

Probevorlesung Indirect Searches for Weakly Interacting Dark Matter October 23, 2015 **Olaf Steinkamp**

36-J-22

olafs@physik.uzh.ch

044 63 55763

The Need for "Dark Matter"

Galactic rotation curves

rotation velocity of stars

 $\mathbf{v}^{\mathbf{2}}(\mathbf{r}) = \frac{\mathbf{G} \cdot \mathbf{M}(\mathbf{r})}{\mathbf{r}}$

Gravitational lensing

bending of light from far-away objects

Large-scale structure in the Universe

- distribution and clustering of galaxies
- **Cosmic Microwave Background Radiation**
- angular scale of temperature anisotropies

require ~ 6 × more gravitationally interacting matter than is observed in form of stars, interstellar gas etc.

Oct 23, 2015

Indirect DM detection (2)

Astrophysical objects – MACHOS (MAssive Compact Halo ObjectS)

- faint stars
- large "Jupiter-like" planets
- black holes, neutron stars

from astronomical observations: can make at most a small fraction of required amount of Dark Matter

As yet unkown elementary particles

- must be "stable" (lifetime must be long compared to age of Universe)
- must be electrically neutral
- must be massive (to explain large-scale structure observed in the Universe)
- many extentions to Standard Model of particle physics predict such particles
 - WIMPs ("Weakly Interacting Massive Particles")
 - Axions
 - Sterile Neutrinos

Dark Matter Candidates

Astrophysical objects – MACHOS (MAssive Compact Halo ObjectS)

- faint stars
- large "Jupiter-like" planets
- black holes, neutron stars

As yet unkown elementary particles

from astronomical observations: can make at most a small fraction of required amount of Dark Matter

- must be "stable" (otherwise would have decayed into lighter particles)
- must be electrically neutral (otherwise would not be "dark")
- must be massive (otherwise cannot explain observed structure formation)
- many extentions to Standard Model of particle physics predict such particles
 - WIMPs ("Weakly Interacting Massive Particles")
 - Axions
 - Sterile Neutrinos

"Coincidence" between Particle Physics and Cosmology

- early Universe: hot and dense
 - WIMPs and Standard-Model particles in thermal equilibrium
- as Universe expands and cools down
 - WIMPs heavy → number density decreases rapidly
 - distance scale increases \rightarrow interaction rate decreases
- "freeze out": WIMPs decouple from normal matter
 - from now on, number of WIMPs stays constant
- number density determined by time of freeze out
 - i.e. by strength of interaction with matter, $\langle \sigma_{_{\!\scriptscriptstyle Y}} \nu \rangle$
- mass density determined by cross section and mass

 $\langle \sigma_v v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ (weak interaction cross section)

obtain right mass density to explain Dark Matter

Oct 23, 2015

Indirect DM detection (5)

"Coincidence" between Particle Physics and Cosmology

- early Universe: hot and dense
 - WIMPs and Standard-Model particles in thermal equilibrium
- as Universe expands and cools down
 - WIMPs heavy \rightarrow number density decreases rapidly
 - distance scale increases \rightarrow interaction rate decreases
- "freeze out": WIMPs decouple from normal matter
 - from now on, number of WIMPs stays constant
- number density determined by time of freeze out
 - i.e. by strength of interaction with matter, $\langle \sigma_{_{\! \gamma}} v \rangle$
- mass density determined by cross section and mass

 $\langle \sigma_v v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ (weak interaction cross section)

obtain right mass density to explain Dark Matter

Oct 23, 2015

Indirect DM detection (6)

"Coincidence" between Particle Physics and Cosmology

- early Universe: hot and dense
 - WIMPs and Standard-Model particles in thermal equilibrium
- as Universe expands and cools down
 - WIMPs heavy \rightarrow number density decreases rapidly
 - distance scale increases \rightarrow interaction rate decreases
- "freeze out": WIMPs decouple from normal matter
 - from now on, number of WIMPs stays constant
- number density determined by time of freeze out
 - i.e. by strength of interaction with matter, $\langle \sigma_{_{\! Y}} \nu \rangle$
- mass density determined by cross section and mass

 $\langle \sigma_{\gamma} v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ (weak interaction cross section)

obtain right mass density to explain Dark Matter

Oct 23, 2015

Indirect DM detection (7)

"Coincidence" between Particle Physics and Cosmology

- early Universe: hot and dense
 - WIMPs and Standard-Model particles in thermal equilibrium
- as Universe expands and cools down
 - WIMPs heavy \rightarrow number density decreases rapidly
 - distance scale increases \rightarrow interaction rate decreases
- "freeze out": WIMPs decouple from normal matter
 - from now on, number of WIMPs stays constant
- number density determined by time of freeze out
 - i.e. by strength of interaction with matter, $\langle \sigma_{_{\! \gamma}} \textit{v} \rangle$
- mass density determined by cross section and mass

$$m_{\gamma}$$
 = 100 GeV (mass scale of electroweak interaction)

 $\langle \sigma_v v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ (weak interaction cross section)

obtain right mass density to explain Dark Matter

Oct 23, 2015

Indirect DM detection (8)

WIMP Searches

Direct Detection through interaction in detector material

small signals and large backgrounds from Standard-Model processes **Production** at particle colliders (e.g. LHC at CERN)

if new particle is discovered, how do we know it is what makes Dark Matter ? Indirect Detection through observation of annihilation products

most signal signatures can also be explained by astrophysical processes

 $\rightarrow\,$ want to see evidence in more than one of the approaches !

Oct 23, 2015

Indirect DM detection (9)

WIMP Searches

Direct Detection through interaction in detector material

small signals and large backgrounds from Standard-Model processes Production at particle colliders (e.g. LHC at CERN)

if new particle is discovered, how do we know it is what makes Dark Matter ? Indirect Detection through observation of annihilation products

most signal signatures can also be explained by astrophysical processes

 $\rightarrow\,$ want to see evidence in more than one of the approaches !

Oct 23, 2015

Indirect DM detection (10)

[J. Feng, UC Irvine]

[J. Feng, UC Irvine]

Particles

<u>Annihilation to γγ (γΗ, γΖ)</u>

- energy conservation \rightarrow fixed photon energy
- resonance line in photon energy spectrum
 - smoking gun signature
 - resonance energy gives WIMP mass

Annihilations to other Standard-Model particles

- *W*, *Z* bosons, hadrons, ... decay to stable particles
 - photons
 - electrons / positrons
 - neutrinos
 - protons / antiprotons

Oct 23, 2015

Indirect DM detection (13)

Particles

Gamma-ray photons

- little interaction with Interstellar Medium, point back to source
- but large backgrounds from astrophysical sources
- Positrons / antiprotons
- largely unknown backgrounds from astrophysical sources
- get deviated and trapped in (inter-)galactic magnetic fields, do not point back to source

High-energy neutrinos

- very small interaction cross section, point back to source
- difficult to detect, small statistics
- large background from atmospheric neutrinos

Indirect DM detection (14)

Particles

Gamma-ray photons

- Iittle interaction with Interstellar Medium, point back to source
- but large backgrounds from astrophysical sources

Positrons / antiprotons

- largely unknown backgrounds from astrophysical sources
- get deviated and trapped in (inter-)galactic magnetic fields, do not point back to source

High-energy neutrinos

- very small interaction cross section, point back to source
- difficult to detect, small statistics
- large background from atmospheric neutrinos

Indirect DM detection (15)

[J. Feng, UC Irvine]

Indirect DM detection (16)

Indirect DM detection (17)

Earth's atmosphere opaque for γ -rays

- interact with atoms in upper atmosphere, create shower of high-energy e⁺/e⁻
- up to E_γ ≈ 300 GeV: direct detection of γ-rays in balloon or satellite experiments
 - detection area typically O(1 m²)
- γ -ray flux drops rapidly with increasing energy
- e.g. from Crab nebula (strong source of γ-rays):
 - about 10 γ -rays / m²/ year with energy > 1 TeV
 - for 1 event / min: need 50,000 m² detector surface
- above 300 GeV: indirect detection of γ-ray in ground-based Cherenkov air shower detectors
 - measure Cherenkov photons produced by high-energy e⁺/e⁻ in the electromagnetic shower

γ-rays: Space-Based Experiments

Principle of detection / reconstruction:

- foils made of a high-Z material
 - pair production $\gamma \to e^+ \, e^-$
- tracking detector: measure e⁺ and e⁻ trajectories
 - reconstruct direction of incident $\boldsymbol{\gamma}$
- calorimeter: measure e⁺ and e⁻ energies
 - reconstruct energy of incident γ
 - reject hadron background using shower shape
- anti-coincidence counter:
 - veto charged incident particles

Limitations by operation in space

 e.g. possible detection area limited by size and mass at launch

Oct 23, 2015

Indirect DM detection (18)

Fermi Large-Angle-Tracker

Launched in 2008

- tungsten converter foils and silicon micro-strip detectors
- segmented CsI(TI) calorimeter
- energy range 20–300 GeV
- effective detection area 0.8 m²
- large field of view (2.4 sr)

Indirect DM detection (19)

Backgrounds

Hadronic cosmic rays

- 1000 × more abundant than γ -rays
- anti-coincidence counters
- hit distributions in tracking detector
- shower-shape in calorimeter
- e.g. Fermi: background rejection > 10⁵, maintaining 50 % efficiency for γ rays
- Astrophysical sources of γ -rays
- point sources and diffuse emission
 - high-energy π^0 from hadronic interactions
 - e⁺/e⁻ bremsstrahlung in interstellar gas
 - Inverse Compton scattering of starlight
- indistinguishable from possible DM signal
 - need to model their expected distribution and subtract this from the observed signal

[J. Feng, UC Irvine]

Indirect DM detection (21)

Places

Galactic centre and its halo

- from models of galaxy formation expect Dark Matter density profile to be peaked towards Galactic centre
- but large backgrounds from astrophysical sources
 - large number of point sources near Galactic centre and along the line of sight
 - diffuse γ-ray emission from high density of radiation fields and interstellar gas along the line of sight

Places

Dwarf Spheroidal Galaxies (satellites of our own galaxy)

- mass dominated by Dark Matter:
 - total mass ≈ (10–2000) × luminous mass
- astrophysical backgrounds small
 - contain no astrophysical γ sources
 - are located at high galactic latitude
- but low statistics: faint sources and currently only ~ 25 known candidates

The core of our Sun

- Sun "sweeps" through Dark Matter halo of our galaxy → sees "wind" of WIMPs
- WIMPs can scatter elastically on nuclei

• O locluded/Excluded in Composite LAT Analysis • UMa II • UMa II • UMa II • UMa • Dra • Her • Sex • Gra • Seg 3 • Psc II • Seg 1 • Com • Boo II • Boo II • Deo IV • Leo V • Leo V • Leo V • Leo V • Com • Cha • Cha

- loose energy \rightarrow become gravitationally bound \rightarrow accumulate in Sun's core
- WIMP annihilation in Sun's core \rightarrow constant flux of high-energy neutrinos

Oct 23, 2015

Indirect DM detection (23)

[J. Feng, UC Irvine]

Fermi: Diffuse y-Spectrum

Measurement based on 50 months of data taking

[arxiv:1410.3696]

- mask region around galactic plane
- fit measured energy spectrum with templates for known astrophysical backgrounds
- fits can describe observed energy spectrum
 - do not confirm excess at high γ energies reported by an earlier experiment

Oct 23, 2015

Indirect DM detection (25)

Fermi: Galactic Centre

2014: two independent groups find an excess in γ-ray flux from Fermi data

- fit data with templates for diffuse emission and known point sources
- excess peaking at E_γ ≈ 1–3 GeV
 - centered on Galactic centre
 - spherically symmetric
 - spatially extended
- "Compelling Case for Annihilating Dark Matter"
 [arxiv:1402.6703]
- "... may be explained within the framework of a model where the dark matter annihilates to leptons or a model with unresolved millisecond pulsars in the Galactic Center" [arxiv:1410.6168]

N.B. all Fermi data are made public within 24h; independent groups are free to do their own analysis

Oct 23, 2015

Indirect DM detection (26)

Fermi: Galactic Centre

Analysis by Fermi collaboration

- also find enhancement in GeV range, approximately centred on GC
- could be explained by Dark-Matter models
- but also by astrophysical background (Pulsars)

[S. Murgia, Fermi Symposium, Oct 24, 2014]

Oct 23, 2015

Indirect DM detection (27)

Fermi: Spectral Lines

2012: two independent groups claim evidence for a narrow feature in γ energy spectrum from Fermi

- spectral line = smoking gun signal for WIMP annihilation !
- origin of excess close to Galactic centre
- E_y ~ 130 GeV, statistical significance > 4 σ based on data set from 3.7 years

- naively, "4 σ" corresponds to Gaussian probability of 3×10⁻⁵ for statistical fluctuation
- but: looking for possible deviations ANYWHERE in the energy spectrum
- probability for finding a 4 σ deviation at ANY energy much larger

[arxiv:1204.2797]

[arxiv:1206.1212]

Oct 23, 2015

Indirect DM detection (28)

Analyses by the Fermi collaboration

- using their 3.7-year data set
 - observe feature at E $_{y}$ ~ 133 GeV with statistical significance of 3.3 σ
 - but note that its width is narrower than the energy resolution of the experiment

[arxiv:1305.5597]

- using larger data set from 5.8 years
 - no significant signal anymore
 - interpret original feature as a statistical fluctuation

[A. Albert, Fermi Symposium, Oct 24, 2014]

Oct 23, 2015

Indirect DM detection (29)

[J. Feng, UC Irvine]

Satellite experiment, launched in 2006

- time-of-flight counters: particle direction & velocity
- tracking detectors and dipole magnet: particle momentum & charge sign
 - distinguish particle \leftrightarrow antiparticle
- calorimeter: particle energy & shower shape
 - shower shape: distinguish $(e^+,e^-) \leftrightarrow (p,\overline{p})$

i		
	_	_
	· · ·	

hadron (R=19GV)

electron (R=17GV)

1, 3, 7- TIME OF FLIGHT SYSTEM; 2, 4- ANTICOINCIDENCE SYSTEM; 5- SILICON STRIP TRACKER (SIX DOUBLE PLATES); 6- MAGNET (FIVE SECTIONS); 8- SILICON STRIP IMAGING CALORIMETER; 9- SHOWER TAIL CATCHER SCINTILLATOR; 10- NEUTRON DETECTOR; 11- HERMOCONTAINER.

O. Steinkamp

Oct 23, 2015

Indirect DM detection (31)

Pamela (from 500 days of data taking)

- measure positron fraction N(e⁺) / N(e⁺ + e⁻) as a function of the particle energy
- observe steep increase above 10 GeV
- cannot be explained by models of cosmic-ray propagation

<u>Fermi</u>

- measure the sum of e⁺ and e⁻ fluxes
 - no magnet → cannot distinguish between electrons and positrons
- observe smooth energy spectrum
- but "harder" than predicted by conventional models of cosmic-ray propagation

[arxiv:0905.0025]

Oct 23, 2015

Indirect DM detection (32)

Positron Fraction: Interpretations

Pamela positron excess triggered ~ 200 theory papers within one year

- about 170 of them interpretations in terms of various Dark Matter models
- but also in terms of possible astrophysical sources
- Most promising candidates: nearby pulsars

[arxiv:0905.0636]

Monogem (SuperNova Remnant), Geminga (Neutron star)

(grey lines in the plots: variation of pulsar model parameters within "reasonable assumptions")

Oct 23, 2015

Indirect DM detection (33)

Positron Fraction: Fermi

Exploit magnetic field of the Earth

- trajectories of electrons and positrons are bent in opposite directions
- "shadow" of the Earth
 - blocks trajectories for e⁻ at certain positions of the satellite
 - blocks trajectories for e⁺ at other positions of the satellite
- allows to measure e⁺ and e⁻ fluxes separately
- result agrees with Pamela
- increase in positron fraction continues above 100 GeV

AMS-02

Launched in 2011, installed on ISS

- silicon micro-strip tracker
- electromagnetic calorimeter
- anti-coincidence counters
- spectrometer magnet
 - e^+/e^- separation up to ~ 500 GeV
- Transition Radiation Detector and Ring Imaging Cherenkov Counter
 - redundant e⁺ / p separation

Positron Fraction: AMS-02

AMS-02 measurement using data from 30 months

[PRL 113 (2014) 121101]

- extend energy range up to 500 GeV
- observe that positron fraction "flattens out" at highest energies
 - as expected for both pulsar and DM interpretations

How to distinguish between Pulsar and Dark Matter hypotheses ?

- slow decrease as a function of energy vs. sharp fall-off at WIMP mass ???
- anisotropy in angular distribution vs. isotropic distribution ???

Indirect DM detection (36)

Summary

Choice of potential sources

- galactic centre and halo
- extra-galactic (e.g. dSph)
- neutrinos from the Sun

Choice of messenger particles

photons

neutrinos

- point back to source
- anti-particles deviated in magnetic fields
- **Different experimental approaches**
- direct detection in satellite experiments
- indirect detection in Cherenkov telescopes
- Problem: find an unambiguous signature
- almost any signal can be interpreted
 - in terms of Dark Matter annihilations
 - in terms of astro-physical backgrounds

Energy

Summary

Direct Detection through interaction in detector material

small signals and large backgrounds from Standard-Model processes **Production** at particle colliders (e.g. LHC at CERN)

if new particle is discovered, how do we know it is what makes Dark Matter ? Indirect Detection through observation of annihilation products

most signal signatures can also be explained by astrophysical processes

 $\rightarrow\,$ need to see evidence in more than one of the approaches !

Oct 23, 2015

Indirect DM detection (38)

Dark Material

Limits

 GeV γ-ray excess around Galactic centre: tension with absence of signal in Fermi measurements of Dwarf Spheroidal Galaxies

[arxiv:1507.03530]

 positron excess: in conflict with recent Planck measurements of CMBR anisotropy

[arxiv:1506.03811]

in general, limits seem to depend a lot on the assumed model and on assumed model uncertainties

Oct 23, 2015

Indirect DM detection (40)

History of the Universe

Oct 23, 2015

Indirect DM detection (41)

Evidence for Existence of Dark Matter

Energy density of the Universe

 $\Omega \equiv \frac{\rho}{\rho_{\text{crit}}} \equiv \Omega_{r} + \Omega_{m} + \Omega_{\Lambda}$

vacuum energy

 \Rightarrow

 Ω_r very small

 $\Omega_{\Lambda} \approx 0.7$

Ω_m ≈ 0.3

• *T*_{CMBR} ≈ 2.7 K

- large-scale structure
- **CMBR** anisotropy
- red-shift surveys of Type-1a SuperNovae

 $\Rightarrow \Omega \approx 1$, flat geometry

observed luminous matter:

$$\Omega_{\text{lum}} pprox 0.05 \ll \Omega_{\text{m}}$$

 $\Omega_{_{ ext{Total}}}$ <] $\Omega_{\text{Total}} = 1$ Ω_{Total} >] LOWER CRITICAL HIGHER DENSITY DENSITY DENSITY

Oct 23, 2015

Indirect DM detection (42)

Fate of The Universe

Oct 23, 2015

Indirect DM detection (43)

Type-1a Supernovae

Oct 23, 2015

Indirect DM detection (44)

CMBR Anisotropy

Oct 23, 2015

Indirect DM detection (45)

Structure Formation

[ApJ 664 (2007) 660-674]

Indirect DM detection (46)

Structure Formation

[http://cosmicweb.uchicago.edu/filaments.html]

Indirect DM detection (47)

Abundance of Light Elements

Density of Ordinary Matter (Relative to Photons)

NASA/WMAP Science Team WMAP101087 Element Abundance graphs: Steigman, Encyclopedia of Astronomy and Astrophysics (Institute of Physics) December, 2000

Indirect DM detection (48)

Gravitational Lensing: Bullet Cluster

Indirect DM detection (49)

- search for elastic scattering of WIMPs off atomic nuclei
- measure the energy imparted on the recoiling nucleus
 - small: not more than a few tens of keV
- large number of experiments
 - deep underground to suppress backgrounds from cosmics showers
 - using different target materials
 - using different techniques to separate signal from interactions of ionizing particles
- also: seasonal variation of Earth's velocity relative to galactic rest frame
 - expect annual modulation of WIMP flux (~3% effect)
 - measure direction of flight of recoiling nucleus ???

SUperSYmmetry

- class of models that postulates a spin-1 partner for each spin-1/2 particle of the Standard Model and vice-versa
- could solve various "problems" with Standard Model of Particle Physics
 - e.g. finite mass of Higgs boson ; unification of elm., weak and strong force
- but introduces many new free model parameters
- if lightest SUSY particle stable \rightarrow WIMP candidate !

Oct 23, 2015

Indirect DM detection (51)

pair-production of gluinos / squarks in pp collisions

strong interaction \rightarrow large production cross section

- *R*-parity conservation: number of SUSY particles conserved in decay
- decay cascade:
 - quarks or leptons produced at each step
- Lightest Supersymmetric Particle stable
 - escapes the detector undetected if it is a neutral particle (WIMP candidate):
 - large missing transverse energy (E_T)

clear event signature: high-p_⊤ jets / leptons + large missing E_⊤

 use event shape variables to suppress backgrounds from QCD processes

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons				
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton				
Large	rge SM backgrounds							
sensitivity to strongly produced SUSY								

Oct 23, 2015

Indirect DM detection (52)

γ-rays: Surface Experiments

Flux falls steeply with energy (roughly as ~ $E_{\gamma}^{-2.7}$)

- above few × 100 GeV: flux too low for observation on small satellite-based detectors
- e.g. from Crab nebula (often used as reference):
 - about 10 γ -rays / m²/ year with energy > 1 TeV
 - for 1 event / min: need 50,000 m² detector surface

Indirect detection by surface experiments

- γ interacts in upper atmosphere and creates shower
 - large number of highly relativistic e⁺e⁻ pairs produced
- e^+/e^- generate Cherenkov photons in air ($\beta_e > 1 / n$)
 - wavelength around 300-350 nm \rightarrow penetrate atmosphere
- observe Cherenkov photons in ground-based telescopes
 - allows to reconstruct energy and direction of the initial γ -ray

Oct 23, 2015

Indirect DM detection (53)

Imaging Telescope Arrays

Imaging Cherenkov Telescope

- large parabolic dish to focus Cherenkov photons onto a segmented camera
 - position in detection plane \rightarrow angle of photon
 - orientation of image \rightarrow 2D direction of shower
- shape of image → suppress background
 <u>Telescope array</u>
- view the same shower from different angles
- 3D reconstruction of shower direction

Key parameters

- size of telescope dishes: number of Cherenkov photons collected per shower
 - important at lower γ -energies where fewer Cherenkov photons generated
- surface area over which telescopes are distributed: acceptance for showers
 - important at highest γ -energies where flux is lowest

Oct 23, 2015

Indirect DM detection (54)

H.E.S.S.

Array of 4 (+1) telescopes

- located in Namibia \rightarrow view of GC
- four telescopes, 108 m² dish surface each
 - spacing between telescopes: 120 m
 - one telescope with 614 m² dish surface
- observation time about 1000 hours / year
 - only clear and "moonless" nights
- field of view: 5° (c.f. Fermi 2.4 sr)
- no e/ γ separation \rightarrow no diffuse γ -ray spectrum

Oct 23, 2015

Indirect DM detection (55)

CTA

Large Cherenkov Telescope Array

- UZH and ETHZ involvement
- O(100) telescopes foreseen
 - large array Southern hemisphere (Chile?)
 - smaller array Northern hemisphere (La Palma?)
- three different mirror sizes
 - a few 24m (low energies, 10-100 GeV)
 - some 10-12m (intermediate energies)
 - many 4-6m (highest energies, > 10 TeV)
- expected energy resolution: 5-10% (c.f. 15% for existing experiments)
- expected angular resolution: 0.03° (c.f. 0.1° for existing experiments)

Oct 23, 2015

Indirect DM detection (56)

Experimental Astro-Particle Physics Indirect DM Searches Spring 2015 **Olaf Steinkamp**

olafs@physik.uzh.ch

044 63 55763

Dates:

• May 28 and 29 (last two days of the semester)

Format:

- 20 min oral presentation + 5–6 pages "lecture notes" on a chosen topic
- 10 min questions on presentation (and anything else from lecture course)

Suggested topics: see next slide and handout

- sign up by email to olafs@physik.uzh.ch or with Michelle on Wednesday
 - first come, first serve ;-)
- before you start preparing your presentation, contact corresponding lecturer
 - short discussion on material to cover, hints for useful literature, ...
- your own suggestion are also welcome, please contact us

Exam Topics

1. Cosmology:

High-z supernovae and the accelerated expansion of the Universe

- 2. **Cosmology**: Numerical simulations of dark matter distribution in galaxies
- 3. **Cosmology**: Neutrino mass determination from cosmological observations (CMB anisotropy, BAO, LSS)
- 4. **Cosmic rays**: Measurements of the chemical composition of cosmic rays
- 5. **Cosmic rays**: Ultra-high energy cosmic neutrinos and IceCube data
- 6. **Cosmic rays**: Anisotropies in cosmic rays (measurements by IceCube, HAWC, etc)
- 7. **Indirect dark matter detection**: The positron excess and measurements by Fermi and AMS-II
- 8. Indirect dark matter detection: The story of the "130 GeV gamma-ray line signal" in the Fermi LAT data
- 9. **Indirect dark matter detection**: Gamma rays from dwarf spheroidal galaxies
- 10. **Direct dark matter detection**: Low-mass WIMP searches with CCDs: DAMIC
- 11. **Direct dark matter detection**: WIMP searches with bubble chambers (COUPP, PICASSO, PICO)
- 12. **Direct dark matter detection**: Axion searches with the ADMX experiment

Indirect DM detection (59)

<u>Convincing evidence for existence of Dark Matter</u> (\rightarrow Laura)

• gravitational lensing, galactic rotation curves, cluster formation, CMBR fits

Standard paradigm: Dark Matter is made up of WIMPs (→ Alex)

• "WIMP miracle": relic density ≈ compatible with weak cross section

Three complementary approaches for WIMP searches:

- <u>direct detection</u> through interaction in detector material (\rightarrow Alex, Laura)
 - cross-sections small; backgrounds from standard particle-physics processes
- production at colliders (→ Yong)
 - "reverse problem": how do we know the produced particles (if any) are DM?
- indirect detection through observation of annihilation products (→ today)
 - almost any signature can also be explained by astrophysical processes

 \rightarrow want to see evidence in more than one of the approaches !

[J. Feng, UC Irvine]

Particles (I)

Annihilation of pairs of WIMPs

- $\gamma\gamma$, γ Z, γ H \rightarrow resonance line in photon spectrum
- heavy fermions, W / Z, H bosons \rightarrow fragmentation, decay

Fragmentation and decay of annihilation products

- photons (≈ 20–30% of energy)
- electrons/positrons (another 20–30%)
- (anti-)protons, (anti-)deuterium (few %)
- neutrinos (rest)

Synchrotron radiation

 radio-wavelength photons from propagation of e⁺/e⁻ through galactic magnetic fields

Inverse Compton Scattering

MeV to GeV photons from up-scattering of starlight

Indirect DM detection (62)

Particles (II)

Photons

- loose energy by Bremsstrahlung and Compton scattering
- large and complex backgrounds from astrophysical sources
- Positrons / antiprotons
- get deviated and trapped in (inter-)galactic magnetic fields
 - do not point back to source
 - can reach only from nearby sources (≤ 8 kpc)
- largely unknown backgrounds from astrophysical sources

Indirect DM detection (63)

High-energy neutrinos

Oct 23, 2015

- very small interaction cross sections
 → small statistics even with huge detectors
- large background from atmospheric neutrinos

Places (I)

[M. Wood, SLAC Seminar, Oct 14, 2014]

Oct 23, 2015

Indirect DM detection (64)

Places (II)

Galactic centre (GC) and halo

- DM density profiles from numeric simulations of galaxy formation are strongly peaked towards GC
- - predicted flux under angle $\boldsymbol{\psi}$ with respect to GC

- simulations of galaxy formation usually result in non-smooth DM density distributions ("sub-halos")
 - significant enhancement of annihilation rate
 - usually parametrized by "boost factor"

$$m{B}~\propto~\langle
ho^2
angle$$
 / $\langle
ho
angle^2$

 sensitivity for indirect detection often relies on large values of such boost factors

Oct 23, 2015

example of the expected γ -ray flux from an N-body galaxy simulation

Places (III)

The core of our Sun

- Sun "sweeps" through the DM halo of our galaxy
- WIMPs scatter elastically on nuclei

- loose energy \rightarrow become gravitationally bound \rightarrow accumulate in Sun's core
- WIMP annihilation in Sun's core \rightarrow constant flux of high-energy neutrinos
 - annihilation rate \propto density of trapped WIMPs squared
 - reaches equilibrium with capture rate after a few 10⁹ years
- in equilibrium: neutrino flux
 elastic WIMP-nucleon scattering cross section
 - spin-dependent cross section (WIMP scattering on H nuclei)
 - spin-independent cross section (WIMP scattering on heavier nuclei)
- predicted neutrino flux potentially large enough to be detected on Earth
 Oct 23, 2015
 Indirect DM detection (66)
 O. Steinkamp

Gamma-rays: do not penetrate Earth's atmosphere

- up to O(100 GeV): direct detection in balloon or satellite experiments
 - e.g. EGRET, Fermi; planned: GAMMA-400
- up to TeV energies: indirect detection in ground-based air shower detectors
 - e.g. H.E.S.S.; planned: CTA

- balloon or satellite experiments above atmosphere
 - e.g. Pamela, Fermi, AMS-02
- High-energy neutrinos: very low interaction cross section
- huge, deep underground water Cherenkov detectors
 - e.g. Super-Kamiokande, SNO
- neutrino telescopes in deep water, antarctic ice
 - e.g. Antares; Amanda, IceCube

Oct 23, 2015

Indirect DM detection (67)

	Space-based experiments			Ground-based experiments		
	Fermi	AMS-2	GAMMA- 400	H.E.S.SII	MAGIC	СТА
Energy range, GeV	0.02-300	10-1000	0.1-3000	> 30	> 50	> 20
Field-of-view, sr	2.4	0.4	~1.2	0.01	0.01	0.1
Effective area, m ²	0.8	0.2	~0.4	10^{5}	10^{5}	10 ⁶
Angular resolution $(E_{\gamma} > 100 \text{ GeV})$	0.2°	1.0°	~0.01°	0.07°	0.05°	0.06°
Energy resolution $(E_{\gamma} > 100 \text{ GeV})$	10%	2%	~1%	15%	15%	10%

Galper et al. 2012

launch scheduled for 2018

Indirect DM detection (68)

γ-rays: Space-Based Experiments

Principle of detection / reconstruction:

- layers of conversion foils
 - pair production $\gamma \to e^+e^-$
- tracking detector: measure e⁺ and e⁻ trajectories
 - reconstruct direction of incident $\boldsymbol{\gamma}$
- calorimeter: measure e⁺ and e⁻ energies
 - reconstruct energy of incident $\boldsymbol{\gamma}$
 - also: hadron rejection from shower shape
- anti-coincidence counter:
 - veto charged incident particles

Limitations by operation in space

- size and mass: detection area limited to O (1 m²)
- power consumption, other consumables (e.g. gas)
- cooling, temperature variations, radiation damage

Oct 23, 2015

Indirect DM detection (69)

Backgrounds

Hadronic cosmic rays

- 1000 × more abundant than γ -rays
- anti-coincidence counters
- hit distributions in tracking detector
- shower-shape in calorimeter
- Fermi: background rejection > 10⁵, maintaining 50 % efficiency for γ rays

<u>Astrophysical sources of γ–rays</u>

- point sources and diffuse emission
 - high-energy π^0 from hadronic interactions
 - e⁺/e⁻ bremsstrahlung in interstellar gas
 - Inverse Compton scattering of starlight
- indistinguishable from possible DM signal
- model their distribution and subtract from the observed signal

Oct 23, 2015

Indirect DM detection (70)

EGRET

In operation from 1991 till 1999

- all-sky γ survey from 30 MeV to 30 GeV
- spark chambers + Nal(TI) calorimeter
- **Detected ~270 point sources**
- \approx 1/3 of them identified with known objects

Diffuse emission spectrum

- energy spectrum after subtracting point sources
- observe large excess in flux above $E_y \approx 1 \text{ GeV}$
- compatible with annihilation signal from a 60 GeV WIMP
 - but would require complicated DM density distribution
 - incompatible with observed anti-proton flux
 - not confirmed by later FERMI measurements
- artefact from imperfect acceptance calibration ?

towards GC: latitude |b|<5°

longitude |l|<30°

Oct 23, 2015

Indirect DM detection (71)

Fermi Large-Angle-Tracker

Launched in 2008

- energy range 20 MeV 300 GeV
- tungsten converter foils
- silicon micro-strip detectors
 - 18 double layers, 200 μm strip pitch
- segmented Csl(Tl) calorimeter
 - about 8.5 radiation lengths

Oct 23, 2015

Indirect DM detection (72)

Fermi Large-Angle-Tracker

Performance comparison

	Years	Ang. Res. (100 MeV)	Ang. Res. (10 GeV)	Eng. Rng. (GeV)	A _{eff} Ω (cm² sr)	#γ-rays
EGRET	1991-00	5.8°	0.5°	0.03-10	750	1.4 × 10 ⁶ /yr
AGILE	2007-	4.7°	0.2°	0.03-50	1,500	4 × 10 ⁶ /yr
Fermi LAT	2008-	3.5°	0.1°	0.02-300	25,000	1 × 10 ⁸ /yr

Latest point-source catalogue (3FGL)

- based on data from four years
- 100 MeV 300 GeV
- 3033 point sources with significance > 4 σ
- $\approx 2/3$ of them associated with known sources

Oct 23, 2015

Indirect DM detection (73)

Fermi: Diffuse y-Spectrum

Measurement based on data from 24 months

- investigated region between 5° and 15° in latitude and < 80° deg in longitude
 - close to GC where DM density is highest
 - but not too close to exclude astrophysical sources near GC

- mask known point sources, model astrophysical diffuse emission
 - π^0 decays, bremsstrahlung, Inverse Compton scattering
- find good agreement between model and data, no need for DM component

[1205.6474]

Fermi: Diffuse y-Spectrum

Latest measurement based on data from 50 months

- mask only small region around galactic plane, fit data with templates for astrophysical sources
 - known point sources ; π^0 decays
 - IC scattering of photons from starlight and from Sun
 - synchrotron radiation from local magnetic field loops
- fit describes observed spectrum well
- "extragalactic" spectrum (latitude |l| > 20°) matches measurements from experiments at lower energy
- use these results to derive constraints on DM parameters

[1501.05464]

[1410.3696]

Oct 23, 2015

Indirect DM detection (75)

Oct 23, 2015

Fermi: Spectral Lines

Spectral line = smoking gun signal for WIMP $\rightarrow \gamma\gamma$ annihilation

- Fermi search based on 3.7 years of data
- five regions of interest
 - optimized for different DM models
- no significant signals found
 - derive upper limits on DM annihilation cross section

- preliminary results from search based on 5.8 years of data
 - also improved energy reconstruction \rightarrow better acceptance & resolution
 - still no significant signal \rightarrow improved upper limits

Indirect DM detection (76)

O. Steinkamp

[1305.5597]

Fermi: Spectral Lines

Spectral line around 130 GeV ???

- 2012: two independent groups claim evidence for a narrow feature in Fermi's 3.7-year data set
 - $E_v \sim 130$ GeV, statistical significance > 4 σ
 - location of source slightly offset from GC
- N.B.: all Fermi data are made public within
 - \sim 24 h, anyone can do their own analysis

Indirect DM detection (77)

O. Steinkamp

Oct 23, 2015

Fermi: Spectral Lines

Fermi analysis using their 3.7 year data set

[1305.5597]

P7 REP CLEAN R3 2D E = 133.0 GeV

60

- observe feature at 133 GeV with 3.3 σ significance
 - but narrower than expected for a DM signal
- no significant signals found in backgrounddominated control samples Boresight
 - "Earth limb":
 - γ -flux dominated by interactions of charged cosmic rays in the Earth's atmosphere

 region in galactic plane opposite GC: low DM density, but similar astrophysical backgrounds

Oct 23, 2015

Indirect DM detection (78)

Fermi: Spectral Lines

Preliminary result from new analysis of 5.8 year data set

- also: re-analyzed 3.7 year data set with the improved energy reconstruction
 - in both cases no longer a significant signal

[A. Albert, Fermi Symposium, Oct 24, 2014]

• conclusion from A. Albert's presentation:

original feature consistent with statistical fluctuation

Indirect DM detection (79)

GC: expext large DM density, but also large astrophysical backgrounds

- highest CR intensities
- highest density of radiation fields and gas
 - large uncertainties modelling interstellar emission
- long integration path over the entire Galactic disc
 - significant foreground and background contribution
- large density of gamma-ray sources near GC, many energetic sources close to line of sight
 - difficult to disentangle point sources and interstellar emission
- also: expect large population of "undetectable" milli-second pulsars close to GC
 - individual flux below Fermi detection sensitivity
 - additional source of diffuse background

• various groups have claimed γ -ray excesses with possible DM interpretation

Indirect DM detection (80)

Daylan et al. analyzed Fermi data from 63 months

- fit data with templates for isotropic and diffuse galactic emission and known point sources
- find excess peaking at E_γ = 1–3 GeV
 - centered on GC; statistical significance 17 σ
 - spherically symmetric; extending out to ~10°
- compatible with annihilation of DM candidate with mass around 30–40 GeV
 - according to the authors, the spatial extention of the excess disfavours other interpretations

Oct 23, 2015

Indirect DM detection (81)

[1402.6703]

Abazajian et al. analyzed Fermi data from 70 months

[1410.6168]

- look at 7° × 7° wide region around GC
- again, find spatially extended excess over modelled diffuse emission and point sources
- fit energy spectrum and spatial distribution of this excess to separate three components
 - "direct" ; IC-upscattered starlight ; bremstrahlung
 - spatial templates derived from measurements at 3.4 µm (starlight) and 20 cm (interstellar gas)
- find IC and bremsstrahlung components compatible with being caused by the same population of CR electrons and positrons
 - also find that this e⁻/e⁺ population and the "direct" γ-ray component could be caused by annihilation of a 8 GeV DM candidate to leptons
 - but cannot exclude astrophysical explanation

Fermi collaboration focus on 15° × 15° wide region around GC

- model of diffuse emission from
 - CR source distributions
 - CR propagation
- model parameters tuned to observed distributions in various control regions

- also find enhancement in GeV range, approximately centred on GC
 - energy spectrum varies strongly depending on modelling of interstellar emission
 - need better understanding of fore/background emission

Oct 23, 2015

Indirect DM detection (83)

Fermi: Dwarf Spheroidal Galaxies

Satellites of our galaxy: promising target for DM searches

[1503.02641]

- mass seems strongly dominated by DM
 - total mass ≈ (10–2000) × luminous mass
- astrophysical backgrounds small
 - contain no astrophysical γ sources
 - located at high galactic latitude
- currently 25 known satellite dSph
- Fermi: combined analysis of 15 dSph
- based on data from six years
 - subtract known point sources
 - model & subtract diffuse emission
- four WIMP annihilation channels considered
- no DM signal observed → upper limits start to cut into interesting parameter region

Oct 23, 2015

Indirect DM detection (84)

Fermi: Dwarf Spheroidal Galaxies

- limits derived from latest dSph analysis start to be in tension with DM interpretations of the Galactic Center excess
- but compatibility can still be achieved by tweaking model parameters
 - e.g. higher local density at position of Earth, steeper slope of inner DM profile

γ-rays: Surface Experiments

Above few × 100 GeV: flux too low for observation on satellites

- e.g. from Crab nebula (reference):
 - about 10 γ -rays / m² / year with E_{γ} > 1 TeV
 - need 50,000 m² detector to observe 1 event / min

But γ -rays do not penetrate the atmosphere

- radiation length of air: ≈ 38 g / cm²
- thickness of atmosphere: ≈ 1030 g / cm² ≙ 27 X₀

Indirect detection by surface experiments

- γ interacts in upper atmosphere \rightarrow creates elm. shower
 - large number of highly relativistic e⁺e⁻ pairs produced
- e⁺/e⁻ generate Cherenkov photons in air (β > 1 / n)
 - wavelength around 300-350 nm \rightarrow penetrate atmosphere
- observe Cherenkov photons in ground-based telescopes
 - allows to reconstruct energy and direction of the initial γ -ray

Imaging Telescope Arrays

Imaging Cherenkov Telescope

- large parabolic dish to focus Cherenkov photons onto a segmented camera
 - position in detection plane \rightarrow angle of photon
 - orientation of image \rightarrow 2D direction of shower
- shape of image → suppress background
 <u>Telescope array</u>
- stereo-views of the same shower
- 3D reconstruction of shower direction
- Key parameters for telescope array

- size of telescope dishes: number of Cherenkov photons collected per shower
 - important at lower γ -energies where fewer Cherenkov photons generated
- surface area over which telescopes are distributed: acceptance for showers
 - important at highest γ -energies where flux is lowest

Oct 23, 2015

Indirect DM detection (87)

Hadronic Cosmic Rays

Still the main source of background: 1000 × more abundant than γ -rays

- hadronic showers: larger lateral extention than electromagnetic showers
 - results in "fuzzier" shower image
- achieve ≈ 99.9% background rejection
 - remaining S/B ≈ 1-10
- electron showers more difficult to distinguish
 - but rate much lower at high energies

To estimate remaining backgrounds

- perform "off source" measurements
- extrapolate to source position
- subtract statistically from "on-source" measurements

Oct 23, 2015

Indirect DM detection (88)

H.E.S.S. (II)

Array of 4 (+1) telescopes

- located in Namibia \rightarrow view of GC
- four telescopes, 108 m² dish surface each
 - commissioned 2003/2004
 - spacing between telescopes: 120 m
 - camera: array of 960 photo-multipliers
 - field of view: 5°, resolution: ≈ 0.1°
- one telescope with 614 m² dish surface
 - added in summer 2012
 - camera: array of 2048 photo-multipliers
 - field of view: 3.5° , resolution: $\approx 0.4^{\circ} 0.1^{\circ}$
- energy threshold 100 GeV ightarrow 30 GeV
- observation time about 1000 hours / year
 - only clear and "moonless" nights
- no e / γ separation \rightarrow no diffuse γ -ray spectrum

Oct 23, 2015

Indirect DM detection (89)

H.E.S.S.: Dwarf Spheroidal Galaxies

Analysis of five Dwarf Spheroidal Galaxies

[1410.2589]

- total observation time 140 hours
- no excess observed, derive limits on DM parameters
- use "wobble" technique for background subtraction to avoid need for "off-source" data taking:

 size of source smaller than field of vision: can estimate backgrounds from control regions inside field of vision

[astro-ph/0610959]

- but: detection efficiency not uniform across field of vision
 - position source off-centre within the field of vision
 - estimate backgrounds from symmetrically placed control regions inside field of vision

O. Steinkamp

21h55m

On Region

20

15

H.E.S.S.: γ -rays from GC

Analysis based on data from 112 hours of observation time

[1103.3266]

- define signal region of 1° radius around GC ; symmetric control regions inside field of view
- exclude narrow band around galactic plane to avoid point sources
- observe no excess in signal region
- derive limits on DM parameters

New: test of DM scenarios with flat profile in innermost region

analysis based on data from 9 hours of observation time

[1502.03244]

- "ON/OFF" technique: point at source and at two symmetrically displaced control regions; swap every 33 minutes
- again no excess in signal region
- limits on DM parameters

Oct 23, 2015

Indirect DM detection (91)

H.E.S.S.: spectral lines

Complementing Fermi searches at higher energies

- analysis of region around GC based on 112 hours of observation time
 - exclude narrow band around galactic plane
- combined analysis of data from various measurements of extragalactic objects, total of 1153 hours of observation time
 - exclude known point sources

null hypothesis (no lines): fit data with smooth empirical function

power-law term × (3rd-order polynomial + Gaussian term)

- search for narrow lines: add Gaussian with fixed mean and width
 - width of Gaussian given by energy resolution of the experiment
- no significant signal found, upper limits derived

Oct 23, 2015

Indirect DM detection (92)

Launched in 2006 – projected lifetime 5 years but still in operation

- time-of-flight counters: particle direction & velocity
- magnetic spectrometer: momentum & charge sign
 - ability to distinguish particle \leftrightarrow antiparticle
- imaging calorimeter: energy & shower shape
 - shower shape allows to distinguish $(e^+,e^-) \leftrightarrow (p,\overline{p})$
 - (e⁺,e⁻) rejection power $\approx 10^4$ for 90% (p, \overline{p}) efficiency

· · · ·		
the second se		
-	· · · ·	
and the second		
and the second		

hadron (R=19GV)

electron (R=17GV)

1, 3, 7- TIME OF FLIGHT SYSTEM; 2, 4- ANTICOINCIDENCE SYSTEM; 5- SILICON STRIP TRACKER (SIX DOUBLE PLATES); 6- MAGNET (FIVE SECTIONS); 8- SILICON STRIP IMAGING CALORIMETER; 9- SHOWER TAIL CATCHER SCINTILLATOR; 10- NEUTRON DETECTOR; 11- HERMOCONTAINER.

Nominal energy ranges:

- anti-protons: 80-190 GeV
- positrons: 50-270 GeV

Oct 23, 2015

Indirect DM detection (93)

Antiparticles: Pamela

Electron rejection

- e^- flux $\approx 10^3 \times \overline{p}$ flux
- cuts on shower shape allow to reduce this to negligible level

Oct 23, 2015

Indirect DM detection (94)

Pamela: Antiprotons

Entries

Proton rejection

- p flux $\approx 10^4 \times \overline{p}$ flux
- use track curvature to measure charge sign
- accessible momentum range limited by finite position resolution of detector
 - high momentum \rightarrow small deflection
 - finite resolution → chance to measure sign of deflection wrong, assign wrong charge sign
- to improve sensitivity at highest momenta: make use of event-by-event estimate of measurement uncertainty
- Latest analysis based on data from 3¹/₂ years
- selected ~ 2800 p from 60 MeV to 350 GeV
- measured p energy spectrum and p/p ratio compatible with expectation from cosmic ray models and with earlier measurements

O. Steinkamp

Oct 23, 2015

Indirect DM detection (95)

<u>Measure positron fraction = e^+ / (e^+ + e^-) as a function of energy</u>

- basic selection similar to p/p measurement
- "spillover" from e⁻ not critical
 - at the highest energies only 10 × more e⁻ than e⁺
- biggest challenge: p rejection
 - p/e⁺ ratio ~10³ at 1 GeV and 10⁴ at 100 GeV

Suppress protons by cutting on:

- shower energy vs. track curvature (momentum)
- Iongitudinal and transverse shower profile

Oct 23, 2015

Indirect DM detection (96)

Pamela: Positrons (II)

First analysis based on 500 days of data taking

[0810.4995]

- observe steep increase of e⁺ fraction above 10 GeV
 - incompatible with models of secondary e⁺ production p + ISM $\rightarrow \pi^+$ + X followed by $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
- lower e⁺ fraction at low end of energy spectrum attributed to modulation effect from solar activity
 - earlier experiments collected data during maximum of solar activity, Pamela data close to minimum
 - similar effect observed in low-energy \overline{p} flux

Fermi / H.E.S.S.

- cannot measure charge sign
 → sum of e⁺ and e⁻ fluxes
- smooth spectrum up to ~ 1 TeV
- but "harder" than predicted by conventional CR model

0.3

0.2

ositron fraction, $\phi(e^+) / (\phi(e^+) + \phi(e^-))$

ref. 1
 PAMELA
 * Aesop (ref. 13)
 HEAT00

AMS CAPRICE94 HEAT94+95

MASS89 Muller & Tang 1987

O. Steinkamp

10

Energy (GeV)

Pamela positron excess triggered ~ 200 theory papers in first year

about 170 of them interpretations in terms of various DM models

DM annihilations [0905.0636]

 WIMP "leptophilic" to explain lack of an excess in p/p

Astrophysical sources

- Monogem (SNR)
- Geminga (Neutron star)
- can explain Fermi / H.E.S.S. measurements of e⁺+e⁻ flux and Pamela e⁺ fraction

grey lines: variation of pulsar model parameters within "reasonable assumptions"

Oct 23, 2015

Indirect DM detection (99)

Pamela: Positrons (IV)

Positrons: Interpretation

Or just an instrumental artifact ?

- proton contamination of 3×10^{-4} would explain Pamela rise beautifully
 - remember: positron/proton separation biggest challenge in the analysis
- Pamela claim proton rejection 10⁻⁵
 - but not verified using independent technique in-flight
 - Transition Radiation Detector for e⁺/e⁻ identification was orginally foreseen, but then dropped due to lack of space ...

Indirect DM Searches (29/38)

O.Steinkamp

Astro-Particle

PHY465-FS10

Indirect DM detection (100)

Fermi: Positrons

Measurement exploiting magnetic field of the Earth

- trajectories of electrons and positrons bent in opposite directions
- at a given position of the satellite, certain trajectories for electrons or for positrons blocked by "shadow" of the Earth
- allows to measure electron and positron fluxes and positron fraction
- result in good agreement with Pamela measurement
- increase continues above 100 GeV

O. Steinkamp

[1109.0521]

AMS-02

Launched in 2011, installed on ISS

- silicon strip tracker (ETHZ contribution)
- electromagnetic calorimeter
- anti-coincidence counters
- spectrometer magnet
 - e^+/e^- separation up to ~ 500 GeV
- Transition Radiation Detector
 - redundant e⁺ / p separation
- Ring Imaging Cherenkov Counter

AMS-02: Positrons

factor 10⁴

First measurement (data from 18 months)

- 6.8 × 10⁶ e⁺ and e⁻ candidates
- energy range from 0.5 350 GeV
- proton rejection by
 - comparison of energy measured in calorimeter and momentum measured in spectrometer
 - 3D shower shape in ECAL
 - transition radiation light produced in TRD
 - confirm increase of positron fraction above ~ 8 GeV

[PRL 110 (2013) 141102]

Oct 23, 2015

Indirect DM detection (103)

factor 10³–10⁴

@ 90% efficiency

AMS-02: Positrons

Latest result (data from 30 months)

[PRL 113 (2014) 121101]

- more data, improved analysis \rightarrow extend measurement to 500 GeV
- find that positron fraction "flattens out" at highest energies
 - expected for both pulsar and DM interpretations

Distinguish between Pulsar and Dark Matter hypotheses ?

- slow decrease as function of energy vs. sharp fall-off at WIMP mass
- anisotropy in angular distribution vs. isotropic distribution

 \rightarrow collect more data to extend energy range and sensitivity

Indirect DM detection (104)

Future: CTA

- Large Cherenkov Telescope Array (UZH and ETHZ involvement)
- tens of telescopes
- three different mirror sizes
 - a few 24m (for 10 < E < 100 GeV)
 - some 10-12m (intermediate energies, 100 GeV-1 TeV)
 - many 4-6m
 (highest energies, > 10 TeV)
- expected energy resolution: 5-10% (c.f. 15% for existing experiments)
- expected angular resolution: 0.03° (c.f. 0.1° for existing experiments)

Complementarity Ground-Based vs Space-Based

Neutrinos from the Sun: Reminder

WIMP from the hale

 $q = 10^{-41} \text{ cm}^2$

About 10²⁷ WIMPs per second pass through the Sun

- can scatter elastically off protons and lose energy
 - same process that is used in direct detection
- trapped if energy after scatter smaller than escape energy
- capture rate for a given WIMP-nucleon scattering cross section $\sigma_{_{SD}}$

$$\begin{array}{cccc}
\mathbf{C} \propto \rho_{\text{local}}^{\text{DM}} \cdot \mathbf{M}_{\circ} \cdot \sigma_{SD} \\
\text{annihilation rate} \\
\mathbf{A} \equiv \frac{1}{2} \Gamma_{A} \cdot \mathbf{N}_{\text{DM}}^{2} \propto \langle \sigma \mathbf{v} \rangle \cdot \mathbf{N}_{\text{DM}}^{2}
\end{array}$$

time evolution

$$N(t) = \sqrt{\frac{C}{\Gamma_A}} \cdot \tanh\left(\frac{t}{\tau_{eq}}\right) \Rightarrow A(t) = \frac{1}{2}C \cdot \tanh^2\left(\frac{t}{\tau_{eq}}\right)$$

equilibrium time

escape ve

WIMP thermaliz

Neutrinos from the Sun: Super-Kamiokande

50'000-ton water Cherenkov detector

- fiducial volume 22'500 tons, 11'100 × 20" PMT
- outer part of detector as veto, 1'800 × 8" PMT
- detect Cherenkov light of charged leptons created by interactions of neutrinos in detector material or surrounding rock
 - study upward-going events to suppress background from cosmic/atmospheric muons
- large background from atmospheric neutrinos

Analysis based on 1996-2008 data (3100 days)

- look only at stopping and through-going muons
 - best angular resolution $(1 1.4)^{\circ}$
- look for excess in neutrino flux in direction of Sun
 - no excess found → set upper limits on WIMP

scattering cross section

Oct 23, 2015

20

-0.8

-0.6 -0.4 -0.2 0

0.2 0.4 0.6 0.8 cosθsun

O. Steinkamp

4

.338

108

Update adding data till March 2012 (+ 1097 days)

- use also partially and fully contained events to extend energy range down to 10 GeV
- worse angular resolution for contained events
 - use also energy spectrum and $v_{\mu} / v_{e} / \overline{v}_{\mu} / \overline{v}_{e}$ ratio to discriminate between signal and atmospheric

• again no excess found, upper limits set on WIMP-nucleon cross section

Indirect DM detection (109)

Neutrinos: Antares

Use sea water as Cherenkov radiator

- installed in Mediterranean sea, near Toulon
- 12 detection lines, each line 25 storeys, each storey three 10" PMTs
- again, study upward-going events
- 20 MHz clock distribution system to calibrate timing between PMT signals to < 1 ns
 - monitoring by LED and laser systems
- positions of lines monitored to < 20 cm
 - tilt-meter compass system on each storey
 - high-frequency acoustic emitters/transponders at known positions on the sea floor and hydrophones at known positions along each line
- angular resolution ~ 0.3° for v_{μ} with E_{v} > 10 TeV

Neutrinos from the Sun

[1302.6516]

- published analysis based on 2007/2008 data, update using 2007-2012 data
- find no excess in direction of Sun, derive upper limits on flux, σ_{sD} and $\langle \sigma_{A} v \rangle$

Also: various searches for point sources [1402.6182] [1402.2809]

- "full-sky" search: look for clusters of events within a cone of a given diameter (1° or 3°)
- specific search: look for excess of events in the direction of 50 selected candidate sources
- autocorrelation of 3058 neutrino candidates
- no significant excess found, derive upper limits on fluxes

Oct 23, 2015

Indirect DM detection (111)

Use polar ice as Cherenkov radiator

- installed close to South Pole
 - southern hemisphere: galactic neutrinos cause downward-going events
 - sensitivity affected by large backgrounds from atmospheric muons
- 86 vertical strings, 1.5–2.5 km below surface
 - each string 60 optical sensors, 10" PMTs
 - strings 125 m apart \rightarrow 1 km³ detection volume
- "track-like" events (from muons):
 - angular resolution ~ 1° but no energy measurement → search for point sources
- "cluster-like" events:
 - energy measurement but limited angular resolution → search for diffuse emission

Oct 23, 2015

Indirect DM detection (112)

Neutrinos: IceCube

Neutrinos from the Sun (2010/2011, 317 days of data)

[1212.4097]

- no excess over background observed
- set upper limits on WIMP-nucleon scattering cross sections

Various searches for point sources (2008–2011/2 data)

- look for excess of events in the direction of selected candidate sources
 - [1406.6757]
- generic searches using auto-correlation and multipole fits of neutrino candidates [1408.0634]
- multipole analysis to search for DM annihilation in galactic halo [1406.6868]
- no signals found in any search \rightarrow derive upper limits

O. Steinkamp

Oct 23, 2015

Indirect DM detection (113)

Summary

Choice of potential sources

- galactic centre and halo
- extra-galactic (e.g. dSph)
- neutrinos from the Sun
 <u>Choice of messenger particles</u>
- photons
- point back to source
- anti-particles -

neutrinos

- to source deviated in magnetic fields
- **Different experimental approaches**
- above atmosphere at lower energies
- ground-based at highest energies
- Problem: find an unambiguous signature
- almost any signal can be interpreted in terms of Dark Matter annihilations
- almost any signal can be interpreted in terms of astro-physical backgrounds

when the data have nothing to do with DM!

Oct 23, 2015

Indirect DM detection (114)