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CP Violation

● Charge conjugation C:  q → –q for all charge-like quantum numbers

● Parity P: (x,y,z) → (–x,–y,–z)

● Time reversal T: t → –t

● all three conserved in strong and electromagnetic interactions

● C and P maximally violated in weak interactions

● predicted in 1950 (Nobel 1957)

● first observed in 1953 in decays of polarized 60Co nuclei

● violation of combined symmetry CP in weak interactions

● discovered 1964 in K0 decays (Nobel 1980)

● explained by a single complex phase in 3×3 CKM matrix (Nobel 2008)

νL → νR

↓ ↓

νL → νR

P

C
CP
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Neutral Kaon System
Transitions K0 ↔ K0 through exchange of two W bosons (“box diagrams”)

● K0 (or K0) produced at time t
 
= 0 will evolve into a mixed state at time t > 0

ψ ( t ) = a ( t )⋅|K 0 ⟩ + b ( t )⋅|K̄ 0 ⟩

u,c ,t

u,c ,t

K 0

d s

s d

K 0W ±W ± K 0

d s

s d

K 0u,c ,tu,c ,t

W ±

W ±

Can define mixed states that are Eigenstates of the CP operator

|K 1 ⟩ ≡
1
√2

⋅ { |K 0 ⟩ + |K 0 ⟩ } ⇒ CP |K 1 ⟩ =
1
√2

⋅ {|K 0 ⟩ + |K 0 ⟩ } = + |K 1 ⟩

|K 2 ⟩ ≡
1
√2

⋅ {|K 0 ⟩ −|K 0 ⟩ } ⇒ CP |K 2 ⟩ =
1
√2

⋅ {|K 0 ⟩ −|K 0 ⟩ } = −|K 2 ⟩

● these are also Eigenstates of the weak interaction, if CP is conserved
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Neutral Kaon System

e
−Γ1⋅t

e
−Γ2⋅t

● Kaons and pions are spin-0 mesons 
● conservation of angular momentum in the decay

● CP (ππ) = – 1L      2 π final state is CP even

Look at decay of Kaons into two pions

If CP is conserved in weak interactions

● K
2
 (CP odd) cannot decay into 2 π

● other decay channels for K
2
 also suppressed

● K
2
 → 3π by phase space

● K
2
 → π± ℓ  ∓ νℓ by parity violation

● K
2
 has much longer lifetime than K

1
 

● this has been observed:

● measure τ (K
2
) ≈ 500 × τ (K

1
)

      Lππ = 0 
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Neutral Kaon System

K0/K0 propagating in vacuum

If K2 beam traverses material

● K0 (ds) and K0 (ds) have different 
strong interaction cross sections

● K0/K0 mixture changes

● regeneration of a K1 component

|K 2 ⟩ ≡
1
√2

⋅ {|K 0 ⟩ −|K̄ 0 ⟩ }
vacuum material vacuum

● K1 component decays  ⇒  pure K2 state

● e.g. after 20 × K1-lifetime:

● K1 intensity down to 2 x 10-9

● K2 intensity still at 96%

of initial
intensity

e
−Γ1⋅t

e
−Γ2⋅t

K2
K2K1

K2
K1

K0

τ1τ1



NUST MISIS, Russia, Moscow

77

Discovery of CP Violation

Observation of decays K2 → π+π– (Christenson,Cronin,Fitch,Turlay, 1964)

● search for π+ π– decays in a pure K2 beam

● to identify π+ π– decays use

● energy conservation: invariant mass of π+ π– pair
● momentum conservation: momentum balance

–

K2 +

+K2

0 –


2-body decays:

3-body decays:

m (+-) < m (K0)

m (+-) > m (K0)

m (+-) ≈ m (K0)

56 signal events

cos θ
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Discovery of CP Violation

Interpretation: Kaon mass eigenstates are not identical to CP eigenstates

● measure |ε| through decay width ratios of CP forbidden and allowed decays

η+− ≡
Γ (K L→π

+
π
− )

Γ (K S→π
+
π

− )
= (2.286 ± 0.017 )⋅10−3

≈ |ε|

η00 ≡
Γ (K L→π

0
π

0
)

Γ (K S→π
0
π

0
)
= (2.274 ± 0.017 )⋅10−3

≈ |ε|

|K S ⟩ ≡
1

1+|ε|2
⋅ { |K 1 ⟩ + ε⋅|K 2 ⟩ }

|K L ⟩ ≡
1

1+|ε|2
⋅ {|K 2 ⟩ − ε⋅|K 1 ⟩ }

ε: complex parameter

● long lived mass Eigenstate (K
L
) has small admixture from CP-even state K

1

K
1

K
2

K
S

K
L
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CP Violation in the Standard Model

(
d '
s '
b ' ) = (

V ud V us V ub

V cd V cs V cb

V td V ts V tb
) (

d
s
b )

u

d

c

s

t

b

● 9 complex numbers = 18 parameters

– 9 unitarity constraints (V†V = VV† = 1)

– 5 arbitrary (“unphysical”) phases 

= 4 free parameters: 3 rotation angles + 1 complex phase

3 quark generations: 3x3 quark mixing matrix (Kobayashi-Maskawa,1973)
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CP Violation in the Standard Model

(
d '
s '
b ' ) = (

V ud V us V ub

V cd V cs V cb

V td V ts V tb
) (

d
s
b )

u

d

c

s

t

b

● 9 complex numbers = 18 parameters

– 9 unitarity constraints (V†V = VV† = 1)

– 5 arbitrary (“unphysical”) phases 

= 4 free parameters: 3 rotation angles + 1 complex phase

u i→e i φi u i

d j→e i φ j d j
} ⇔ V ij→e i (φ j−φi )V ij

3 quark generations: 3x3 quark mixing matrix (Kobayashi-Maskawa,1973)
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CP Violation in the Standard Model

(
d '
s '
b ' ) = (

V ud V us V ub

V cd V cs V cb

V td V ts V tb
) (

d
s
b )

u

d

c

s

t

b

Wolfenstein parametrisation

V CKM ≈ (
1−λ

2
/2 λ A⋅λ3

(ρ−i η)

−λ 1−λ
2
/2 A⋅λ2

A⋅λ 3
(1−ρ−i η) −A⋅λ 2 1 ) + O (λ

4
)

● 9 complex numbers = 18 parameters

– 9 unitarity constraints (V†V = VV† = 1)

– 5 arbitrary (“unphysical”) phases 

= 4 free parameters: 3 rotation angles + 1 complex phase

source of
CP violation

3 quark generations: 3x3 quark mixing matrix (Kobayashi-Maskawa,1973)
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Indirect and Direct CP Violation

Explains “indirect” CP violation in Kaon mixing V id

V is
∗ V id

V is
∗

● interference of box diagrams with different 
quarks (= different weak phases) in the loop

Predicts “direct” CP violation in Kaon decays

● due to interference of “Tree” and “Penguin” 
diagrams with different weak phases

● can be measured by comparing

V is V id
∗

s

u,c ,t

d

d d
u

u
K 0

π
+

π
−

V us

V ud
∗

s

d

d d
u

u

K 0

π
+

π
−

η+− =
Γ (K L→π

+
π
− )

Γ (K S→π
+
π
−
)
= ε + ε '

η00 =
Γ (K L→π

0
π

0 )

Γ (K S→π
0
π

0
)
= ε − 2 ε '

● ε' ≡ 0 if CP violation only in mixing

● expect ε'/ε ≈ 10-3 in Standard Model 

u,c ,t

u,c ,t

K 0

d s

s d

K 0W ±W ±

i=u ,c ,t

i=u ,c ,t



NUST MISIS, Russia, Moscow

1313

V us

V ud
∗

s

d
d d

u
u

K 0
π

0

π
0

Indirect and Direct CP Violation

Explains “indirect” CP violation in Kaon mixing V id

V is
∗ V id

V is
∗

● interference of box diagrams with different 
quarks (= different weak phases) in the loop

Predicts “direct” CP violation in Kaon decays

● due to interference of “Tree” and “Penguin” 
diagrams with different weak phases

● can be measured by comparing

V is V id
∗

s

u,c ,t

d

d d
d

d
K 0

π
0

π
0

η+− =
Γ (K L→π

+
π
− )

Γ (K S→π
+
π
−
)
= ε + ε '

η00 =
Γ (K L→π

0
π

0 )

Γ (K S→π
0
π

0
)
= ε − 2 ε '

u ,c ,t

u,c ,t

K 0

d s

s d

K 0W ±W ±

● ε' ≡ 0 if CP violation only in mixing

● expect ε'/ε ≈ 10-3 in Standard Model 

i=u ,c ,t

i=u ,c ,t
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Search for Direct CP Violation

R ≡ |
η00
η+−

|
2

=
Γ (K L→π

0
π

0
) / Γ (K S→π

0
π

0
)

Γ (K L→π
+
π
− ) / Γ (K S→π

+
π
− )

≈ 1−6⋅Re ( ε '
ε )

Experiment: count number of events

Measure Re (ε'/ε) through “double ratio” of decay widths

Rexp =
N (K L→π

0
π

0) / N (K S→π
0
π

0)

N (K L→π
+
π
−
) / N (K S→π

+
π
−
)

with N = ∫
t

Φ ( t )⋅Γ⋅A (t ) dt

Φ (t )  : particle flux (accelerator) ; A (t )  : efficiency (detector)

● double ratio: many systematic uncertainties cancel to first order,
if the four event rates are measured at the same time in the same experiment

R = ∫
t

{ ΦK L
(t )⋅Γ (K L→π

0
π

0)⋅A
π

0
π

0 (t ) } / { ΦK S
(t )⋅Γ (K S→π

0
π

0 )⋅A
π

0
π

0 (t ) }

{ ΦK L
(t )⋅Γ (K L→π

+
π
− )⋅A

π
+
π
− (t ) } / { ΦK S

(t )⋅Γ (K S→π
+
π
− )⋅A

π
+
π
− (t ) }

dt
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Search for Direct CP Violation

R ≡ |
η00
η+−

|
2

=
Γ (K L→π

0
π

0
) / Γ (K S→π

0
π

0
)

Γ (K L→π
+
π
− ) / Γ (K S→π

+
π
− )

≈ 1−6⋅Re ( ε '
ε )

Experiment: count number of events

Measure Re (ε'/ε) through “double ratio” of decay widths

Rexp =
N (K L→π

0
π

0) / N (K S→π
0
π

0)

N (K L→π
+
π
−
) / N (K S→π

+
π
−
)

with N = ∫
t

Φ ( t )⋅Γ⋅A (t ) dt

Φ (t )  : particle flux (accelerator) ; A (t )  : efficiency (detector)

● double ratio: many systematic uncertainties cancel to first order, 
if the four event rates are measured at the same time in the same experiment

R = ∫
t

{ ΦK L
(t )⋅Γ (K L→π

0
π

0)⋅A
π

0
π

0 (t ) } / { ΦK S
(t )⋅Γ (K S→π

0
π

0 )⋅A
π

0
π

0 (t ) }

{ ΦK L
(t )⋅Γ (K L→π

+
π
− )⋅A

π
+
π
− (t ) } / { ΦK S

(t )⋅Γ (K S→π
+
π
− )⋅A

π
+
π
− (t ) }

dt
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Search for Direct CP Violation

R ≡ |
η00
η+−

|
2

=
Γ (K L→π

0
π

0
) / Γ (K S→π

0
π

0
)

Γ (K L→π
+
π
− ) / Γ (K S→π

+
π
− )

≈ 1−6⋅Re ( ε '
ε )

Experiment: count number of events

Measure Re (ε'/ε) through “double ratio” of decay widths

Rexp =
N (K L→π

0
π

0) / N (K S→π
0
π

0)

N (K L→π
+
π
−
) / N (K S→π

+
π
−
)

with N = ∫
t

Φ ( t )⋅Γ⋅A (t ) dt

Φ (t )  : particle flux (accelerator) ; A (t )  : efficiency (detector)

● double ratio: many systematic uncertainties cancel to first order, 
if the four event rates are measured at the same time in the same experiment

R = ∫
t

{ ΦK L
(t )⋅Γ (K L→π

0
π

0)⋅A
π

0
π

0 (t ) } / { ΦK S
(t )⋅Γ (K S→π

0
π

0 )⋅A
π

0
π

0 (t ) }

{ ΦK L
(t )⋅Γ (K L→π

+
π
− )⋅A

π
+
π
− (t ) } / { ΦK S

(t )⋅Γ (K S→π
+
π
− )⋅A

π
+
π
− (t ) }

dt
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Search for Direct CP Violation

R ≡ |
η00
η+−

|
2

=
Γ (K L→π

0
π

0
) / Γ (K S→π

0
π

0
)

Γ (K L→π
+
π
− ) / Γ (K S→π

+
π
− )

≈ 1−6⋅Re ( ε '
ε )

Experiment: count number of events

Measure Re (ε'/ε) through “double ratio” of decay widths

Rexp =
N (K L→π

0
π

0) / N (K S→π
0
π

0)

N (K L→π
+
π
−
) / N (K S→π

+
π
−
)

with N = ∫
t

Φ ( t )⋅Γ⋅A (t ) dt

Φ (t )  : particle flux (accelerator) ; A (t )  : efficiency (detector)

● double ratio: many systematic uncertainties cancel to first order, 
if the four event rates are measured at the same time in the same experiment

R = ∫
t

{ ΦK L
(t )⋅Γ (K L→π

0
π

0)⋅A
π

0
π

0 (t ) } / { ΦK S
(t )⋅Γ (K S→π

0
π

0 )⋅A
π

0
π

0 (t ) }

{ ΦK L
(t )⋅Γ (K L→π

+
π
− )⋅A

π
+
π
− (t ) } / { ΦK S

(t )⋅Γ (K S→π
+
π
− )⋅A

π
+
π
− (t ) }

dt

Relative measurements
are often more precise

than absolute measurements
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Ideal Experiment
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Real Experiment
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Backgrounds

KS: backgrounds completely negligible

● but apply the same selection cuts as for KL to minimize systematics

KL: large backgrounds from CP-conserving 3-body decays

● KL  π± e  ∓ ν (39%)

● KL   π± μ  ∓ ν (27%)

● KL   π+ π-– π0 (13%)

● KL   π0 π0 π0 (21%)

● KL   π+ π-- (0.206%)

● KL   π0 π0 (0.09%)

backgrounds for π+ π– reconstruction
● neutrino leaves no trace in the detector
● π0 could be missed

background for π0 π0 reconstruction
● one π0 could be missed
● photon clusters from two π0's could merge

● apply selection cuts on event topology, kinematics, particle identification
to suppress these backgrounds
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Princeton Experiment (1972)
First measurement of double ratio in one experiment

Scintillator
Hodoscopes

Converter
(used for 00 removed for +-)

Tracking
detectorsCalorimeter

Cherenkov counters,
muon vetos

Dipole magnet

KL beam (with or
without regenerator)

 ←

● but: four decay modes measured in four consecutive data taking periods
        (charged vs. neutral detector) × (with vs. without KS regenerator) 

● dominating systematics: beam flux monitored to 3% precision

● statistics: 124 ± 11 KL
 → π0 π0 events collected

● collaboration: 5 physicists
Re (ε'/ε) = -0.008 ± 0.020
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E731 at Fermilab (1985-87)
Two parallel KL beams, one of them with a KS regenerator

● wire chambers + dipole magnet
for reconstruction of π+ π– decays

● electromagnetic calorimeter 
for reconstruction of π0 π0 decays

● photon and muon vetos 
for background rejection

● KL and KS modes collected at the same time

● but very different decay vertex distributions 
for KL and KS due to the different lifetimes

● different illumination of detector

● acceptance correction by Monte Carlo simulation
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NA31 at CERN (1986-89)
Separate K

L
 and K

S
 production targets in the same proton beam

● wire chambers and hadron calorimeter
for reconstruction of π+ π– decays
(no momentum measurement !)

● electromagnetic calorimeter
for reconstruction of π0 π0 decays

● photon and muon vetos

● moveable Ks target to emulate flat 

decay vertex distribution by taking 
data at different target positions

● much smaller acceptance corrections

● but KL and KS modes not collected at the same time
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Re (ε'/ε) = (23.0 ± 4.1 ± 5.1) × 10-4

Final Results (1993)

NA31

● about 428 k reconstructed

KL
 → π0 π0 events

E731

● about 410 k reconstructed

KL
 → π0 π0 events

● total uncertainty 6.0 × 10-4

● result compatible with zero

Re (ε'/ε) = (7.4 ± 5.2 ± 2.9) × 10-4

 New round of experiments
“3rd generation”

goal: measure Re (ε'/ε) to precision of 1–2 x 10-4

● total uncertainty 6.5 × 10-4

● 3.3    deviation from zero
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KTeV at Fermilab (1996-99)

regenerator

drift chambers

vacuum window

photon vetos
magnet muon detectors

trigger
hodoscope

CsI
calorimeter

decay region

20 cm

KL beams

distance from target [m]

Setup similar to E731, but significant improvements in details

● more intense beams to
collect more statistics

● K
S
 regenerator switched 

between the two beams
once every minute

● more precise detectors for
better background rejection

● in particular, CsI calorimeter
with excellent energy resolution

Better resolution → narrower signal window
→ less background in signal window

→ smaller uncertainty from background subtraction
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NA48 at CERN (1997-2001)

p

p

Simultaneous measurement of K
L
 and K

S
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NA48 at CERN (1997-2001)

same proton beam on
K

L
 and K

S
 targets

p

p

Simultaneous measurement of K
L
 and K

S
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NA48 at CERN (1997-2001)
Simultaneous measurement of K

L
 and K

S

proton “tagger”
to distinguish between

K
L
 and K

S
 events

p

p
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NA48 at CERN (1997-2001)
Simultaneous measurement of K

L
 and K

S
KL decays

KS decays

p

p

same decay region
for K

L
 and K

S
 events
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NA48 at CERN (1997-2001)

K
L
 and K

S
 beams

converging towards
detector volume

KL decays
KS decays

p

p

Simultaneous measurement of K
L
 and K

S
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K
L
 and K

S
 Beams

Similar momentum spectra Intensities equal to a few %

● important because detector 
acceptance and reconstruction 
efficiency depend on momenta

● important because overlapping 
events in the detector can cause 
efficiency losses
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Detector

Drift chambers + dipole magnet:
direction and momentum of 
charged pions from K → π+ π–

Simultaneous measurement of π+π– and π0π0

Veto counters to suppress 
background decays

Liquid-Kr electromagnetic calorimeter:
position and energy of photons

from K → π0(→γγ) π0(→γγ) decays

Kinematic reconstruction
of Kaon momentum and

Kaon decay vertex
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Detector

drift chambersdrift chambers

drift chambersdrift chambers

dipole magnetdipole magnet

veto countersveto counters

helium tankhelium tank
KKSS target targetKKSS target target

(114 m)(114 m)

detector

veto counters

helium tank

calorimetercalorimeter
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Electromagnetic Calorimeter

cathodes
anodes

2 cm × 2 cm cell

± 48 mrad

10 m³ of liquid Krypton (at T = 120 K) as converter and detection medium

● 27 X0 thick ⇒ electromagnetic showers contained to > 99%

● 13'500 readout cells, defined by Cu-Be ribbons

● 3000 V between electrodes to collect charges
generated by ionization in the LKr

● “accordeon structure” to improve
homogeneity of response

● excellent energy resolution

● almost as good as CsI in KTeV 

● excellent time resolution

● better than 250 ps

● will see later why this is important
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K → π0 π0 Reconstruction

D =
√∑ij

E i E j r ij
2

mK

Select events with four γ-clusters in the calorimeter

● measure cluster positions (xi,yi) and energies (Ei)
● assume that the 4 γ come from a Kaon decay

● i.e. assume invariant mass is equal to Kaon mass
● calculate decay vertex position along beam axis

χ
2
≡ (

M12 + M34 − 2m
π

0

σM12+M 34
)
2

+ (
M12 − M 34

σM 12−M 34
)
2

M ij ≡ M (γ i γ j ) =
√E i E j r ij

2

D

● calculate 2γ invariant mass for all pairs of clusters

● calculate combined compatibility with the π0 mass,
select best combination, cut to reject background
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Dipole Spectrometer
Typical setup of a fixed-target experiment

● four planar drift chambers

● two before and two after a 0.83 Tm dipole magnet

● each chamber four detection layers 

● wires vertical, horizontal, + 45°, – 45° 

● each detection layer: two staggered wire planes
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Dipole Spectrometer
Drift chambers embedded in a 23 m long, 2.8 m Ø Helium tank

● to minimize multiple scattering of the π±

● multiple scattering deteriorates momentum resolution

● inside this tank: vacuum beam pipe for the kaon beam

● wall as thin as possible to minimize multiple scattering

● initially aluminum, then replaced by carbon fibre

● suddenly imploded after 2 years of operation

● drift chambers destroyed, had to be rebuilt 
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K → π+ π– Reconstruction
Select events with two reconstructed tracks

● reconstruct position of Kaon decay vertex from 
track segments upstream of dipole magnet

● transverse vertex resolution ~ 2 mm 

● sufficient to separate K
L
 and K

S
 vertices

→ but used only in cross checks (see later slide)

● reconstruct momenta from bending in magnet

● assume π± mass for both tracks, calculate 
invariant mass and Kaon momentum

● cut on kinematic variables
to reject background

original

rebuilt
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Trigger

Requirements

● fast response, good background rejection
● efficiency > 99%
● no deadtime
● well understood response to “accidentals” 

to minimize systematics
between π0π0 and π+π–

Implementation

● custom-made electronics boards
● fully pipelined to avoid dead time

● novel at the time

● design specs for π+π– implementation 
made slightly too optimistic assumptions 
on hit multiplicities in wire chambers
● FPGAs were very expensive at the time

≈ 1.3 % inefficiency
≈ 0.3 % deadtime

→ source of systematic
uncertainty
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“Accidental Activity”
Inefficiencies due to accidental coincidences

● cause systematic effect if losses are 

different for π+π– vs π0π0 or for KL vs KS

● difference between KL and KS is small by design

● simultaneous beams ⇒ KL and KS decays always 

see the same beam intensity

● difference between π+π– and π0π0 is mainly 
due to different trigger dead times
● dead-time conditions are continuously recorded 

during data taking 
● same dead-time conditions are then applied to all 

event types by “throwing away” events during 
the offline reconstruction

● small loss of statistics but large gain in systematics
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K
L
 / K

S
 Tagging

p

To distinguish K
L
 decays from K

S
 decays

● measure time difference between 
● the event measured in detector 

● π0π0: electromagnetic calorimeter

● π+π–: scintillator hodoscope

● a proton on its way to the K
S
 target 

● tagging counter in proton beam

● time coincidence ⇒ “K
S
 event” 

● no time coincidence ⇒ “K
L
 event”

● need excellent timing resolutions
(200 ps) to keep mis-tag rates small

● for π+π–: cross check by comparing
with the reconstructed vertex positions
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Decay Volumes

Define region along K
L
 and K

S
 beams from which decays are accepted

● most critical: definition of upstream 
limit of KS decay region 

● dedicated veto counter (“AKS”)
● definition of all other limits: use 

reconstructed kaon proper life time 

KK

zK [cm]zK [cm]

KS KL

KS
 → π0 π0KS

 → π+ π–

τ = zK / ( βK γK c )

● possible systematic bias on τK due to

● lateral dimensions of drift chambers
● lateral dimensions of calorimeter 
● absolute energy scale of calorimeter 

● cross check by comparing reconstructed 
z position with known position of AKS
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Lifetime Weighting

Still need to correct for the very different lifetimes of K
L
 and K

S

w = exp {−
zV

βK γK c
⋅( 1

τS
−

1
τL

)}

● leads to very different decay vertex distributions along the fiducial region:
● different detector acceptance 
● different illumination of detectors

● simulation: causes 10% systematic effect
on the measured value of double ratio 

● trick: in analysis, weight each KL event

● results in similar “effective” decay time 
distribution for K

L
 as for K

S

● increase statistical uncertainty by ≈ 35%

but large gain in systematic uncertainty
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Lifetime Weighting

Illustration: effect on “effective” detector illumination

● π0π0: radial cluster positions
in electromagnetic calorimeter

● π+π–: radial position of innermost

hits in 1stdrift chamber 
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Corrections and Systematics

Summary of all corrections applied to 
the raw value of the double ratio:

● all in units of 10-4

● statistical uncertainties in green

● systematic uncertainties in red

● sum of all corrections is smaller than 
the deviation of the double ratio 
from unity

Final result:

R = 1 – (1.169 ± 0.147)% + (0.350 ± 0.111)%

result before corrections corrections
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Cross Checks

● calculate the double ratio in bins 
of the reconstructed kaon energy

Study stability of result against various parameters, e.g.

no data in 2000:
rebuilding

drift chambers

● calculate Re (ε'/ε) separately
for different run periods
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Cross Checks

Recalculate double ratio for different values of the selection cuts
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Final Results

● NA48 (data taking 1997-2001, final result announced in 2002)

Re (ε'/ε) = (14.7 ± 2.2) × 10-4

Re (ε'/ε) = (19.2 ± 2.1) × 10-4

● KTeV (data taking 1996-1999, final result announced in 2009)

● ε'/ε ≠ 0 was an important milestone

● ruled out alternative models of CP violation (e.g. new “Superweak” interaction)

● unfortunately large theoretical uncertainties on Standard Model prediction

● do not learn much about the Standard Model parameters,  and 
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Final Results

● NA48 (data taking 1997-2001, final result announced in 2002)

Re (ε'/ε) = (14.7 ± 2.2) × 10-4

Re (ε'/ε) = (19.2 ± 2.1) × 10-4

● KTeV (data taking 1996-1999, final result announced in 2009)

● ε'/ε ≠ 0 was an important milestone

● ruled out alternative models of CP violation (e.g. new “Superweak” interaction)

● unfortunately large theoretical uncertainties on Standard Model prediction

● do not learn much about the Standard Model parameters,  and 

This might actually be changing
due to improved precision in

lattice-QCD calculations
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Other Neutral Meson Systems

u,c ,t

u,c ,t

B0

d b

b

B0W ±W ±

d

d ,s ,b

d ,s ,b

D0

u c

c

D0W ±W ±

u

B0 B0 and B
s
0 B

s
0 systems

● significant mixing and CP violation
predicted and observed
● one of the main research topics in LHCb

● many decay channels, many observables,
precise theory predictions

● allows precision tests of the Standard Model

● mixing and CP violation predicted
to be very small
● also studied in LHCb

● mixing has been observed
● CP violation has not yet been observed

D0 D0 system

u,c ,t

u,c ,t

Bs
0

s b

b

Bs
0W ±W ±

s
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Unitarity Triangle 
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Unitarity Triangle 
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The slides of this lecture are available at

http://www.physik.uzh.ch/~olafs/pdf/190220_MISIS.pdf
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