub>s</sub>: backgrounds completely negligible
- but apply the same selection cuts as for  $K_{\rm L}$  to minimize systematics







### **Princeton Experiment (1972)**

#### First measurement of double ratio in one experiment



- but: four decay modes measured in four consecutive data taking periods (charged vs. neutral detector) × (with vs. without K<sub>s</sub> regenerator)
- dominating systematics: beam flux monitored to 3% precision
- statistics:  $124 \pm 11 \ K_L \rightarrow \pi^0 \pi^0$  events collected
- collaboration: 5 physicists







Re  $(\epsilon'/\epsilon) = -0.008 \pm 0.020$ 

## E731 at Fermilab (1985-87)

E731

K<sub>I</sub>

#### <u>Two parallel K<sub>1</sub> beams, one of them with a K<sub>5</sub> regenerator</u>

- wire chambers + dipole magnet for reconstruction of  $\pi^+\pi^-$  decays
- electromagnetic calorimeter for reconstruction of  $\pi^0 \pi^0$  decays
- photon and muon vetos for background rejection
- $K_1$  and  $K_s$  modes collected at the same time
- but very different decay vertex distributions for  $K_1$  and  $K_s$  due to the different lifetimes
  - different illumination of detector
  - acceptance correction by Monte Carlo simulation









## NA31 at CERN (1986-89)

#### Separate K<sub>L</sub> and K<sub>s</sub> production targets in the same proton beam

- wire chambers and hadron calorimeter for reconstruction of π<sup>+</sup> π<sup>-</sup> decays (no momentum measurement !)
- electromagnetic calorimeter
  for reconstruction of π<sup>0</sup> π<sup>0</sup> decays
- photon and muon vetos
- moveable K<sub>s</sub> target to emulate flat decay vertex distribution by taking data at different target positions
  - much smaller acceptance corrections
  - but  $K_{\rm L}$  and  $K_{\rm S}$  modes not collected at the same time









K<sub>s</sub> target train stations

Z axis

## Final Results (1993)

#### <u>E731</u>

• about 410 k reconstructed  $K_{\rm L} \rightarrow \pi^0 \pi^0$  events

Re  $(\epsilon'/\epsilon) = (7.4 \pm 5.2 \pm 2.9) \times 10^{-4}$ 

- total uncertainty 6.0 × 10<sup>-4</sup>
- result compatible with zero

#### <u>NA31</u>

• about 428 k reconstructed  $K_{\rm L} \rightarrow \pi^0 \pi^0$  events

Re  $(\epsilon'/\epsilon) = (23.0 \pm 4.1 \pm 5.1) \times 10^{-4}$ 

- total uncertainty 6.5 × 10<sup>-4</sup>
- + 3.3  $\sigma\,$  deviation from zero

⇒ New round of experiments
 "3<sup>rd</sup> generation"
 goal: measure Re (ε'/ε) to precision of 1–2 x 10<sup>-4</sup>







muon detectors

Csl

## KTeV at Fermilab (1996-99)

20 cm

K<sub>L</sub> beams

120

regenerator

#### Setup similar to E731, but significant improvements in details

- more intense beams to collect more statistics
- K<sub>s</sub> regenerator switched between the two beams once every minute
- more precise detectors for better background rejection
  - in particular, CsI calorimeter with excellent energy resolution

Better resolution  $\rightarrow$  narrower signal window  $\rightarrow$  less background in signal window  $\rightarrow$  smaller uncertainty from background subtraction











magnet

photon vetos

### NA48 at CERN (1997-2001)



### NA48 at CERN (1997-2001)



### NA48 at CERN (1997-2001)



29

### NA48 at CERN (1997-2001)



30

### NA48 at CERN (1997-2001)



# $K_{\rm L}$ and $K_{\rm S}$ Beams

#### Similar momentum spectra

 important because detector acceptance and reconstruction efficiency depend on momenta



#### **Intensities equal to a few %**

 important because overlapping events in the detector can cause efficiency losses



### **Detector**

#### Simultaneous measurement of $\pi^+\pi^-$ and $\pi^0\pi^0$



### **Detector**













University of Zurich<sup>ॻz</sup><sup></sup>

### **Electromagnetic Calorimeter**

### **10** m<sup>3</sup> of liquid Krypton (at *T* = 120 K) as converter and detection medium

- 27  $X_0$  thick  $\Rightarrow$  electromagnetic showers contained to > 99%
- 13'500 readout cells, defined by Cu-Be ribbons
  - 3000 V between electrodes to collect charges generated by ionization in the LKr
  - "accordeon structure" to improve homogeneity of response
- excellent energy resolution
  - almost as good as CsI in KTeV
- excellent time resolution
  - better than 250 ps
  - will see later why this is important









## $K \rightarrow \pi^0 \pi^0$ Reconstruction

#### Select events with four y-clusters in the calorimeter

- measure cluster positions  $(x_i, y_i)$  and energies  $(E_i)$
- assume that the  $4\gamma$  come from a Kaon decay
  - i.e. assume invariant mass is equal to Kaon mass
- calculate decay vertex position along beam axis

$$\boldsymbol{D} = \frac{\sqrt{\sum_{ij} \boldsymbol{E}_i \boldsymbol{E}_j \boldsymbol{r}_{ij}^2}}{\boldsymbol{m}_{\kappa}}$$

calculate 2γ invariant mass for all pairs of clusters

$$\boldsymbol{M}_{ij} \equiv \boldsymbol{M}_{(\boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{j})} = \frac{\sqrt{\boldsymbol{E}_{i} \boldsymbol{E}_{j} \boldsymbol{r}_{ij}^{2}}}{\boldsymbol{D}}$$

• calculate combined compatibility with the  $\pi^0$  mass, select best combination, cut to reject background

$$\chi^{2} \equiv \left(\frac{M_{12} + M_{34} - 2m_{\pi^{0}}}{\sigma_{M_{12} + M_{34}}}\right)^{2} + \left(\frac{M_{12} - M_{34}}{\sigma_{M_{12} - M_{34}}}\right)^{2}$$











## **Dipole Spectrometer**

#### **Typical setup of a fixed-target experiment**

four planar drift chambers

National University o

Science and Technology

SHil

- two before and two after a 0.83 Tm dipole magnet
- each chamber four detection layers
  - wires vertical, horizontal, +45°, -45°
  - each detection layer: two staggered wire planes





### **Dipole Spectrometer**

#### Drift chambers embedded in a 23 m long, 2.8 m Ø Helium tank

- to minimize multiple scattering of the  $\pi^{\pm}$ 
  - multiple scattering deteriorates momentum resolution
- inside this tank: vacuum beam pipe for the kaon beam
  - wall as thin as possible to minimize multiple scattering
  - initially aluminum, then replaced by carbon fibre
  - suddenly imploded after 2 years of operation
- drift chambers destroyed, had to be rebuilt













University of Zurich<sup>™</sup>



### $K \rightarrow \pi^+ \pi^-$ Reconstruction

#### Select events with two reconstructed tracks

- reconstruct position of Kaon decay vertex from track segments upstream of dipole magnet
  - transverse vertex resolution ~ 2 mm
  - sufficient to separate  $K_{\rm L}$  and  $K_{\rm S}$  vertices
    - $\rightarrow$  but used only in cross checks (see later slide)
- reconstruct momenta from bending in magnet
- assume π<sup>±</sup> mass for both tracks, calculate invariant mass and Kaon momentum
- cut on kinematic variables to reject background









### Trigger

#### **Requirements**

- fast response, good background rejection
- efficiency > 99%
- no deadtime
- well understood response to "accidentals"

#### **Implementation**

- custom-made electronics boards
- fully pipelined to avoid dead time
  - novel at the time
- design specs for π<sup>+</sup>π<sup>-</sup> implementation made slightly too optimistic assumptions on hit multiplicities in wire chambers
  - FPGAs were very expensive at the time







to minimize systematics between  $\pi^0\pi^0$  and  $\pi^+\pi^-$ 

≈ 1.3 % inefficiency
 ≈ 0.3 % deadtime
 → source of systematic uncertainty

### "Accidental Activity"

#### **Inefficiencies due to accidental coincidences**

- cause systematic effect if losses are different for π<sup>+</sup>π<sup>-</sup> vs π<sup>0</sup>π<sup>0</sup> or for K<sub>L</sub> vs K<sub>S</sub>
- difference between  $K_{\rm L}$  and  $K_{\rm S}$  is small by design
  - simultaneous beams  $\Rightarrow K_{\rm L}$  and  $K_{\rm S}$  decays always see the same beam intensity
- difference between π<sup>+</sup>π<sup>-</sup> and π<sup>0</sup>π<sup>0</sup> is mainly due to different trigger dead times
  - dead-time conditions are continuously recorded during data taking
  - same dead-time conditions are then applied to all event types by "throwing away" events during the offline reconstruction
  - small loss of statistics but large gain in systematics









# $K_L / K_s$ Tagging

#### <u>To distinguish $K_{\rm L}$ decays from $K_{\rm S}$ decays</u>

- measure time difference between
  - the event measured in detector
    - $\pi^0\pi^0$ : electromagnetic calorimeter
    - $\pi^+\pi^-$ : scintillator hodoscope
  - a proton on its way to the K<sub>s</sub> target
    - tagging counter in proton beam
- time coincidence ⇒ "K<sub>s</sub> event"
- no time coincidence  $\Rightarrow$  " $K_{L}$  event"
- need excellent timing resolutions (200 ps) to keep mis-tag rates small
  - for π<sup>+</sup>π<sup>-</sup>: cross check by comparing with the reconstructed vertex positions







-8



-4 -2 0 2 4 6 8 10 Kaon time - nearest proton time (ns)

### **Decay Volumes**

#### **Define region along** $K_{\rm L}$ and $K_{\rm s}$ beams from which decays are accepted

- most critical: definition of upstream limit of K<sub>s</sub> decay region
  - dedicated veto counter ("AKS")
- definition of all other limits: use reconstructed kaon proper life time

 $\boldsymbol{\tau} = \boldsymbol{z}_{\boldsymbol{\kappa}} / \left( \boldsymbol{\beta}_{\boldsymbol{\kappa}} \boldsymbol{\gamma}_{\boldsymbol{\kappa}} \boldsymbol{c} \right)$ 

- possible systematic bias on  $\tau_{\!{\it K}}$  due to
  - lateral dimensions of drift chambers
  - lateral dimensions of calorimeter
  - absolute energy scale of calorimeter
- cross check by comparing reconstructed z position with known position of AKS









## Lifetime Weighting

#### Still need to correct for the very different lifetimes of K, and K,

- leads to very different decay vertex distributions along the fiducial region: ٠
  - different detector acceptance
  - different illumination of detectors
- simulation: causes 10% systematic effect on the measured value of double ratio
- trick: in analysis, weight each  $K_1$  event

$$\boldsymbol{w} = \boldsymbol{\exp}\left\{-\frac{\boldsymbol{z}_{\boldsymbol{v}}}{\boldsymbol{\beta}_{\boldsymbol{\kappa}}\,\boldsymbol{\gamma}_{\boldsymbol{\kappa}}\,\boldsymbol{c}}\cdot\left(\frac{\boldsymbol{1}}{\boldsymbol{\tau}_{\boldsymbol{s}}}-\frac{\boldsymbol{1}}{\boldsymbol{\tau}_{\boldsymbol{L}}}\right)\right\}$$

- results in similar "effective" decay time distribution for  $K_1$  as for  $K_s$
- increase statistical uncertainty by  $\approx 35\%$ but large gain in systematic uncertainty











44

## **Lifetime Weighting**

#### **Illustration: effect on "effective" detector illumination**

 π<sup>0</sup>π<sup>0</sup>: radial cluster positions in electromagnetic calorimeter  π<sup>+</sup>π<sup>-</sup>: radial position of innermost hits in 1<sup>st</sup>drift chamber



### **Corrections and Systematics**

# Summary of all corrections applied to the raw value of the double ratio:

- all in units of 10<sup>-4</sup>
  - statistical uncertainties in green
  - systematic uncertainties in red
- sum of all corrections is smaller than the deviation of the double ratio from unity

|                          | 2001          | 98-99         |
|--------------------------|---------------|---------------|
| $\pi^+\pi^-$ background  | $14.2\pm3.0$  | $16.9\pm 3.0$ |
| $\pi^0 \pi^0$ background | $-5.6\pm2.0$  | $-5.9\pm2.0$  |
| beam scattering          | $-8.8\pm2.0$  | $-9.6\pm2.0$  |
| Tagging inefficiency     | $\pm$ 3.0     | $\pm$ 3.0     |
| Accidental tagging       | $6.9\pm2.8$   | $8.3\pm3.4$   |
| $\pi^+\pi^-$ scale       | $\pm$ 2.8     | $2.0 \pm 2.8$ |
| $\pi^0\pi^0$ scale       | $\pm$ 5.3     | $\pm$ 5.8     |
| AKS inefficiency         | $1.2\pm0.3$   | $1.1\pm0.4$   |
| Acceptance               | $21.9\pm3.5$  | $26.7\pm4.1$  |
|                          | $\pm$ 4.0     | $\pm$ 4.0     |
| $\pi^+\pi^-$ trigger     | $5.2\pm3.6$   | $-3.6\pm5.2$  |
| Accidental activity      |               |               |
| intensity diff.          | $\pm$ 1.1     | $\pm$ 3.0     |
| illumination diff.       | $\pm$ 3.0     | $\pm$ 3.0     |
| $K_S$ in time activity   | $\pm$ 1.0     | $\pm$ 1.0     |
|                          |               |               |
| Total                    | $+35.0\pm6.5$ | $+35.9\pm8.1$ |
|                          | $\pm$ 9.0     | $\pm$ 9.6     |

#### Final result:



### **Cross Checks**

#### Study stability of result against various parameters, e.g.



### **Cross Checks**

#### **Recalculate double ratio for different values of the selection cuts**











University of Zurich<sup>12H</sup>

### **Final Results**

• NA48 (data taking 1997-2001, final result announced in 2002)

```
Re (\epsilon'/\epsilon) = (14.7 \pm 2.2) \times 10^{-4}
```

• **KTeV** (data taking 1996-1999, final result announced in 2009)

Re 
$$(\epsilon'/\epsilon) = (19.2 \pm 2.1) \times 10^{-4}$$

- $\epsilon'/\epsilon \neq 0$  was an important milestone
  - ruled out alternative models of CP violation (e.g. new "Superweak" interaction)
- unfortunately large theoretical uncertainties on Standard Model prediction
  - do not learn much about the Standard Model parameters,  $\rho$  and  $\eta$







### **Final Results**

• NA48 (data taking 1997-2001, final result announced in 2002)

Re  $(\epsilon'/\epsilon) = (14.7 \pm 2.2) \times 10^{-4}$ 

• KTeV (data taking 1996-1999, final result announced in 2009)

Re (ε'/ε) = (19.2

This might actually be changing due to improved precision in lattice-QCD calculations

•  $\epsilon'/\epsilon \neq 0$  was an important milestone

ruled out alternative models of CP violation (or g. new "Superweak" interaction)

- unfortunately large theoretical uncertainties on Standard Model prediction
  - do not learn much about the Standard Model parameters,  $\rho$  and  $\eta$







### **Other Neutral Meson Systems**

### $\underline{B}^{0} \overline{\underline{B}}^{0}$ and $\underline{B}_{s}^{0} \overline{\underline{B}}_{s}^{0}$ systems

- significant mixing and CP violation predicted and observed
  - one of the main research topics in LHCb
- many decay channels, many observables, precise theory predictions
- allows precision tests of the Standard Model

#### <u>D</u><sup>0</sup> <u>D</u><sup>0</sup> system

- mixing and CP violation predicted to be very small
  - also studied in LHCb
- mixing has been observed
- CP violation has not yet been observed











### **Unitarity Triangle**



NUST MISIS, Russia, Moscow

### **Unitarity Triangle**







52

NUST MISIS, Russia, Moscow

### The slides of this lecture are available at

### http://www.physik.uzh.ch/~olafs/pdf/190220\_MISIS.pdf





