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Particle Physics Experiments

● another beam of particles (“collider experiment”)
e.g. ATLAS, CMS

● a target at rest (“fixed-target experiment”)
e.g. SHiP

Bring them into collision with

Accelerate a beam of (stable & charged) particles to high energies
● electrons/positrons, protons/antiprotons, heavy ions

Measure the properties of long-lived particles created in the collision

Reconstruct short-lived particles using relativistic kinematics
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Particle Physics Experiments

Detector-components of a particle-physics experiment

● production & decay vertices

● flight paths

● momenta

● speed      –      Cherenkov detectors

● energy      –      calorimeters    |  charged and neutral

( momentum + speed → mass → particle type )

charged
particles

only

position-sensitive detectors
(in magnetic field)
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Momentum measurement

Moving charge in magnetic field → Lorentz force

F⃗ L = q⋅v⃗ × B⃗

p = q⋅B⋅r

→ forces particle onto circular trajectory around field lines

m⋅v 2

r
= q⋅v⋅B

→ measure bending radius of particle trajectory
in a known magnetic field
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Momentum measurement

Typical collider experiment
● solenoid/toroid magnet 

→ field lines parallel to beam axis
● cylindrical tracking layers

inside the magnet

Typical fixed-target experiment
● dipole magnet 

→ field lines orthogonal to beam axis
● planar tracking detectors 
before and after the magnet
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Momentum resolution (I)

For N equidistant measurements (N ≥ 10)

σ (p )

p
= √ 720

N+4
⋅σ x⋅

pT

0.3 B L2

[Gluckstern, NIM 24 (1963) 381]

⇒  main reason for the large size of high-energy particle physics experiments

Relative momentum resolution

● improves linearly with
spatial resolution of the detector

● improves linearly with the 
strength of the magnetic field

● improves quadratically with the 
length of the measured track segment
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Momentum resolution (II)

Particle trajectory disturbed due to
multiple scattering in the material of the detector

(→  Richard Jacobson’s lecture )

σ (p)

p
=

0.2⋅√L /X 0

β⋅B⋅L

Causes deterioration of
momentum resolution

Important to minimize material
● especially if measuring particles

at low momenta (small β = v/c)
● also “dead” material from

supports, cables, etc
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First tracking detectors

Cloud chamber (Wilson, 1912):

Vessel filled with supersaturated water vapour

● charged particle creates ionisation clusters

● ionisation clusters act as condensation nuclei 

● trail of water droplets along particle trajectory

Photograph trails through windows in the vessel

● spatial resolution ~ 100 μm

● estimate particle energy from density of droplets

Most important experimental tool until 1950s, but

● low rate capability

● photographs require manual analysis discovery of positron
(Anderson, 1932)
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Electronic readout of detector signals

● apply electric field across detector volume, collect charges on electrodes 

● electronically integrate
& amplify signal pulse

● digitize the signal:

● discriminator   ⇒ binary information (hit / no hit)

● analog-to-digital converter (ADC)  ⇒ encode pulse height

● time-to-digital converter (TDC) ⇒ encode signal arrival time

● transfer digital data to a computer farm for processing and storage

Need to know WHEN to read out the detector → trigger
(→ Lea Caminada’s lecture)

V –– ++ ↓↓
# # ## # #

–

+

Modern tracking detectors
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Modern tracking detectors

Position information from finely segmented readout electrodes

Other requirements

● radiation hardness 

● degradation of detector material

● cost

● including readout electronics

● rate capability 

● charge collection time in detector

● material budget

● including cables, support structures

● granularity determined by particle density and required spatial resolution

● close to interaction point: high particle density, small tracking volume

→ need fine granularity and excellent position resolution

● further away: large tracking volume, but lower particle density

→ can afford coarser granularity, lower position resolution
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Gaseous tracking detectors

Thin-walled cylindrical tube,
filled with a gas mixture

Thin wire along the centre of this tube

Apply a high voltage (typically 1– 2 kV)
between wire and outer wall of the tube

Charged particle ionizes atoms in the gas
electric field: electrons drift towards the wire

Very high electric field close to the wire
electrons gain enough energy

to ionize secondary atoms

Charge avalanche, voltage pulse on wire
photograph of a

charge avalanche

wire

– HV

+ HV

gas

1/r
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Gaseous tracking detectors

Tracking detector: several layers of such drift tubes

5-10 mm
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Gaseous tracking detectors

Tracking detector: several layers of such drift tubes

5-10 mm
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Gaseous tracking detectors

Tracking detector: several layers of such drift tubes
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Gaseous tracking detectors

To improve spatial resolution: measure drift time of electrons
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Gaseous tracking detectors

+ spatial resolution < 200 μm,
appropriate for many applications

+ easy to cover large surfaces

+ cost effective

But: granularity, rate capability
and radiation hardness

reaching their limits at the LHC

→ drift time for electrons typically 100 ns,
bunch crossings at LHC every 25 ns
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Gaseous tracking detectors

Too high occupancy: increasingly difficult to find the tracks
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Gaseous tracking detectors

Too high occupancy: increasingly difficult to find the tracks
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Gaseous tracking detectors

Too high occupancy: increasingly difficult to find the tracks
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Silicon tracking detectors

Segmented reverse biased p–n junction (diode)

● n–doped silicon wafer with 
segmented p–doped implants

● strips with pitch 250 – 20 μm
⇒ spatial resolution 50 to a few μm

● or pixels for even finer granularity

● apply reverse bias voltage

● fully deplete bulk, create electric field

● ionizing particle creates electron-hole pairs in silicon lattice

● electrons and holes drift in electric field, induce signal on p-doped implants
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Silicon tracking detectors

+ spatial resolution down to few μm,
much better than gaseous detectors

+ faster signal collection,
higher rate capability

+ much better radiation hardness

But: much more expensive than gaseous

→ use gaseous detectors where possible,
silicon detectors where needed
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Example: ATLAS detector at LHC

Pixel Detector
SCT Tracker

TRT Tracker

silicon pixels

silicon strips (SCT)

drift tubes (TRT)

drift tubes (MDT)

5-12 cm

30-50 cm

56-107 cm

500-1000 cm

50 x 400 μm

80 μm x 13 cm

4 mm x 75 cm

3 cm x 6 m

1.8 m²

60 m²

( 680 m²)

5500 m²

radius technology cell size area
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Gaseous Detectors

Problem: also excitation of gas atoms
in the avalanche close to the wire

→ creation of UV photons

If UV photons hit cathode,
they cause photo-emission of electrons

→ electrons drift to amplification region,
create UV photons, etc.

→ breakdown

→ need to absorb UV photons
before they reach the cathode

→ choice of gas !

– HV

+ HV

gas

1/r
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Gas Mixtures

“Quencher”: complex molecular gas

● rotational and vibrational excitation bands

→ efficient absorption of UV photons

● classic choices: CH4, C2H6, iC4H10, alcohols

● but polymerization under irradiation → “wire ageing”

● in high-radiation environment (e.g. LHC) use CO2

Main gas component: noble gas

● elastic collisions at low electron energies

● ionisation dominates at high electron energies

→ efficient gas amplification

● usually use Argon (availability, low cost)

elastic
ionis.
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Signal Formation (I)
Signal on wire is created by electrons and ions drifting in electric field

ϕ (r ) = −
V 0

ln(b /a)
⋅ln ( r

a ) ⇔ E (r ) =
V 0

ln(b /a)
⋅

1
r

● potential and electric field in a cylindrical cell

dW = q ⋅E (r ) dr = C⋅V 0 dV

dV =
q

C V 0

⋅E (r ) dr

→ voltage pulse on wire 

● moving charges in electric field → work

● total signal from charge q drifting from radius r
0
 to r

1

ΔV =
q

C V 0

⋅∫
r 0

r 1
−V 0

ln (b /a)
dr
r

= −
q

C⋅ln(b /a )
⋅ ln (

r 1

r 0
)

V
0

1/r

a b
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V
0

1/r

a b

Signal Formation (II)

● r0 = a + ε

● electrons drift  to the wire surface  r
1
 = a

ΔV (−)
= −

q
C⋅ln(b /a )

⋅ ln (a+ε
a )

● ions drift to the cathode  r
1

 = b

ΔV (+)
=

q
C⋅ln(b /a )

⋅ln (a+ε
b ) = −

q
C⋅ln (b /a)

⋅ ln ( b
a+ε )

● a + ε ≪ b  signal dominated by ions drifting away from wire

● example: for b = 5 mm, a = 12.5 μm, r
0
 = 15 μm

Almost all charges are created in the avalanche close to the wire

ΔV (+)
/ ΔV (−)

≈ 32

a b



NUST MISIS, Russia, Moscow

2828

Signal Length

● drift velocity for ions is proportional to the electric field

● total drift time ( r
 
(t

max
) = b )

● e.g. for μ  = 1.7 cm²/V/s,  b = 5 mm, a = 12.5 μm, V
0
 = 1500 V

t max =
a⋅ln(b /a)

2μV 0

⋅
(b2

−a2
)

a2

dr
dt

= μ⋅E (r ) =
μ⋅V 0

ln (b /a)
⋅

1
r

⇒ r (t ) = a⋅√ 1 +
2 μ⋅V 0

a⋅ ln(b /a)
⋅t

V (+)
(t ) = −

q
C⋅ ln(b /a)

⋅ln (
r (t )

a )

t max ≈ 300 μ s

Induced signal as a function of time ( for an ion created at r
0
 = a )

μ = “ion mobility”
[μ] = (cm/s)/(V/cm)
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Signal Length (II)

● shorten pulse length with acceptable loss of signal amplitude 

● shorter signals  higher rate capability

● limitation of rate capability: electric charges drifting inside detector volume

● electric charges screen electric field  reduce gas amplification

● need short drift distances, fast drift gases, high electric field

R

RHV

-HV

Cdet

[
F
.
S
a
u
l
i
 
–
 
C
E
R
N
 
r
e
p
o
r
t
 
7
7
-
0
9
]

● time constant  = R
 
·
 
Cdet

Electronic readout differentiates detector signal
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Multi Wire Proportional Chamber

– HV

– HV

+HV

fieldlines

“virtual” detector cell

d

Array of signal wires in between two planar cathodes (Charpak, 1968)

σ ≈ d / √12

● rate capability up to 106 /s

● each wire connected to a readout 

amplifier and a discriminator

● register a “hit” if signal on the wire 

is above discriminator threshold

● “binary readout” (hit or no hit)

● spatial resolution given by

distance d between wires

● typically d ≈ 2 mm  Þ  σ ≈ 600 μm
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Drift Chamber
Measure the time it takes electrons to drift from particle trajectory to wire

+HV
drift

+HV

scintillator TDC
start

stop

∆t

x

drift distance [cm] drift distance [cm]

no field wires: with field wires:

● need to know when the particle passed: 

● fast, external detector (e.g. scintillator)

● at LHC, know the time of the pp collision

● allows readout pitch of up to several cm

● much smaller number of readout channels

● but requires TDC readout of sense wires

● can reach spatial resolution < 200 μm

● electron drift velocity varies strongly
with the strength of the electric field

● field-shaping wires to make field as 
homogeneous as possible
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Cylindrical Drift Chambers

Collider experiments need barrel geometry

+  low material budget inside tracking volume

–  difficult to avoid regions of low field
(build-up of space charge, rate capability)

–  risk if a single wire breaks

–  massive end plates to hold wires in place

e.g. 50 g wire tension × 20’000 wires
→ force of 1 ton pulling on end-plates

● ”open geometry”: one large gas volume with
wires for anode, cathode and field shaping
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Straw Drift Tubes

Individual drift cell for each anode wire

– slightly more material in
tracking volume

+ self-supporting structure,
no need for massive end plates

+  well defined electric field,
no low-field regions

+ reduced risk if a wire breaks
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Micro-Pattern Gaseous Detectors

● thin Kapton foil (electrically insulating)

● copper coating on both sides

● etch regular array of fine holes

● apply voltage between the two sides 

● high electric field inside the holes

→ gas amplification

Gas Electron Multiplier (Sauli, 1996)
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Micro-Pattern Gaseous Detectors

● problem: gas gain from a single GEM
not high enough for good efficiency

● high electric field inside the holes → high
discharge probability through the holes

● idea: stack several GEM foils

● high total gain with low field per GEM foil

● triple-GEM detectors e.g. employed 
in innermost part of LHCb muon system

● 415 V per GEM foil → total gain ~ 4’300

● Ar/CO
2
/CF

4
 gas mixture (45/15/40)

gas gain,
e.g.

~ 20   

~ 20   

~ 20   
_____   

~ 8000   
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Silicon Detectors

Monocrystalline silicon is a semiconductor

● valence and conduction band separated
by band gap energy ∆E = 1.12 eV

● ionizing particle can excite electrons
from valence band to conduction band 

● creation of electron/hole (e/h) pairs

● number of e/h pairs follows Ландау distribution 

● most probable signal from a minimum ionizing 
particle in 300 μm of silicon is 22'500 e/h pairs

● create electric field across the detector volume
to collect created electrons or holes on segmented 
electrodes on the surface (strips or pixels)

h

e conduction band

valence band

E

most probable

energy loss [keV]
n

u
m

b
er

 o
f 

e
ve

n
ts

∆E
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p-n Junction

To generate electric field, create reverse biased p-n junction

● n-doping: introduce small fraction of
group-V “donor” atoms (As, P)

● loosely bound excess electrons

● p-doping: introduce small fraction of
group-III “acceptor” atoms (B)

● loosely bound missing electrons (holes)

● excess electrons/holes can move 
through the lattice

● create junction between p- and n-doped regions → density gradient

● excess electrons diffuse into p-doped region, holes diffuse into n-doped region

valence band

     conduction band

donor level

Ef

E

e

conduction band

     valence band

acceptor level
Ef

E

h
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p-n Junction (II)

N
a
(x)

N
d
(x)

E(x)

depletion zone

r(x)

V(x)

dp dn0
12.86 mm14.61 mm

17
 m

m

Vbi

  

Diffusion of charge carriers across junction

● depletion zone without free charge-carriers

● p-side: electrons absorberd by acceptor atoms 

● n-side: holes absorbed by donor atoms

● but also net movement of electric charge

● creation of electric field across the junction

● equilibrium of diffusion and Coulomb force

● electric field from Poisson equation: 

V bi =
e
2ε
⋅(Nd d n

2 + N a d p
2
)

−
d 2V
dx 2 =

dE
dx

=
ρ(x )
ε

Þ intrinsic potential barrier
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Asymmetric Junction
Detector: junction between bulk and implants

● e.g. for N
a
 ≈ few × 1017 / cm³, N

d
 ≈ few × 1012 / cm³

N a (implant)≫ N d (bulk)

dn (bulk)≫ d p (implant)

Nd dn =N a d p

N
a
(x)

N
d
(x)

E(x)

depletion zone

r(x)

V(x)

dp dn0
12.86 mm14.61 mm

17
 m

m

Vbi

  

● to achieve this, use charge conservation

V
bi
 = 0.65 V  ;  d

n
 ≈ 25 μm

● bulk few 100 μm thick, implants few μm thin 

● simplest setup: p-implants in n-bulk (→ later)

● want depletion zone to extend into bulk

● and make
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Reverse-Biased Junction
Apply external voltage to increase thickness of depletion zone

● for d
n 
≫

 
d

p

● apply external voltage V
b

dn = √
2ε (V b+V bi)

e
⋅

1
N d

● to fully deplete a detector of thickness D

V fd = e
2ε
⋅Nd⋅D2

E = 0

Vb < Vfd –

+

p+

n

E⃗

- E(x)

x

d
n

D

Vb = Vfd –

+

p+

n

E⃗

- E(x)

x
d

n
 = D

Vfd ≈ 100 V 

● e.g. for D = 300 μm , Nd = few x 1012 / cm³

V bi =
e
2ε
⋅Nd dn

2
⇔ dn = √

2ε V bi

e
⋅

1
N d
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Full-Depletion Voltage

E = 0

Vb < Vfd –

+

p+

n

E⃗

- E(x)

x

d
n

D

Vb = Vfd –

+

p+

n

E⃗

- E(x)

x
d

n
 = D

Determine V
fd
 from measurement of detector capacitance

● detector ~ parallel-plate capacitor

C = {
ε⋅A
d

∝ 1

√ V b

 for V b < V fd

ε⋅A
D

= const  for V b ≥ V fd

● measure C as a function of V
b
, plot 1/C2 vs V

b

V
fd
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Signal Creation

Moving charge carriers induce signal on readout strips

● drift velocity of charge carriers is proportional to electric field E(x)

● e.g. for D = 300 μm, Vb = 200 V

● maximum drift time (for Vb ≫ Vfd)

t max = D2

2 μ⋅V b

time [ns]

si
g

n
al

p-strips in n-bulk
h, central strip
e, central strip
h, neighbouring strip
e, neighbouring strip

v (x ) = μ⋅E (x )
1500 cm²/Vs for electrons
450 cm²/Vs for holes

with mobility  μ ≈ 

tmax =
3.5 ns  for electrons
 11 ns  for holes
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Signal and Noise
Critical parameter for particle detection efficiency

● creation of e/h pairs is a statistical processes

● signal amplitude follows Landau distribution

● electronics noise generates random signals

● Gaussian distribution with mean zero

● measured signal amplitude is also
smeared by electronics noise

● Landau convolved with Gaussian

● cut on the measured amplitude to distinguish signal from noise 

● for high detection efficiency need clean separation between the distributions

figure of merit: S /N ≡ most probable signal for mip
rms of noise distribution

● rule of thumb: need S / N > 10 to obtain full particle detection efficiency

Noise Signal

Signal convolved
with Noise

Amplitude
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 Silicon Strip Detector

Basic features of a p-in-n strip sensor

● metallization of readout strips and backplane

● reduce electric resistance (Rs) along signal path

● thin SiO layer between implants and metal strips

● isolate readout amplifier from leakage currents
through detector bulk (“AC coupled readout”)

● bond pads: connect metal strip to readout electronics

● DC pads: ohmic contact to p+ implant, for test purposes

● bias resistors: connect p+ implants to bias ring,
but insulate implants from each other

● bias ring: connect to external bias voltage

● guard ring(s): shape electric field close to the edge 
of the sensor, avoid discharges to backplane

Al strip p+ implantn bulk

Vb

–

+

h+

e–

p+

n+

n

SiO

Al

Al R
b
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 Silicon Strip Module

Silicon sensors + front-end readout electronics + mechanical support

● sensors usually produced from 6” silicon wafers 

● typically 10 cm × 10 cm

● connect sensors in series for longer strips

● electrical connections by “wire bonding” 

● ultrasonic welding of thin aluminium 
wire onto aluminium bond pads

● light-weight support structures (e.g. carbon fibre)

mechanical support

silicon sensors

read-out hybrid

electrical insulation

thermal interface
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 Silicon Strip Detectors

LHCb Tracker Turicensis LHCb Inner TrackerLHCb Vertex Locator

CMS Silicon Tracker (barrel) ATLAS Silicon Tracker (barrel) ATLAS (endcap)
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 Silicon Strip Detectors

Cables of CMS Silicon Tracker Barrel
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Pixel Detectors
Readout implants segmented into pixels (typically ≈ 50 × 500 μm²)

● finer segmentation 
→ higher rate capability 

● smaller cell size
→ small leakage current, low capacitance

● measure both coordinates
→ avoid ambiguities in track reconstruction

● need readout amplifier for each pixel, 
located directly on top of the pixel

Hybrid detector: two wafers mounted back-to-back

● 1st wafer: pixel sensor, 2nd wafer: readout electronics

● electrical connection by “bump bonding”
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Pixel Detectors
Monolithic pixels: integrate detector and electronics in the same wafer

● even smaller capacitance → lower noise

● do not need large signal to reach good S/N

● can make detectors very thin

● low material budget

● use High-Voltage CMOS production process

● developed for automobile industry

● allows to apply voltages up to 100 V

● deplete substrate, fast signal collection

● prototype detectors for μ3e experiment at PSI

● thickness 50 mum

● pixel size ~ 80 x 80 mm

● signal collection in < 15 ns
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“3D Detectors”

Implants not at the surface of the detector, but penetrating the bulk

● allows smaller distance between implants
for same detector thickness

● faster charge collection → higher rate capability

● lower bias voltages, smaller losses from 
charge trapping in radiation-induced defects

● better radiation hardness

● production complex and expensive

● laser drilling or etching

● first employed in new ATLAS Inner 
Barrel Layer, installed in 2013/2014

3D detector standard

pitch = 50-200 μm th
ic

kn
e

ss
 =

 2
00

-5
00

 μ
m

heeh

strips

back-
plane
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Summary

Efficient and precise tracking of charged particles is
a crucial ingredient for almost all particle physics experiments

● to determine production and decay vertices

● to measure momenta

Detection based on interaction of particle with detector material, e.g.

● ionisation of a gas

● creation of electron/pair holes in a semiconductor

Apply electric field across detector volume,
read out the signals induced by drifting charges on segmented electrodes

● wires, strips, pixels

Several (sometimes conflicting) performance parameters
granularity, spatial resolution, rate capability,

radiation hardness, material budget, cost
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Summary

Did not talk about many, many very interesting things

e.g. use of scintillating fibres for tracking

Scintillators and scintillating fibres play an important role
in calorimetry, I suspect this will be discussed in the lecture 

by Giovanni de Lellis on March 20.
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Tutorial

After the break:
Tutorial on track reconstruction by Michele Atzeni
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The slides of this lecture are available at

http://www.physik.uzh.ch/~olafs/pdf/190213_MISIS.pdf
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Efficiency and Granularity

ε = 1− P (0∣μ ) = 1− e−μ

P (k ∣μ ) =
μ

k

k !
e−μ

Primary ionization is a statistical process

● discrete ionization clusters along particle trajectory

● number of clusters follows Poisson distribution

● probability to create at least one cluster is

● for detection efficiency ε > 99% need μ ≥ 5

● e.g. Argon (at 1 bar): μ = 29 primary clusters / cm

● need ≥ 1.7 mm path length to reach ε ≥ 99%

● cannot make cells smaller than that → limits possible granularity
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Wire Ageing

● formation of radicals in gas avalanche,
polymerization of carbohydrates

● formation of deposits on wires

● gradual reduction of gas gain

● formation of whiskers

● discharges, HV breakdown

● very small contamination of the drift
gas can have disastrous consequences

● typical problem: outgassing of glues

● lots of dedicated research: qualification
of materials and fundamental processes

accumulated charge [mC/cm]

re
la

tiv
e 

ga
s 

ga
in

Deterioration of detector performance due to radiation damage
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Radiation Damage
Most important: bulk damage from Non-Ionising Energy Loss (NIEL)

● displacement of atoms in the lattice 

● creation of vacancies and interstitials

● defects can recombine (beneficial annealing) or
combine to form stable defects (reverse annealing)

● defects create energy levels inside band gap

● increase of leakage current, noise

● defects act like acceptors → change of “effective 
dopant concentration” Neff = Nd – Na in silicon bulk

● “type inversion”: bulk becomes p-type when N
a
 > N

d 

● Vfd µ |Neff
|:  increases steadily after type inversion

● defects can “trap” drifting charge carriers

● reduction of collected signal
becomes limiting factor at

high-luminosity LHC upgrades
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Radiation Damage
To increase radiation hardness of strip detectors

● operate detectors at low temperatures

● suppress leakage currents & reverse annealing

● n-type implants in p-type bulk: 

● no type inversion: depletion zone grows from 
readout side also after irradiation

● allows to operate detector partially depleted

● problem: e– get trapped at Si/SiO
2
 interface

in between implants →  short-circuit

● solution: add p+-type implants, create insulating 
depletion zone in between the n-type implants

● additional production step → more expensive

E = 0Vb < Vfd –

+

p+

n+

E⃗ “p”

+++     +++   +++     +++   

p bulk

p+ implant

n+ 
implant

SiO
2Aluminium
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Noise Sources

Cd: sensor capacitance to ground

Rb: bias resistor

CC: AC coupling capacitance

Rs: serial resistance on signal path

● “shot” noise: statistical fluctuations of detector leakage currents

● dominates for long signal integration times

● thermal noise: current fluctuations in Rb, Rs

● capacitive noise: charge fluctuations in
input transistor of readout amplifier

● dominates for short integration times (LHC)

Signal determined by thickness of detector  ⇒ need to minimize noise

shaping time [μs]
eq

u
iv

al
en

t 
n

o
is

e 
ch

ar
g

e 
[e

]

“shot”
noise

capacitive
noise

thermal
noise

(more in Lea Caminada’s lecture on April 13)
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