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Elementary Particle Physics
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Elementary Particle Physics

The “Standard Model” of Particle Physics
describes elementary particles and their interactions through

three of the four known fundamental forces

electromagnetic interaction 
weak interaction

strong interaction

Formulated in the 1960's, it is a
Quantum Field Theory based on

relativistic kinematics
quantum mechanics

group theory
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Elementary Particle Physics

Describes many observed phenomena with stunning precision

e.g. electric dipole moment of the electron
(gSM- 2) / 2 = 0.00115965218164(76)

(gexp- 2) / 2 = 0.00115965218073(28)

Many of it's predictions have been confirmed by experiments

e.g. observation of Higgs Boson at CERN,

40 years after its existence was predicted

to accommodate mass of elementary particles



Event Selection and Data Analysis in Particle Physics O. SteinkampApril 22, 2017

Elementary Particle Physics

Does not explain some fundamental observations, e.g.

Matter – Antimatter asymmetry in the Universe

Dark Matter

Does not incorporate gravity

Holy grail of particle physics today:

Search for phenomena “Beyond the Standard Model”
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Elementary Particle Physics

Two approaches:

“Direct Searches”
New elementary particles

“Indirect Searches”
Confront precise predictions with precise measurements

In both cases, studying very rare phenomena:

Need effective and efficient selection algorithms
to separate signal from large backgrounds

Need to handle huge data volumes
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Standard Model
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Standard Model

Quarks, Leptons → matter
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Standard Model

Gauge Bosons → interactions
e− e−

e−e−

γ
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Standard Model

Gauge Bosons → interactions
d

u

e−

νe

W −
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Standard Model

Higgs Boson → mass
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Standard Model

Three “generations” of matter particles

2nd and 3rd generation are heavier siblings of 1st generation

I III III
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Fundamental Questions

WHY THREE GENERATIONS ?

Who ordered THAT ?

(Isidor Isaac Rabi on the discovery of the muon)
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Standard Model

For each matter particle there is a corresponding antiparticle

● Same mass as the particle, but opposite charge
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Standard Model

Particle – antiparticle pairs can be 
produced out of energy

→ E = m c²

e+

e− u

u
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Standard Model

Particle – antiparticle pairs annihilate
into energy (e.g. gamma rays)

→ E = m c²

e+

e−

γ

u

u

γ
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Fundamental Questions

WHY DO WE SEE SO MUCH MORE MATTER

THAN ANTIMATTER IN THE UNIVERSE ?

u

u

BIG
BANG
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Fundamental Questions

WHY DOES ANYTHING EXIST AT ALL ?
u

u

γ
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Standard Model

Quarks are not observed as free particles
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Standard Model

Particles that are observed consist of 
● three quarks (e.g. proton), or

● a quark and an antiquark
(“exotic” combinations: Tetraquarks, Pentaquarks)
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Standard Model

Particles that are observed consist of 
● three quarks (e.g. proton), or

● a quark and an antiquark
(“exotic” combinations: Tetraquarks, Pentaquarks)

Many possible

combinations:

“particle zoo”
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Reconstructing an Event

Most particles in the particle zoo are very short-lived

Very few are stable or live long enough
to leave a trace in a particle detector

electrons and muons

protons (uud)

pions (ud) and kaons (us)

photons

neutrons (udd)

… … and their antiparticlesand their antiparticles

charged

neutral
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E = m⋅c2

Reconstructing an Event

Short-lived particles can be reconstructed indirectly
by measuring their long-lived decay products

Relativistic kinematics
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E = m

Reconstructing an Event

Short-lived particles can be reconstructed indirectly
by measuring their long-lived decay products

“natural units”:
c = 1

Relativistic kinematics
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E 2 = m2 + p2

Reconstructing an Event

Short-lived particles can be reconstructed indirectly
by measuring their long-lived decay products

Relativistic kinematics
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Reconstructing an Event

Short-lived particles can be reconstructed indirectly
by measuring their long-lived decay products

Relativistic kinematics

m2 = E 2 − p2
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Reconstructing an Event

Short-lived particles can be reconstructed indirectly
by measuring their long-lived decay products

M2 = ( ∑i

E i )
2

− |∑i

p⃗ i |
2

Energy and momentum conservation in the decay

m2 = E 2 − p2

Relativistic kinematics

E i
2 = mi

2 + p i
2

with
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Reconstructing an Event

M2 = ( E 1 + E 2 )2 − | p⃗1 + p⃗2 |
2 [
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Reconstructing an Event

Random

combinations

of a muon

and an

antimuon

M2 = ( E 1 + E 2 )2 − | p⃗1 + p⃗2 |
2
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Reconstructing an Event

 (1s)

 (2s)

 (3s)

 particles:

short-lived

bound states

of b quark

and b quarkRandom

combinations

of a muon

and an

antimuon

M2 = ( E 1 + E 2 )2 − | p⃗1 + p⃗2 |
2
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Discovery of  Particles in 1977
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http://lss.fnal.gov/archive/1977/pub/Pub-77-058-E.pdf
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Discovery of  Particles in 1977

first proof for existence of
3rd generation of quarks



  

Yesterday's sensation
is today's calibration channel

(Richard P. Feynman)
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https://en.wikipedia.org/wiki/Richard_Feynman


  

… and tomorrow's background

(Valentine Telegdi)
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https://en.wikipedia.org/wiki/Valentine_Telegdi
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… Today's Calibration Channel

mass of the
short-lived

particle

Distribution should peak at the known mass values:

Verify / calibrate your momentum reconstruction
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… Today's Calibration Channel

measurement
resolution

Width of the peaks measures

precision of the momentum reconstruction
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… Today's Calibration Channel

measurement
resolution
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Width of the peaks measures

precision of the momentum reconstruction
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Reconstructing an Event

To reconstruct an event, need to:

● Measure the flight directions of long-lived particles

● Measure the magnitudes of their momenta

● Determine which type of particle they are
(to know their mass and energy)
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Reconstructing an Event

To reconstruct an event, need to:

● Measure the flight directions of long-lived particles

● Measure the magnitudes of their momenta

● Determine which type of particle they are
(to know their mass and energy)
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Measuring Momentum

Apply a magnetic field → Lorentz force on moving particle

q
v⃗

F⃗ L

F⃗ L = q⋅v⃗ × B⃗
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Measuring Momentum

Apply a magnetic field → Lorentz force on moving particle

q
v⃗

F⃗ L

F⃗ L = q⋅v⃗ × B⃗

Particle forced onto a circular trajectory

m⋅v 2

r
= q ⋅v ⋅B ⇒ p = q ⋅B⋅r
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Measuring Momentum

Apply a magnetic field → Lorentz force on moving particle

q
v⃗

F⃗ L

F⃗ L = q⋅v⃗ × B⃗

Particle forced onto a circular trajectory

m⋅v 2

r
= q ⋅v ⋅B ⇒ p = q ⋅B⋅r

Precision of the momentum measurement

Δ p
p

∝
σ x

√N
⋅ p

B⋅L2

precision & number 
of position measurements

length over which
the trajectory is measured
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Large Hadron Collider
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p
p

27 km long ring in a tunnel 100 m below ground

Two proton beams: clockwise and anti-clockwise

→ proton collisions every 25 ns (40 million times per second)

Four collision points: four large experiments

→ more than 10'000 physicists, more than 100 nationalities
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LHC Experiments
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LHC Experiments

ATLAS / CMS:

search for
“new” particles

(discovery of Higgs boson)
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LHC Experiments

LHCb:

precision tests
of the Standard Model
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LHC Experiments

ALICE:

study properties of
the strong interaction
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LHC Experiments
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LHCb Experiment
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LHCb Experiment

≈ 20 m
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LHCb Experiment

p p

collision point
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LHCb Experiment

p p

Vertex detector
measure flight direction

Cherenkov detectors
identify kaons and pions

Muon system
identify muons

Tracking system
measure momentum

Calorimeters
measure energy

B⃗



Event Selection and Data Analysis in Particle Physics O. SteinkampApril 22, 2017

Overview

Part I

What are we trying to measure

What do our experiments look like

Part II

“Online” event selection

Part III

“Offline” analysis



Event Selection and Data Analysis in Particle Physics O. SteinkampApril 22, 2017

Readout

Millions of detector channels → large amount of data

ATLAS / CMS: 1-2 MB per event

LHCb: about 100 kB per event

V –
+ ↓

# # #

–

+

particle deposits
energy in detector
→ voltage pulse

amplification digitization
storage,

reconstruction,
analysis
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Data Volume

1.5 MB per event × 40 million events per second

≈ 60 TB / sec

> 10'000 DVDs every second

≈ 6 billion phone calls

Facebook: ≈ 600 TB / day

→ Can't afford to store everything !
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Data Volume

 (1 PB = 1000 TB)
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Data Volume

 (1 PB = 1000 TB)
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Data Volume

 (1 PB = 1000 TB)
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Data Volume

But: we are interested in
studying rare processes !

e.g. On average about
one Higgs boson / sec
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Data Volume
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studying rare processes !
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one Higgs boson / sec

Some more events are useful
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But most events are just
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Data Volume

But: we are interested in
studying rare processes !
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one Higgs boson / sec

Some more events are useful
as “today's calibration channel”

But most events are just
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Data Volume

But: we are interested in
studying rare processes !

e.g. On average about
one Higgs boson / sec

Some more events are useful
as “today's calibration channel”

But most events are just
“today's background”
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Higgs

10 orders
of

magnitude
“TRIGGER”: 

select interesting-looking events,

discard the rest
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Trigger Requirements

Needs to have high efficiency for selecting the interesting events

Obviously: want to minimize losses in statistics

Also: losses can cause biases on physics results

Needs to provide high rejection for uninteresting high-rate processes

Determined by how much data you can afford to store

Needs to be flexible

Operating conditions can change

Want to be able to implement new ideas
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Trigger Requirements

Needs to be fast

Data need to be stored temporarily while the decision is made:
the more time the algorithm needs to come to a decision,

the more events need to be stored in parallel

→ cost of storage space

Events come in at a constant rate of 40 MHz:
the more time the algorithm needs to come to a decision, 

the more copies of the algorithm have to be executed in parallel

→ cost of computing
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Trigger Levels

Low-level triggers:

Full input rate → fast, simple, crude decisions

Usually implemented in custom-made hardware

Higher-level triggers:

Reduced input rate → more time for more sophisticated decisions

Usually implemented in software running on large CPU farms
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Trigger Levels

Low-level triggers:

Full input rate → fast, simple, crude decisions

Usually implemented in custom-made hardware

Higher-level triggers:

Reduced input rate → more time for more sophisticated decisions

Usually implemented in software running on large CPU farms

40 MHz

4 μs

1 MHz   |  100 kHz

12 kHz  |  1 kHz

~ 100 ms

example:
LHCb  |  CMS 
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Low-Level Triggers

Need to be fast and simple

The particles we are interest in studying are usually heavy

ATLAS/CMS: Higgs boson 125 GeV = 125 × the mass of a proton

LHCb: particles containing b quarks ≈ 5 GeV = 5 × the mass of a proton

→ Their decay products tend to have large energy and momenta

Typical signatures to look for:

Large energy deposits in the calorimeters

Muons with large momentum
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Low-Level Triggers

Need to be fast and simple

The particles we are interest in studying are usually heavy

ATLAS/CMS: Higgs boson 125 GeV = 125 × the mass of a proton

LHCb: particles containing b quarks ≈ 5 GeV = 5 × the mass of a proton

→ Their decay products tend to have large energy and momenta

Typical signatures to look for:

Large energy deposits in the calorimeters

Muons with large momentum
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LHCb “L0 Muon” Trigger

p p

Muon system
identify muons

B⃗

collision point

Muons are easy to identify: put lots of material,

whatever you see in a detector behind this material must be a muon
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LHCb “L0 Muon” Trigger

LHCb muon system: 

Five detection layers, separated by 80 cm thick walls of iron

First-level muon trigger:

Require coincidence of hits in several detection layers,

pointing back to the pp collision point

→ Small deviation in magnetic field → Muon with high momentum 

Muon stations

M1M2M3M4M5

μ+

μ–

B⃗

p p
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LHCb “L0 Muon” Trigger

Algorithm implemented in custom-designed electronics boards,
using FPGA and RAM chips and high-speed data links

Start with a hit in station M3

Extrapolate straight line to M2, M4, M5

Define search windows around the extrapolated position

If matching hits are found, look up the corresponding momentum
(stored in large look-up tables in RAM chips)

Muon stations

M1M2M3M4M5

μ+

μ–

B⃗

p p
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Higher-Level Trigger

Usually a simplified version of the offline reconstruction software,
running on a large computer farm, close to the experiment
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Higher-Level Trigger

Usually a simplified version of the offline reconstruction software,
running on a large computer farm, close to the experiment

LHCb: 58'000 CPU cores

40'000 reconstruction jobs
running in parallel

400 different trigger selections
for different physics analyses

LHCb has so far published
370 physics papers,

with many more to come
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Higher-Level Trigger

Usually a simplified version of the offline reconstruction software,
running on a large computer farm, close to the experiment

Simplifications necessary to meet CPU time constraints,
but result in poorer resolution
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Higher-Level Trigger

Usually a simplified version of the offline reconstruction software,
running on a large computer farm, close to the experiment

Simplifications necessary to meet CPU time constraints,
but result in poorer resolution

≈ factor 2 improvement due to better calibration

“Trigger” “Offline”
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Higher-Level Trigger

Usually a simplified version of the offline reconstruction software,
running on a large computer farm, close to the experiment

Simplifications necessary to meet CPU time constraints,
but result in poorer resolution

≈ factor 2 improvement due to better calibration

“Trigger” “Offline”

Brilliant NEW IDEA !

implemented in LHCb for
2015 / 2016 data taking:
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LHCb High-Level Trigger

≈ 3 days in August 2016

LHC is colliding protons only ≈ 35 % of the time

Inject fresh proton beams, maintenance work, technical problems, …
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LHCb High-Level Trigger

≈ 3 days in August 2016

LHC is colliding protons only ≈ 35 % of the time

Inject fresh proton beams, maintenance work, technical problems, …

Split High-Level Trigger into two parts

Buffer events that pass a first selection on local disks

Use CPU farm to perform final selection
when there are no collisions and no new data is coming in

Calibration with “offline quality” before final selection

10'000 TByte
disk space

→ buffer data
up to a week
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Overview

Part I

What are we trying to measure

What do our experiments look like

Part II

“Online” event selection

Part III

“Offline” analysis
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Offline Analysis

After trigger selections, experiments are saving of the order of
1'000 events per second for offline analysis

Reconstructing one event takes about 10-20 sec

Might need to run the reconstruction more than once,
if improved reconstruction algorithms become available

In addition: need to generate huge numbers of simulated events
to study reconstruction and selection efficiencies etc.

Generating one simulated event can take up to 15 minutes

In addition: physics analyses

usually fast, but many users, many analysis jobs

→ need tens of thousands of processors
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Offline Analysis

After trigger selections, experiments are saving of the order of
1'000 events per second for offline analysis

≈ 1010 events per year × 1.5 MB per event

→ need storage space for ≈ 15'000 TB of data per experiment per year
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Offline Analysis

After trigger selections, experiments are saving of the order of
1'000 events per second for offline analysis

≈ 1010 events per year × 1 MB per event

→ need storage space for 10'000 TB of data per year

Solution: the LHC Computing Grid

170 computing centres in 42 countries,
connected by high-speed data links

2 million jobs run every day
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Offline Analysis

Tier 0: CERN + Wigner centre Budapest
→ first copy of the raw data
→ first pass reconstruction
→ reprocessing during LHC down-times

Tier 1: Fourteen large computer centres 
→ fraction of raw and reconstructed data
→ large-scale reprocessing

Tier 2: Large clusters at Scientific Institutions
→ specific analysis tasks
→ production/reconstruction of simulated events

Tier 3: Local clusters in a University Department
→ what the user connects to

Hierarchical structure
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Example: B
s

0 → + –

Example of an analysis:

Search for the decay

B
s

0 → + –
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Example: B
s

0 → + –

≈ 5 × the mass of a proton

travels ≈ 1 cm in LHCb before it decays

Decay into + – strongly suppressed in the Standard Model

Predicted “Branching Fraction” ≈ 3.5 × 10-9

( i.e. only about three out of a billion B
s
0 mesons should decay into + – )

But other theories (e.g. SuperSymmetry) predict this to be much larger 

mass ≈ 5366 MeV/c2

mean lifetime ≈ 1.470 ps

b s
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Example: B
s

0 → + –

( also B0 → + –, even more suppressed )
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Example: B
s

0 → + –

B
s

0 ?

m ( + – ) = (5379 ± 20 ) MeV
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Example: B
s

0 → + –

pp collision vertex

from fit to other tracks
in the event

+ – vertex

from fit to muon tracks
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Example: B
s

0 → + –

pp collision vertex

from fit to other tracks
in the event

+ – vertex

from fit to muon tracks

 = 2.32 ps

from flight distance
and momentum
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Example: B
s

0 → + –

–

+

B
s

0

–

+

B

B

signal background

Use twelve discriminating variables

to distinguish between signal and background

( but do NOT use m ( + – ) yet )
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Example: B
s

0 → + –

signal simulation

background simulation

“signal” in data
( B

s
0 → K+ K– and similar )

“background” in data
( m (+ –) > m (B

s
0) )
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Example: B
s

0 → + –

signal simulation

background simulation

“signal” in data
( B

s
0 → K+ K– and similar )

“background” in data
( m (+ –) > m (B

s
0) )

–

+
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–

+

Example: B
s

0 → + –
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–

+

–

+

Example: B
s

0 → + –
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–

+

Example: B
s

0 → + –

–

+

For best discrimination:
combine all 12 variables into a single

multivariate discriminator

→ Boosted Decision Tree
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Decision Tree

At each step, determine the most discriminating cut for the given sample

The same variable can be used several times

All events

x
i
 > c

1
x

i
 < c

1

x
j
 > c

2
x

j
 < c

2
x

k
 > c

3
x

k
 < c

3

x
m
 < c

4
x

m
 > c

4

 Background Signal

 BackgroundSignal

Signal

best cut

best cutbest cut

best cut
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Decision Tree

[
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Decision Tree
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Decision Tree

 B
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Decision Tree

 B B

 S
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Decision Tree

 B B

 S

 B

 S
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Decision Tree

 B B

 S

 B

 S
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Boosted Decision Tree

Advantage: exploits correlations between variables

Disadvantage: not stable

Small fluctuations in the data can make a big difference in the outcome

Solution: “Boosting”

Build many different trees ( O (1000) ),
calculate weighted average over all trees

Automated algorithm:

Apply larger weights to misclassified events,
build new Decision Tree on reweighted events
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AdaBoost Algorithm

W m (x i ) = weight of event x i

errm = ∑
x i  misclassified

W m ( x i )

αm = const. × ln (1 − errm

errm
)

W m+1(x i ) = W m(x i ) × eαm

Reweight misclassified events for next Tree

For Tree m

Final classifier for event x
i

T (x i ) = ∑
m=1

N trees

αm × T m (x i )

T m (x i ) = { 1  if x i  is classified as signal in Tree m

0  if x i  is classified as background in Tree m
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–

+

Example: B
s

0 → + –

–

+

Back to B
s

0 → + – 
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Example: B
s

0 → + –

Train BDT on simulated samples of
signal and background events

(where we know for each event whether it is signal or background)

Recalibrate BDT response
on control channels in data

B0 → K+ – as proxy for signal

Events with m (+ –) > m (B
s

0)

as proxy for background

Aim at flat response for signal,
peaking at 0 for background

( note logarithmic scale ! )
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Example: B
s

0 → + –

B
s

0 mass 
region

Fit two-dimensional distribution of BDT classifier and m ( + – )

to extract the number of signal candidates
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Example: B
s

0 → + –

Need to model the expected distribution in m ( + – )

Background from

random  + – combinations

→ Exponential distribution

Background from wrongly
reconstructed B meson decays

→ from simulated events

B0 region
B

s
0 region

B0 → K+ –

B0 → 0 + –

B0 → – + 

B0

region
B

s
0 region



Event Selection and Data Analysis in Particle Physics O. SteinkampApril 22, 2017

Example: B
s

0 → + –

Need to model the expected distribution in m ( + – )

Signal: expected position of the peak from large samples of

reconstructed B
s

0 → K+ K– and similar decays

B
s

0 → K+ K–
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 → + –

Example: B
s

0 → + –

Need to model the expected distribution in m ( + – )

Signal: expected width of the peak from large samples of

reconstructed  → + – decays and others
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 → + –

Example: B
s

0 → + –

Need to model the expected distribution in m ( + – )

Signal: expected width of the peak from large samples of

reconstructed  → + – decays and others

Δ p
p

∝
σ x

√N
⋅ p

B⋅L2

But remember:
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 → + –

Example: B
s

0 → + –

Need to model the expected distribution in m ( + – )

Signal: expected width of the peak from large samples of

reconstructed  → + – decays and others

 particles are heavier than B
s

0 mesons

→ muons have higher momenta

→ worse resolution
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Example: B
s

0 → + –

Need to model the expected distribution in m ( + – )

Signal: expected width of the peak from large samples of

reconstructed  → + – decays and others

J/ → + –

(2s) → + –

 → + –



  

Yesterday's sensation
is today's calibration channel

(Richard P. Feynman)
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https://en.wikipedia.org/wiki/Richard_Feynman
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Example: B
s

0 → + –

B
s

0 mass 
region

 Have models for the expected signal and background distributions

in the BDT classifier and in m ( + – )

→ Maximum Likelihood fit to the measured distribution
to estimate the number of signal events in our sample
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Example: B
s

0 → + –

0.25 < BDT < 0.40 0.40 < BDT < 0.50 0.50 < BDT < 0.60 0.60 < BDT < 1.00

 background-like signal-like

Hurray, find an excess of events around B
s

0 mass at high BDT
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Example: B
s

0 → + –

Hurray, find an excess of events around B
s

0 mass at high BDT
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Example: B
s

0 → + –

Two remaining questions:

Is the excess statistically significant ?

i.e. how large is the probability that it could be caused
by a random fluctuation in the distribution of background events ?

If the excess is “real”, how large is the Branching Fraction ?

i.e. how does the extracted number of B
s
0 → + – candidates

translate into a probability for a B
s
0 to decay into + – ?
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Example: B
s

0 → + –

Two remaining questions:

Is the excess statistically significant ?

i.e. how large is the probability that it could be caused
by a random fluctuation in the distribution of background events ?

If the excess is “real”, how large is the Branching Fraction ?

i.e. how does the extracted number of B
s
0 → + – candidates

translate into a probability for a B
s
0 to decay into + – ?
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Example: B
s

0 → + –

Number of selected signal events
=

Number of pp collisions analysed
×

Probability that a pp collision produces a B
s

0

×

Probability that the B
s

0 decays to + –

×

Probability that the + and the – leave a trace in the detector

×
Efficiency of the trigger selection

×
Efficiency of the reconstruction algorithms

×
Efficiency of the offline selection criteria

what we
have
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Example: B
s

0 → + –

Number of selected signal events
=

Number of pp collisions analysed
×

Probability that a pp collision produces a B
s

0

×

Probability that the B
s

0 decays to + –

×

Probability that the + and the – leave a trace in the detector

×
Efficiency of the trigger selection

×
Efficiency of the reconstruction algorithms

×
Efficiency of the offline selection criteria

what we
have

what we
want
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Number of selected signal events
=

Number of pp collisions analysed
×

Probability that a pp collision produces a B
s

0

×

Probability that the B
s

0 decays to + –

×

Probability that the + and the – leave a trace in the detector

×
Efficiency of the trigger selection

×
Efficiency of the reconstruction algorithms

×
Efficiency of the offline selection criteria

Example: B
s

0 → + –

More precise

to do a relative measurement
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Example: B
s

0 → + –

Select a reference decay mode for which the

Branching Fraction (decay probability)
is large and well known from earlier measurements

Trigger, reconstruction and selection efficiencies

are as similar as possible to those for B
s

0 → + –

BF (Bs
0→μ + μ−) = BF (ref ) ×

N (Bs
0→μ+μ−)

N (ref )
× ϵ (ref )

ϵ (Bs
0→μ+μ−)

known measured
to be determined,

should be close to 1
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Example: B
s

0 → + –

Select a reference decay mode for which

The Branching Fraction (decay probability)
is large and well known from earlier measurements

The trigger, reconstruction and selection efficiencies

are as similar as possible to those for B
s

0 → + –

Actually use two reference decays

B+ → J/ K+ with J/ → + –

similar trigger but an additional particle

B0 → K+ –

same number of particles, but different trigger

The two give consistent results
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Example: B
s

0 → + –

Two remaining questions:

Is the excess statistically significant ?

i.e. how large is the probability that it could be caused
by a random fluctuation in the distribution of background events ?

If the excess is “real”, how large is the Branching Fraction ?

i.e. how does the extracted number of B
s
0 → + – candidates

translate into a probability for a B
s
0 to decay into + – ?
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Example: B
s

0 → + –

Maximum Likelihood fit:

Finds optimum values for the fit parameters such
that the probability to obtain the observed distribution

is maximized

Likelihood profile:

Change the values of the parameters
from those found by the fit

and re-calculate the probability

Sign up for my course “Datenanalyse”
here at UZH in Fall semester
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Example: B
s

0 → + –

BR ( B
s

0 → + – ) = 0 is excluded with 99.9999999999997 % probability

Result of the measurement is in good agreement
with the prediction from the Standard Model
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Overview

Part I

What are we trying to measure

What do our experiments look like

Part II

“Online” event selection

Part III

“Offline” analysis
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