NUST MISIS, Russia, Moscow

Lecture 11, 13.02.2019

Tracking detectors

Olaf Steinkamp University of Zurich olafs@physik.uzh.ch

Olaf Steinkamp

Born in Bremen (Germany) Studied physics in Bonn (D) PhD thesis work at CERN (GE) 1st PostDoc at CEA Saclay (F) NA48 experiment at CERN

2nd PostDoc at NIKHEF Amsterdam (NL)

HERA-B experiment at DESY (Hamburg)

Since 2000 at University of Zurich:

LHCb experiment at CERN (new: also Mu3e at PSI)

Lectures on data analysis & experimental techniques

Particle Physics Experiments

Accelerate a beam of (stable & charged) particles to high energies

• electrons/positrons, protons/antiprotons, heavy ions

Bring them into collision with

another beam of particles ("collider experiment")
 e.g. ATLAS, CMS

Measure the properties of long-lived particles created in the collision Reconstruct short-lived particles using relativistic kinematics

University of Zurich¹²¹⁴

4

Particle Physics Experiments

Detector-components of a particle-physics experiment

(momentum + speed \rightarrow mass \rightarrow particle type)

Momentum measurement

Moving charge in magnetic field \rightarrow Lorentz force

$$\vec{F}_L = q \cdot \vec{v} \times \vec{B}$$

 \rightarrow forces particle onto circular trajectory around field lines

$$\frac{\boldsymbol{m}\cdot\boldsymbol{v}^2}{\boldsymbol{r}} = \boldsymbol{q}\cdot\boldsymbol{v}\cdot\boldsymbol{B}$$

$$\mathbf{p} = \mathbf{q} \cdot \mathbf{B} \cdot \mathbf{r}$$

→ measure bending radius of particle trajectory in a known magnetic field

University of Zurich[™]

Momentum measurement

Typical collider experiment

- solenoid/toroid magnet
- \rightarrow field lines parallel to beam axis
 - cylindrical tracking layers inside the magnet

- dipole magnet
- \rightarrow field lines orthogonal to beam axis
 - planar tracking detectors before and after the magnet

 $\mathbf{\bullet}$

 \odot

Momentum resolution (I)

For *N* equidistant measurements ($N \ge 10$)

$$\frac{\sigma(\boldsymbol{p})}{\boldsymbol{p}} = \sqrt{\frac{720}{N+4}} \cdot \boldsymbol{\sigma}_{\boldsymbol{x}} \cdot \frac{\boldsymbol{p}_{\boldsymbol{\tau}}}{0.3 \ \boldsymbol{B} \ \boldsymbol{L}^2}$$

[Gluckstern, NIM 24 (1963) 381]

Relative momentum resolution

- improves linearly with spatial resolution of the detector
 - improves linearly with the strength of the magnetic field
- improves <u>quadratically</u> with the length of the measured track segment

⇒ main reason for the large size of high-energy particle physics experiments

University of Zurich[™]

Momentum resolution (II)

Particle trajectory disturbed due to multiple scattering in the material of the detector

Causes deterioration of momentum resolution

$$\frac{\sigma(\boldsymbol{p})}{\boldsymbol{p}} = \frac{\boldsymbol{0.2} \cdot \sqrt{\boldsymbol{L}/\boldsymbol{X}_{0}}}{\boldsymbol{\beta} \cdot \boldsymbol{B} \cdot \boldsymbol{L}}$$

 $(\rightarrow$ Richard Jacobson's lecture)

Important to minimize material

- especially if measuring particles at low momenta (small $\beta = v/c$)
 - also "dead" material from supports, cables, etc

University of Zurich[™]

First tracking detectors

Cloud chamber (Wilson, 1912):

Vessel filled with supersaturated water vapour

- charged particle creates ionisation clusters
- ionisation clusters act as condensation nuclei
- trail of water droplets along particle trajectory

Photograph trails through windows in the vessel

- spatial resolution ~ 100 μm
- estimate particle energy from density of droplets

Most important experimental tool until 1950s, but

- low rate capability
- photographs require manual analysis

discovery of positron (Anderson, 1932)

Modern tracking detectors

Electronic readout of detector signals

- apply electric field across detector volume, collect charges on electrodes
- electronically integrate
 & amplify signal pulse
- digitize the signal:
 - discriminator
 - analog-to-digital converter (ADC)
 - time-to-digital converter (TDC)

- → binary information (hit / no hit)
 - ⇒ encode pulse height
 - ⇒ encode signal arrival time
- transfer digital data to a computer farm for processing and storage

V

Need to know WHEN to read out the detector \rightarrow trigger (\rightarrow Lea Caminada's lecture)

Modern tracking detectors

Position information from finely segmented readout electrodes

- granularity determined by particle density and required spatial resolution
 - close to interaction point: high particle density, small tracking volume
 - \rightarrow need fine granularity and excellent position resolution
 - further away: large tracking volume, but lower particle density
 → can afford coarser granularity, lower position resolution

Other requirements

- rate capability
 - charge collection time in detector
- material budget
 - including cables, support structures

radiation hardness

- degradation of detector material
- cost
 - including readout electronics

Thin-walled cylindrical tube, filled with a gas mixture

Thin wire along the centre of this tube

Apply a high voltage (typically 1– 2 kV) **between wire and outer wall of the tube**

Charged particle ionizes atoms in the gas electric field: electrons drift towards the wire

Very high electric field close to the wire electrons gain enough energy to ionize secondary atoms

Charge avalanche, voltage pulse on wire

Tracking detector: several layers of such drift tubes

Tracking detector: several layers of such drift tubes

University of Zurich^{uzH}

Tracking detector: several layers of such drift tubes

-2018

15

To improve spatial resolution: measure drift time of electrons

Science and Technology

+ spatial resolution < 200 μm, appropriate for many applications

+ easy to cover large surfaces

+ cost effective

But: granularity, rate capability and radiation hardness reaching their limits at the LHC

 \rightarrow drift time for electrons typically 100 ns, bunch crossings at LHC every 25 ns

Too high occupancy: increasingly difficult to find the tracks

2018

18

Too high occupancy: increasingly difficult to find the tracks

Too high occupancy: increasingly difficult to find the tracks

University of Zurich¹²¹⁴

Silicon tracking detectors

Segmented reverse biased *p*–*n* junction (diode)

- *n*–doped silicon wafer with segmented *p*–doped implants
 - strips with pitch 250 20 µm
 ⇒ spatial resolution 50 to a few µm
 - or pixels for even finer granularity
- apply reverse bias voltage
 - fully deplete bulk, create electric field

- ionizing particle creates electron-hole pairs in silicon lattice
 - electrons and holes drift in electric field, induce signal on *p*-doped implants

Silicon tracking detectors

- + spatial resolution down to few μm, much better than gaseous detectors
 - + faster signal collection, higher rate capability
 - + much better radiation hardness

But: much more expensive than gaseous

 \rightarrow use gaseous detectors where possible, silicon detectors where needed

Example: ATLAS detector at LHC

radius	technology	cell size	area
5-12 cm	silicon pixels 50 x 400 µm		1.8 m²
30-50 cm	silicon strips (SCT)	80 µm x 13 cm	60 m ²
56-107 cm	6-107 cm drift tubes (TRT)		(680 m²)
500-1000 cm	drift tubes (MDT)	3 cm x 6 m	5500 m²

Gaseous Detectors

Problem: also excitation of gas atoms in the avalanche close to the wire

 \rightarrow creation of UV photons

If UV photons hit cathode, they cause photo-emission of electrons

 \rightarrow electrons drift to amplification region, create UV photons, etc.

 \rightarrow breakdown

 \rightarrow need to absorb UV photons before they reach the cathode

 \rightarrow choice of gas !

Gas Mixtures

Main gas component: noble gas

- elastic collisions at low electron energies
- ionisation dominates at high electron energies

 \rightarrow efficient gas amplification

• usually use Argon (availability, low cost)

"Quencher": complex molecular gas

- rotational and vibrational excitation bands \rightarrow efficient absorption of UV photons
- classic choices: CH₄, C₂H₆, iC₄H₁₀, alcohols
 - but polymerization under irradiation → "wire ageing"
- in high-radiation environment (e.g. LHC) use CO₂

Signal Formation (I)

University of

Signal on wire is created by electrons and ions drifting in electric field

potential and electric field in a cylindrical cell

$$\phi(\mathbf{r}) = -\frac{\mathbf{V}_{\mathbf{0}}}{\ln(\mathbf{b}/\mathbf{a})} \cdot \ln\left(\frac{\mathbf{r}}{\mathbf{a}}\right) \quad \Leftrightarrow \quad \mathbf{E}(\mathbf{r}) = \frac{\mathbf{V}_{\mathbf{0}}}{\ln(\mathbf{b}/\mathbf{a})} \cdot \frac{\mathbf{1}}{\mathbf{r}}$$

- moving charges in electric field \rightarrow work

$$dW = q \cdot E(r) dr = C \cdot V_0 dV$$

 \rightarrow voltage pulse on wire

$$dV = \frac{q}{CV_0} \cdot E(r) dr$$

• total signal from charge q drifting from radius r_0 to r_1

$$\Delta V = \frac{q}{C V_0} \cdot \int_{r_0}^{r_1} \frac{-V_0}{\ln(b/a)} \frac{dr}{r} = -\frac{q}{C \cdot \ln(b/a)} \cdot \ln\left(\frac{r_1}{r_0}\right)$$

Signal Formation (II)

Almost all charges are created in the avalanche close to the wire

- $r_0 = a + \varepsilon$
- electrons drift to the wire surface $\Rightarrow r_1 = a$

$$\Delta \mathbf{V}^{(-)} = -\frac{\mathbf{q}}{\mathbf{C} \cdot \ln(\mathbf{b}/\mathbf{a})} \cdot \ln\left(\frac{\mathbf{a} + \mathbf{\varepsilon}}{\mathbf{a}}\right)$$

• ions drift to the cathode $\Rightarrow r_1 = b$

$$\Delta V^{(+)} = \frac{q}{C \cdot \ln(b/a)} \cdot \ln\left(\frac{a+\varepsilon}{b}\right) = -\frac{q}{C \cdot \ln(b/a)} \cdot \ln\left(\frac{b}{a+\varepsilon}\right)$$

- $a + \varepsilon \ll b \Rightarrow$ signal dominated by ions drifting away from wire
- **example:** for b = 5 mm, $a = 12.5 \mu$ m, $r_0 = 15 \mu$ m

$$\Delta V^{(+)} / \Delta V^{(-)} \approx 32$$

 $V_{_0}$

Signal Length

Induced signal as a function of time (for an ion created at $r_0 = a$)

$$V^{(+)}(t) = -\frac{q}{C \cdot \ln(b/a)} \cdot \ln\left(\frac{r(t)}{a}\right)$$

drift velocity for ions is proportional to the electric field

$$\frac{dr}{dt} = \mu \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{\mu \cdot \boldsymbol{V}_0}{\ln(b/a)} \cdot \frac{1}{r}$$

 μ = "ion mobility" [μ] = (cm/s)/(V/cm)

$$\Rightarrow r(t) = a \cdot \sqrt{1 + \frac{2 \mu \cdot V_0}{a \cdot \ln(b/a)}} \cdot t$$

• total drift time ($r(t_{max}) = b$)

$$\boldsymbol{t}_{max} = \frac{\boldsymbol{a} \cdot \ln(\boldsymbol{b}/\boldsymbol{a})}{2 \mu \boldsymbol{V}_0} \cdot \frac{(\boldsymbol{b}^2 - \boldsymbol{a}^2)}{\boldsymbol{a}^2}$$

• e.g. for $\mu = 1.7 \text{ cm}^2/\text{V/s}$, b = 5 mm, $a = 12.5 \mu\text{m}$, $V_0 = 1500 \text{ V}$

$$t_{
m max} pprox$$
 300 μ s

Signal Length (II)

Electronic readout differentiates detector signal

- shorten pulse length with acceptable loss of signal amplitude
 - shorter signals ⇒ higher rate capability
- Imitation of rate capability: electric charges drifting inside detector volume
 - electric charges screen electric field \Rightarrow reduce gas amplification
 - need short drift distances, fast drift gases, high electric field

– HV

+HV

– HV

0.6

Multi Wire Proportional Chamber

Array of signal wires in between two planar cathodes (Charpak, 1968)

0.4

0.3

- each wire connected to a readout amplifier and a discriminator
 - register a "hit" if signal on the wire is above discriminator threshold
 - "binary readout" (hit or no hit)
- spatial resolution given by distance *d* between wires

$$\sigma ~pprox ~d$$
 / $\sqrt{12}$

• typically $d \approx 2 \text{ mm} \Rightarrow \sigma \approx 600 \text{ }\mu\text{m}$

rate capability up to 10⁶/s

"virtual" detector cell

Drift Chamber

Measure the time it takes electrons to drift from particle trajectory to wire

- need to know when the particle passed:
 - fast, external detector (e.g. scintillator)
 - at LHC, know the time of the pp collision
- allows readout pitch of up to several cm
 - much smaller number of readout channels
 - but requires TDC readout of sense wires
- can reach spatial resolution < 200 μm
- electron drift velocity varies strongly with the strength of the electric field
 - field-shaping wires to make field as homogeneous as possible

Cylindrical Drift Chambers

Collider experiments need barrel geometry

- "open geometry": one large gas volume with wires for anode, cathode and field shaping
 - + low material budget inside tracking volume
 - difficult to avoid regions of low field
 (build-up of space charge, rate capability)
 - risk if a single wire breaks
 - massive end plates to hold wires in place
 - e.g. 50 g wire tension × 20'000 wires \rightarrow force of 1 ton pulling on end-plates

Straw Drift Tubes

Individual drift cell for each anode wire

 slightly more material in tracking volume

+ self-supporting structure, no need for massive end plates

- + well defined electric field, no low-field regions
- + reduced risk if a wire breaks

Micro-Pattern Gaseous Detectors

Gas Electron Multiplier (Sauli, 1996)

- thin Kapton foil (electrically insulating)
 - copper coating on both sides
- etch regular array of fine holes
- apply voltage between the two sides
 - high electric field inside the holes
 - \rightarrow gas amplification

Micro-Pattern Gaseous Detectors

- problem: gas gain from a single GEM not high enough for good efficiency
 - high electric field inside the holes → high discharge probability through the holes
- idea: stack several GEM foils
 - high total gain with low field per GEM foil
- triple-GEM detectors e.g. employed in innermost part of LHCb muon system
 - 415 V per GEM foil \rightarrow total gain ~ 4'300
 - Ar/CO₂/CF₄ gas mixture (45/15/40)

Silicon Detectors

Monocrystalline silicon is a semiconductor

- valence and conduction band separated by band gap energy $\Delta E = 1.12 \text{ eV}$
- ionizing particle can excite electrons from valence band to conduction band
 - creation of electron/hole (e/h) pairs
- number of e/h pairs follows Ландау distribution
 - most probable signal from a minimum ionizing particle in 300 µm of silicon is 22'500 e/h pairs
- create electric field across the detector volume to collect created electrons or holes on segmented electrodes on the surface (strips or pixels)

p-n Junction

To generate electric field, create reverse biased *p*-*n* junction

- *n*-doping: introduce small fraction of group-V "donor" atoms (As, P)
 - loosely bound excess electrons
- *p*-doping: introduce small fraction of group-III "acceptor" atoms (B)
 - loosely bound missing electrons (holes)
- excess electrons/holes can move through the lattice

- create junction between *p* and *n*-doped regions \rightarrow density gradient
 - excess electrons diffuse into *p*-doped region, holes diffuse into *n*-doped region

p-n Junction (II)

Diffusion of charge carriers across junction

- depletion zone without free charge-carriers
 - *p*-side: electrons absorberd by acceptor atoms
 - *n*-side: holes absorbed by donor atoms
- but also net movement of electric charge
 - creation of electric field across the junction
- equilibrium of diffusion and Coulomb force
 - electric field from Poisson equation:

$$-rac{d^2V}{dx^2} = rac{dE}{dx} = rac{
ho(x)}{\epsilon}$$

 \Rightarrow intrinsic potential barrier

$$V_{\rm bi} = \frac{e}{2\epsilon} \cdot (N_{\rm d} d_n^2 + N_{\rm a} d_p^2)$$

Asymmetric Junction

Detector: junction between bulk and implants

- bulk few 100 μm thick, implants few μm thin
 - simplest setup: *p*-implants in *n*-bulk (\rightarrow later)
- want depletion zone to extend into bulk d_n (bulk) $\gg d_n$ (implant)
 - to achieve this, use charge conservation

 $\boldsymbol{N}_{d} \boldsymbol{d}_{n} = \boldsymbol{N}_{a} \boldsymbol{d}_{p}$

and make

 $\textit{\textit{N}}_{\rm a} \, ({\rm implant}) \gg \textit{\textit{N}}_{\rm d} \, ({\rm bulk})$

• e.g. for $N_a \approx \text{few} \times 10^{17} / \text{cm}^3$, $N_d \approx \text{few} \times 10^{12} / \text{cm}^3$

 $V_{\rm bi} = 0.65 \,\mathrm{V}$; $d_n \approx 25 \,\mathrm{\mu m}$

Reverse-Biased Junction

Apply external voltage to increase thickness of depletion zone

• for $d_n \gg d_p$

$$V_{\rm bi} = rac{{
m e}}{2\epsilon} \cdot {
m N_{d}} d_n^2 \iff d_n = \sqrt{rac{2\epsilon}{
m V_{bi}}} \cdot rac{1}{{
m N_{d}}}$$

apply external voltage V_b

$$d_n = \sqrt{rac{2\epsilon \left(V_b + V_{bi}
ight)}{e} \cdot rac{1}{N_d}}$$

• to fully deplete a detector of thickness D

$$V_{\rm fd} = \frac{e}{2\epsilon} \cdot N_{\rm d} \cdot D^2$$

• e.g. for $D = 300 \ \mu m$, $N_d = \text{few x } 10^{12} \ / \ \text{cm}^3$

Full-Depletion Voltage

Determine V_{fd} from measurement of detector capacitance

detector ~ parallel-plate capacitor

$$C = \begin{cases} \frac{\varepsilon \cdot A}{d} \propto \frac{1}{\sqrt{V_{b}}} & \text{for } V_{b} < V_{fd} \\ \frac{\varepsilon \cdot A}{D} = \text{const for } V_{b} \ge V_{fd} \end{cases}$$

• measure C as a function of $V_{\rm b}$, plot $1/C^2$ vs $V_{\rm b}$

41

Signal Creation

Moving charge carriers induce signal on readout strips

• drift velocity of charge carriers is proportional to electric field *E*(*x*)

 $\mathbf{v}(\mathbf{x}) = \mathbf{\mu} \cdot \mathbf{E}(\mathbf{x})$ with mobility $\mathbf{\mu} \approx \begin{cases} 1500 \text{ cm}^2/\text{Vs} & \text{for electrons} \\ 450 \text{ cm}^2/\text{Vs} & \text{for holes} \end{cases}$

• maximum drift time (for $V_{\rm b} \gg V_{\rm fd}$)

$$\boldsymbol{t}_{\max} = \frac{\boldsymbol{D}^2}{\boldsymbol{2}\,\boldsymbol{\mu}\cdot\boldsymbol{V}_{\mathrm{b}}}$$

• e.g. for $D = 300 \ \mu m$, $V_{\rm b} = 200 \ V$

 $t_{\text{max}} = \begin{cases} 3.5 \text{ ns for electrons} \\ 11 \text{ ns for holes} \end{cases}$

Signal and Noise

Critical parameter for particle detection efficiency

- creation of e/h pairs is a statistical processes
 - signal amplitude follows Landau distribution
- electronics noise generates random signals
 - Gaussian distribution with mean zero
- measured signal amplitude is also smeared by electronics noise
 - Landau convolved with Gaussian

- cut on the measured amplitude to distinguish signal from noise
- for high detection efficiency need clean separation between the distributions

figure of merit: $S/N \equiv \frac{\text{most probable signal for mip}}{\text{rms of noise distribution}}$

rule of thumb: need S / N > 10 to obtain full particle detection efficiency

Silicon Strip Detector

Basic features of a p-in-n strip sensor

- metallization of readout strips and backplane
 - reduce electric resistance (R_s) along signal path
- thin SiO layer between implants and metal strips
 - isolate readout amplifier from leakage currents through detector bulk ("AC coupled readout")
- bond pads: connect metal strip to readout electronics
- DC pads: ohmic contact to p⁺ implant, for test purposes
- bias resistors: connect p⁺ implants to bias ring, but insulate implants from each other
- **bias ring:** connect to external bias voltage
- guard ring(s): shape electric field close to the edge of the sensor, avoid discharges to backplane

Silicon sensors + front-end readout electronics + mechanical support

- sensors usually produced from 6" silicon wafers
 - typically 10 cm × 10 cm
 - connect sensors in series for longer strips
- electrical connections by "wire bonding"
 - ultrasonic welding of thin aluminium wire onto aluminium bond pads
- light-weight support structures (e.g. carbon fibre)

University of Zurich^{uzH}

Silicon Strip Detectors

CMS Silicon Tracker (barrel)

ATLAS Silicon Tracker (barrel)

ATLAS (endcap)

LHCb Vertex Locator

LHCb Tracker Turicensis

LHCb Inner Tracker

University of Zurich[™]

Silicon Strip Detectors

Cables of CMS Silicon Tracker Barrel

University of Zurich[™]

Pixel Detectors

Readout implants segmented into pixels (typically $\approx 50 \times 500 \,\mu\text{m}^2$)

- finer segmentation
 → higher rate capability
- smaller cell size
 → small leakage current, low capacitance
- measure both coordinates
 → avoid ambiguities in track reconstruction
- need readout amplifier for each pixel, located directly on top of the pixel

Hybrid detector: two wafers mounted back-to-back

- 1st wafer: pixel sensor, 2nd wafer: readout electronics
- electrical connection by "bump bonding"

Pixel Detectors

Monolithic pixels: integrate detector and electronics in the same wafer

- even smaller capacitance \rightarrow lower noise
 - do not need large signal to reach good S/N
 - can make detectors very thin
 - low material budget
- use High-Voltage CMOS production process
 - developed for automobile industry
 - allows to apply voltages up to 100 V
 - deplete substrate, fast signal collection
- prototype detectors for µ3e experiment at PSI
 - thickness 50 mum
 - pixel size ~ 80 x 80 mm
 - signal collection in < 15 ns

"3D Detectors"

Implants not at the surface of the detector, but penetrating the bulk

- allows smaller distance between implants for same detector thickness
 - faster charge collection \rightarrow higher rate capability
- lower bias voltages, smaller losses from charge trapping in radiation-induced defects
 - better radiation hardness
- production complex and expensive
 - laser drilling or etching
- first employed in new ATLAS Inner Barrel Layer, installed in 2013/2014

Efficient and precise tracking of charged particles is a crucial ingredient for almost all particle physics experiments

- to determine production and decay vertices
 - to measure momenta

Detection based on interaction of particle with detector material, e.g.

- ionisation of a gas
- creation of electron/pair holes in a semiconductor

Apply electric field across detector volume,

read out the signals induced by drifting charges on segmented electrodes

• wires, strips, pixels

Several (sometimes conflicting) performance parameters

granularity, spatial resolution, rate capability, radiation hardness, material budget, cost

Did not talk about many, many very interesting things e.g. use of scintillating fibres for tracking

Scintillators and scintillating fibres play an important role in calorimetry, I suspect this will be discussed in the lecture by Giovanni de Lellis on March 20.

Tutorial

After the break: Tutorial on track reconstruction by Michele Atzeni

NUST MISIS, Russia, Moscow

The slides of this lecture are available at

http://www.physik.uzh.ch/~olafs/pdf/190213_MISIS.pdf

Efficiency and Granularity

Primary ionization is a statistical process

- discrete ionization clusters along particle trajectory
- number of clusters follows Poisson distribution

$$\boldsymbol{P}(\boldsymbol{k} | \boldsymbol{\mu}) = \frac{\boldsymbol{\mu}^{\boldsymbol{k}}}{\boldsymbol{k} \boldsymbol{l}} \, \boldsymbol{e}^{-\boldsymbol{\mu}}$$

• probability to create at least one cluster is

$$\boldsymbol{\epsilon} = \boldsymbol{1} - \boldsymbol{P}(\boldsymbol{0} \,|\, \boldsymbol{\mu}) = \boldsymbol{1} - \boldsymbol{e}^{-\boldsymbol{\mu}}$$

- for detection efficiency $\epsilon > 99\%$ need $\mu \ge 5$
- e.g. Argon (at 1 bar): µ = 29 primary clusters / cm
 - need \geq 1.7 mm path length to reach $\epsilon \geq$ 99%
- cannot make cells smaller than that \rightarrow limits possible granularity

Gas	Density ρ [g/cm ³]	l ₀ [eV]	W [eV]	n _p [cm ⁻¹]	n _T [cm ⁻¹]
H ₂	8.99 x 10 ⁻⁵	15.4	37	5.2	9.2
He	1.78 x 10 ⁻⁴	24.6	41	5.9	7.8
N_2	1.23 x 10 ⁻³	15.5	35	10	56
O ₂	1.43 x 10 ⁻³	12.2	31	22	73
Ne	9.00 x 10 ⁻⁴	21.6	36	12	39
Ar	1.78 x 10 ⁻³	15.8	26	29	94
Kr	3.74 x 10 ⁻³	14.0	24	22	192
Xe	5.89 x 10 ⁻³	12.1	22	44	307
CO ₂	1.98 x 10 ⁻³	13.7	33	34	91
CH ₄	7.17 x 10 ⁻⁴	13.1	28	16	53
C_4H_{10}	2.67 x 10 ⁻³	10.8	23	46	195

Wire Ageing

Deterioration of detector performance due to radiation damage

- formation of radicals in gas avalanche, polymerization of carbohydrates
- formation of deposits on wires
 - gradual reduction of gas gain
- formation of whiskers
- discharges, HV breakdown
- very small contamination of the drift gas can have disastrous consequences
 - typical problem: outgassing of glues
- lots of dedicated research: qualification of materials and fundamental processes

Radiation Damage

Most important: bulk damage from Non-Ionising Energy Loss (NIEL)

- displacement of atoms in the lattice
 - creation of vacancies and interstitials
- defects can recombine (beneficial annealing) or combine to form stable defects (reverse annealing)
- defects create energy levels inside band gap
 - increase of leakage current, noise
- defects act like acceptors \rightarrow change of "effective dopant concentration" $N_{eff} = N_{d} N_{a}$ in silicon bulk
 - "type inversion": bulk becomes p-type when $N_a > N_d$
 - $V_{\rm fd} \propto |N_{\rm eff}|$: increases steadily after type inversion
- defects can "trap" drifting charge carriers
 - reduction of collected signal

becomes limiting factor at high-luminosity LHC upgrades

Radiation Damage

To increase radiation hardness of strip detectors

- operate detectors at low temperatures
 - suppress leakage currents & reverse annealing
- *n*-type implants in *p*-type bulk:
 - no type inversion: depletion zone grows from readout side also after irradiation
 - allows to operate detector partially depleted
 - problem: e⁻ get trapped at Si/SiO₂ interface
 in between implants → short-circuit
 - solution: add p⁺-type implants, create insulating depletion zone in between the *n*-type implants
 - additional production step \rightarrow more expensive

Noise Sources

<u>Signal determined by thickness of detector \Rightarrow need to minimize noise</u>

- $C_{\rm d}$: sensor capacitance to ground
- $R_{\rm b}$: bias resistor
- $C_{\rm C}$: AC coupling capacitance
- $R_{\rm s}$: serial resistance on signal path
- **<u>"shot" noise</u>: statistical fluctuations of detector leakage currents**
 - dominates for long signal integration times
- <u>thermal noise</u>: current fluctuations in $R_{\rm h}$, $R_{\rm s}$ •
- capacitive noise: charge fluctuations in input transistor of readout amplifier
 - dominates for short integration times (LHC)

(more in Lea Caminada's lecture on April 13)

