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The Need for “Dark Matter”

Galactic rotation curves

● rotation velocity of stars 

require ~ 6 × more gravitationally interacting matter
than is observed in form of stars, interstellar gas etc.

v 2
(r ) =

G⋅M (r )
r

Gravitational lensing

● bending of light from far-away objects

Large-scale structure in the Universe

● distribution and clustering of galaxies

Cosmic Microwave Background Radiation

● angular scale of temperature anisotropies

Dunchle
Materie !!!
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Dark Matter Candidates

Astrophysical objects – MACHOS (MAssive Compact Halo ObjectS)

● faint stars

● large “Jupiter-like” planets

● black holes, neutron stars

from astronomical observations:
can make at most a small fraction
of required amount of Dark Matter

As yet unkown elementary particles

● must be “stable” (lifetime must be long compared to age of Universe)

● must be electrically neutral

● must be massive (to explain large-scale structure observed in the Universe)

● many extentions to Standard Model of particle physics predict such particles

● WIMPs (“Weakly Interacting Massive Particles”)

● Axions

● Sterile Neutrinos
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As yet unkown elementary particles

● must be “stable”                     (otherwise would have decayed into lighter particles)

● must be electrically neutral                                      (otherwise would not be “dark”)

● must be massive                (otherwise cannot explain observed structure formation)

● many extentions to Standard Model of particle physics predict such particles

● WIMPs (“Weakly Interacting Massive Particles”)

● Axions

● Sterile Neutrinos

Dark Matter Candidates

Astrophysical objects – MACHOS (MAssive Compact Halo ObjectS)

● faint stars

● large “Jupiter-like” planets

● black holes, neutron stars

from astronomical observations:
can make at most a small fraction
of required amount of Dark Matter
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“WIMP Miracle”

“Coincidence” between Particle Physics and Cosmology

● early Universe: hot and dense

● WIMPs and Standard-Model particles in thermal equilibrium

● as Universe expands and cools down

● WIMPs heavy → number density decreases rapidly

● distance scale increases → interaction rate decreases

● “freeze out”: WIMPs decouple from normal matter

● from now on, number of WIMPs stays constant

● number density determined by time of freeze out

● i.e. by strength of interaction with matter, v

● mass density determined by cross section and mass

 SM

SM

m = 100 GeV  (mass scale of electroweak interaction)

v = 3×10-26 cm3/s (weak interaction cross section) 

obtain right mass
density to explain

Dark Matter
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WIMP Searches

 →  want to see evidence in more than one of the approaches !

Direct Detection
through interaction
in detector material

small signals and large 
backgrounds from 

Standard-Model processes

Production
at particle colliders
(e.g. LHC at CERN)

if new particle is discovered,
how do we know it is what

makes Dark Matter ?

Indirect Detection
through observation

of annihilation products

most signal signatures
can also be explained by 
astrophysical processes

time



SM SM



time

SM

SM





time





SM

SM
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Indirect WIMP Searches

[J. Feng, UC Irvine]



Indirect DM detection (12) O. SteinkampOct 23, 2015

Indirect WIMP Searches

[J. Feng, UC Irvine]
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Particles

Annihilation to  (H, Z)

● energy conservation → fixed photon energy

● resonance line in photon energy spectrum

● smoking gun signature

● resonance energy gives WIMP mass

Annihilations to other
Standard-Model particles

● W, Z bosons, hadrons, … 
decay to stable particles

● photons

● electrons / positrons

● neutrinos

● protons / antiprotons
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Particles

Gamma-ray photons

● little interaction with Interstellar Medium, point back to source 

● but large backgrounds from astrophysical sources

Positrons / antiprotons

● largely unknown backgrounds 
from astrophysical sources

● get deviated and trapped in 
(inter-)galactic magnetic fields,
do not point back to source

High-energy neutrinos

● very small interaction cross 
section, point back to source

● difficult to detect, small statistics

● large background from atmospheric neutrinos

Cherenkov
Telescope
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Indirect WIMP Searches

[J. Feng, UC Irvine]
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Experiments: -rays

Earth's atmosphere opaque for -rays 

● interact with atoms in upper atmosphere, 
create shower of high-energy e+/e– 

● up to E ≈ 300 GeV: direct detection of -rays

in balloon or satellite experiments

● detection area typically O(1 m2)

● -ray flux drops rapidly with increasing energy

● e.g. from Crab nebula (strong source of -rays):

● about 10 -rays / m2 / year with energy > 1 TeV 

● for 1 event / min: need 50,000 m2 detector surface

● above 300 GeV: indirect detection of -ray in 

ground-based Cherenkov air shower detectors

● measure Cherenkov photons produced by
high-energy e+/e– in the electromagnetic shower

1 TeV
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-rays: Space-Based Experiments

Principle of detection / reconstruction:

● foils made of a high-Z material 

● pair production  → e+ e– 

● tracking detector: measure e+ and e– trajectories

● reconstruct direction of incident 

● calorimeter: measure e+ and e– energies

● reconstruct energy of incident 

● reject hadron background using shower shape

● anti-coincidence counter: 

● veto charged incident particles

Limitations by operation in space

● e.g. possible detection area limited 
by size and mass at launch

conversion
foil

tracking
detector

calorimeter

anti-coincidence
counter
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Fermi Large-Angle-Tracker

Launched in 2008

● tungsten converter foils and
silicon micro-strip detectors

● segmented CsI(Tl) calorimeter

● energy range 20–300 GeV

●  effective detection area 0.8 m2 

● large field of view (2.4 sr) calorimeter

grid

tracker

ACD thermal
blanket

DAQ
Electronics
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Backgrounds

Hadronic cosmic rays
● 1000 × more abundant than -rays
● anti-coincidence counters
● hit distributions in tracking detector
● shower-shape in calorimeter
● e.g. Fermi: background rejection > 105,

maintaining 50 % efficiency for  rays

Astrophysical sources of –rays
● point sources and diffuse emission

● high-energy 0 from hadronic interactions

● e+/e– bremsstrahlung in interstellar gas
● Inverse Compton scattering of starlight

● indistinguishable from possible DM signal 
● need to model their expected distribution 

and subtract this from the observed signal
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Indirect WIMP Searches

[J. Feng, UC Irvine]
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Places

Galactic centre and its halo

● from models of galaxy formation expect Dark Matter 
density profile to be peaked towards Galactic centre

● WIMP annihilation cross section ∝ density squared

● but large backgrounds from astrophysical sources

● large number of point sources near Galactic centre 
and along the line of sight

● diffuse -ray emission from high density of radiation 

fields and interstellar gas along the line of sight

(Fermi all-sky map, E > 1 GeV, 5 years)

Galactic
plane

Galactic
centre
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Places

Dwarf Spheroidal Galaxies (satellites of our own galaxy)

● mass dominated by Dark Matter:

● total mass ≈ (10–2000) × luminous mass

● astrophysical backgrounds small

● contain no astrophysical  sources

● are located at high galactic latitude

● but low statistics: faint sources and 
currently only ~ 25 known candidates

The core of our Sun

● Sun “sweeps” through Dark Matter halo 
of our galaxy → sees “wind” of WIMPs

● WIMPs can scatter elastically on nuclei

● loose energy → become gravitationally bound → accumulate in Sun's core

● WIMP annihilation in Sun's core → constant flux of high-energy neutrinos
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Indirect WIMP Searches

[J. Feng, UC Irvine]

the halo of the
galactic centre

-rays Fermi
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Fermi: Diffuse -Spectrum

Measurement based on 50 months of data taking

● mask region around galactic plane

● fit measured energy spectrum with templates 
for known astrophysical backgrounds

● fits can describe observed energy spectrum

● do not confirm excess at high  energies 

reported by an earlier experiment

[arxiv:1410.3696]

http://arxiv.org/abs/1410.3696
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Fermi: Galactic Centre

2014: two independent groups find an

excess in -ray flux from Fermi data

● fit data with templates for diffuse 
emission and known point sources

● excess peaking at E ≈ 1–3 GeV

● centered on Galactic centre 

● spherically symmetric

● spatially extended

● “Compelling Case for Annihilating Dark Matter”

● “... may be explained within the framework of a 
model where the dark matter annihilates to 
leptons or a model with unresolved 
millisecond pulsars in the Galactic Center”

[arxiv:1402.6703]

[arxiv:1410.6168]

N.B. all Fermi data are
made public within 24h;

independent groups are free
to do their own analysis

http://arxiv.org/abs/1402.6703
http://arxiv.org/abs/1410.6168
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Fermi: Galactic Centre

Analysis by Fermi collaboration

● also find enhancement in GeV range, 
approximately centred on GC

● could be explained by Dark-Matter models 

● but also by astrophysical background (Pulsars)

[S. Murgia, Fermi Symposium, Oct 24, 2014]
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Fermi: Spectral Lines

2012: two independent groups claim evidence for

a narrow feature in  energy spectrum from Fermi

● spectral line = smoking gun signal
for WIMP annihilation !

● origin of excess close to Galactic centre 

● E

 ~ 130 GeV, statistical significance > 4 σ

based on data set from 3.7 years

on interpretating significance: 
● naively, “4 “ corresponds to Gaussian

probability of 3×10-5 for statistical fluctuation
● but: looking for possible deviations 

ANYWHERE in the energy spectrum
● probability for finding a 4  deviation 

at ANY energy much larger

[arxiv:1204.2797]

[arxiv:1206.1212]

Galactic longitude [°]

http://arxiv.org/abs/1204.2797
http://arxiv.org/abs/1206.1212
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Fermi: Spectral Lines

Analyses by the Fermi collaboration

● using their 3.7-year data set

● observe feature at E

 ~ 133 GeV with

statistical significance of 3.3 σ 

● but note that its width is narrower than 
the energy resolution of the experiment

● using larger data set from 5.8 years

● no significant signal anymore

● interpret original feature as a statistical 
fluctuation

[arxiv:1305.5597]

[A. Albert, Fermi Symposium, Oct 24, 2014]

http://arxiv.org/abs/1305.5597
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Indirect WIMP Searches

[J. Feng, UC Irvine]

somewhere

positrons Pamela,Fermi,AMS-02
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Positrons: Pamela

Satellite experiment, launched in 2006

● time-of-flight counters: particle direction & velocity

● tracking detectors and dipole magnet: 
particle momentum & charge sign

● distinguish particle ↔ antiparticle

● calorimeter: particle energy & shower shape

● shower shape: distinguish (e+,e– ) ↔ (p,p)

hadron (R=19GV) electron (R=17GV)
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Positron Fraction

Pamela (from 500 days of data taking)

● measure positron fraction N(e+) / N(e+ + e–) 
as a function of the particle energy

● observe steep increase above 10 GeV

● cannot be explained by models of 
cosmic-ray propagation

Fermi

● measure the sum of e+ and e– fluxes

● no magnet → cannot distinguish 
between electrons and positrons

● observe smooth energy spectrum

● but “harder” than predicted by conventional 
models of cosmic-ray propagation 

[arxiv:0810.4995]

[arxiv:0905.0025]

http://arxiv.org/abs/0810.4995
http://arxiv.org/abs/0905.0025
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Positron Fraction: Interpretations

Pamela positron excess triggered ~ 200 theory papers within one year

● about 170 of them interpretations in terms of various Dark Matter models

● but also in terms of possible astrophysical sources

Most promising candidates: nearby pulsars 

● Monogem (SuperNova Remnant), Geminga (Neutron star)

[arxiv:0905.0636]

(grey lines in the plots: variation of pulsar model parameters within “reasonable assumptions”)

http://arxiv.org/abs/0905.0636
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Positron Fraction: Fermi

Exploit magnetic field of the Earth

● trajectories of electrons and positrons 
are bent in opposite directions

● “shadow” of the Earth 

● blocks trajectories for e– at 
certain positions of the satellite

● blocks trajectories for e+ at 
other positions of the satellite

● allows to measure  e+ and e– fluxes 
separately

● result agrees with Pamela 

● increase in positron fraction 
continues above 100 GeV

[arxiv:1109.0521]

http://arxiv.org/abs/1109.0521
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AMS-02

Launched in 2011, installed on ISS
● silicon micro-strip tracker

● electromagnetic calorimeter

● anti-coincidence counters

● spectrometer magnet

● e+/e– separation up to ~ 500 GeV

● Transition Radiation Detector and
Ring Imaging Cherenkov Counter

● redundant e+ / p separation
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Positron Fraction: AMS-02

[PRL 113 (2014) 121101]AMS-02 measurement using data from 30 months
● extend energy range up to 500 GeV

● observe that positron fraction “flattens out” at highest energies

● as expected for both pulsar and DM interpretations

How to distinguish between Pulsar and Dark Matter hypotheses ?
● slow decrease as a function of energy vs. sharp fall-off at WIMP mass ???

● anisotropy in angular distribution  vs. isotropic distribution ???

http://cds.cern.ch/record/1756484
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Summary

Choice of potential sources

● galactic centre and halo

● extra-galactic (e.g. dSph)

● neutrinos from the Sun

Choice of messenger particles

● photons

● neutrinos

● anti-particles – deviated in magnetic fields

Different experimental approaches

● direct detection in satellite experiments

● indirect detection in Cherenkov telescopes

Problem: find an unambiguous signature

● almost any signal can be interpreted 

● in terms of Dark Matter annihilations

● in terms of astro-physical backgrounds

point back to source

[
G
i
a
n
f
r
a
n
c
o
 
B
e
r
t
o
n
e
]
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Summary

 →  need to see evidence in more than one of the approaches !

Direct Detection
through interaction
in detector material

small signals and large 
backgrounds from 

Standard-Model processes

Production
at particle colliders
(e.g. LHC at CERN)

if new particle is discovered,
how do we know it is what

makes Dark Matter ?

Indirect Detection
through observation

of annihilation products

most signal signatures
can also be explained by 
astrophysical processes

time



SM SM
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Limits

[arxiv:1506.03811]

● positron excess: in conflict with 
recent Planck measurements 
of CMBR anisotropy

● GeV -ray excess around Galactic
centre: tension with absence of 
signal in Fermi measurements 
of Dwarf Spheroidal Galaxies 

1507.03530

[arxiv:1507.03530]

in general, limits seem to depend 
a lot on the assumed model and
on assumed model uncertainties
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History of the Universe
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Evidence for Existence of Dark Matter

Energy density of the Universe

Ω ≡
ρ

ρcrit
≡ Ωr⏟

radiation

+ Ωm⏟
matter

+ ΩΛ⏟
vacuum
energy

Ω lum ≈ 0.05 ≪ Ωm

● T
CMBR

 ≈ 2.7 K                   
r
 very small

● large-scale structure

● CMBR anisotropy

● red-shift surveys 
of Type-1a SuperNovae 

 ≈ 1 ,flat geometry

● observed luminous matter:

 ≈ 0.7


m
 ≈ 0.3
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Fate of The Universe
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Type-1a Supernovae
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CMBR Anisotropy

http://map.gsfc.nasa.gov/resources/camb_tool/cmb_plot.swf
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Structure Formation

[ApJ 664 (2007) 660-674]
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Structure Formation

[http://cosmicweb.uchicago.edu/filaments.html]

file:///home/olafs/UZH/hab/lecture/bnr_full2.mpg
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Abundance of Light Elements
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Gravitational Lensing: Bullet Cluster
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Direct Detection
● search for elastic scattering of WIMPs off atomic nuclei

● measure the energy imparted on the recoiling nucleus

● small: not more than a few tens of keV

● large number of experiments 

● deep underground to suppress 
backgrounds from cosmics showers

● using different target materials

● using different techniques to separate signal 
from interactions of ionizing particles

● also: seasonal variation of Earth’s velocity 
relative to galactic rest frame

● expect annual modulation of WIMP flux (~3% effect)

● measure direction of flight of recoiling nucleus ???
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SUperSYmmetry

● class of models that postulates a spin-1 partner for each spin-½ particle of the 
Standard Model and vice-versa

● could solve various “problems” with Standard Model of Particle Physics
● e.g. finite mass of Higgs boson ; unification of elm., weak and strong force

● but introduces many new free model parameters
● if lightest SUSY particle stable → WIMP candidate !
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WIMP Production at the LHC
● pair-production of gluinos / squarks in pp collisions

● use event shape variables to suppress 
backgrounds from QCD processes

strong interaction → large production cross section

● R-parity conservation: number of 
SUSY particles conserved in decay

● decay cascade: 
● quarks or leptons produced at each step 

● Lightest Supersymmetric Particle stable
● escapes the detector undetected if it is 

a neutral particle (WIMP candidate):

● large missing transverse energy (ET)

clear event signature: 
high-p

T
 jets / leptons + large missing E

T
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-rays: Surface Experiments

Flux falls steeply with energy (roughly as ~ E
-2.7)

● above few × 100 GeV: flux too low for 
observation on small satellite-based detectors

● e.g. from Crab nebula (often used as reference):

● about 10 -rays / m2 / year with energy > 1 TeV 

● for 1 event / min: need 50,000 m2 detector surface

Indirect detection by surface experiments

●  interacts in upper atmosphere and creates shower

● large number of highly relativistic e+e– pairs produced

● e+/e– generate Cherenkov photons in air (
e
 > 1 / n)

● wavelength around 300-350 nm → penetrate atmosphere

● observe Cherenkov photons in ground-based telescopes

● allows to reconstruct energy and direction of the initial -ray
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Imaging Telescope Arrays

Imaging Cherenkov Telescope
● large parabolic dish to focus Cherenkov

photons onto a segmented camera

● position in detection plane → angle of photon

● orientation of image → 2D direction of shower

● shape of image → suppress background

Telescope array
● view the same shower from different angles

● 3D reconstruction of shower direction

Key parameters
● size of telescope dishes: number of Cherenkov photons collected per shower

● important at lower -energies where fewer Cherenkov photons generated

● surface area over which telescopes are distributed: acceptance for showers 

● important at highest -energies where flux is lowest
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H.E.S.S.

Array of 4 (+1) telescopes

● located in Namibia → view of GC

● four telescopes, 108 m² dish surface each

● spacing between telescopes: 120 m 

● one telescope with 614 m² dish surface

● observation time about 1000 hours / year

● only clear and “moonless” nights

● field of view: 5° (c.f. Fermi 2.4 sr)

● no e/ separation → no diffuse -ray spectrum
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CTA

Large Cherenkov Telescope Array

● UZH and ETHZ involvement

● O(100) telescopes foreseen

● large array Southern hemisphere (Chile?)

● smaller array Northern hemisphere (La Palma?)

● three different mirror sizes 

● a few 24m (low energies, 10–100 GeV)

● some 10-12m (intermediate energies) 

● many 4-6m (highest energies, > 10 TeV)

● expected energy resolution: 5-10%
(c.f. 15% for existing experiments)

● expected angular resolution: 0.03°
(c.f. 0.1° for existing experiments)

[Astroparticle Physics 43 (2013) 1-356]

https://portal.cta-observatory.org/SiteAssets/Pages/CTA-Science/CTA_Special_Issue_own_all.pdf
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Exams
Dates: 

Format:

● 20 min oral presentation + 5–6 pages “lecture notes” on a chosen topic

● 10 min questions on presentation (and anything else from lecture course)

● May 28 and 29  (last two days of the semester)

Suggested topics: see next slide and handout

● sign up by email to olafs@physik.uzh.ch or with Michelle on Wednesday

● first come, first serve ;-)

● before you start preparing your presentation, contact corresponding lecturer

● short discussion on material to cover, hints for useful literature, …  

● your own suggestion are also welcome, please contact us

mailto:olafs@physik.uzh.ch
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Exam Topics
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Introduction

Three complementary approaches for WIMP searches:

● direct detection through interaction in detector material (→ Alex, Laura)

● cross-sections small; backgrounds from standard particle-physics processes

● production at colliders (→ Yong)

● “reverse problem”: how do we know the produced particles (if any) are DM? 

● indirect detection through observation of annihilation products (→ today)

● almost any signature can also be explained by astrophysical processes

Convincing evidence for existence of Dark Matter (→ Laura)

● gravitational lensing, galactic rotation curves, cluster formation, CMBR fits

Standard paradigm: Dark Matter is made up of WIMPs (→ Alex)

● ”WIMP miracle”: relic density ≈ compatible with weak cross section

 →  want to see evidence in more than one of the approaches !
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Indirect Detection

[J. Feng, UC Irvine]
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Particles (I)

Annihilation of pairs of WIMPs

● , Z, H → resonance line in photon spectrum
● heavy fermions, W / Z, H bosons → fragmentation, decay

Fragmentation and decay of annihilation products

● photons (≈ 20–30% of energy)

● electrons/positrons (another 20–30%)

● (anti-)protons, (anti-)deuterium (few %)

● neutrinos (rest)

Synchrotron radiation

● radio-wavelength photons from propagation
of e+/e– through galactic magnetic fields

Inverse Compton Scattering

● MeV to GeV photons from up-scattering of starlight
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Particles (II)
Photons

● loose energy by Bremsstrahlung 
and Compton scattering 

● large and complex backgrounds 
from astrophysical sources

High-energy neutrinos

● very small interaction cross sections 
→ small statistics even with huge detectors

● large background from atmospheric neutrinos

Positrons / antiprotons

● get deviated and trapped in 
(inter-)galactic magnetic fields

● do not point back to source

● can reach only from nearby sources (≤ 8 kpc)

● largely unknown backgrounds from astrophysical sources
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Places (I)

[M. Wood, SLAC Seminar, Oct 14, 2014]
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Places (II)
Galactic centre (GC) and halo

● DM density profiles from numeric simulations of 
galaxy formation are strongly peaked towards GC

● WIMP annihilation cross section ∝ density squared

● predicted flux under angle  with respect to GC

Φ i (ψ ,E ) ∝
⟨σ v ⟩

M χ

⋅
dN i

dE⏟
particle physics

× ∫
line of sight

ρDM
2

(s) ds (ψ)
⏟

cosmology

● simulations of galaxy formation usually result in
non-smooth DM density distributions (“sub-halos”)

● significant enhancement of annihilation rate

● usually parametrized by “boost factor”

B ∝ ⟨ρ2⟩ / ⟨ρ ⟩2

● sensitivity for indirect detection often relies on 
large values of such boost factors

galactic
centre sub-halo

example of the expected -ray flux
from an N-body galaxy simulation

  ∝ r-

O(1)
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Places (III)

The core of our Sun

● Sun “sweeps” through the DM halo 
of our galaxy

● WIMPs scatter elastically on nuclei

● loose energy → become gravitationally bound → accumulate in Sun's core

● WIMP annihilation in Sun's core → constant flux of high-energy neutrinos

● annihilation rate ∝ density of trapped WIMPs squared

● reaches equilibrium with capture rate after a few 109 years

● in equilibrium: neutrino flux ∝ elastic WIMP-nucleon scattering cross section

● spin-dependent cross section (WIMP scattering on H nuclei)

● spin-independent cross section (WIMP scattering on heavier nuclei)

● predicted neutrino flux potentially large enough to be detected on Earth
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Experiments (I)
Gamma-rays: do not penetrate Earth's atmosphere

● up to O(100 GeV): direct detection in
balloon or satellite experiments

● e.g. EGRET, Fermi; planned: GAMMA-400

● up to TeV energies: indirect detection in
ground-based air shower detectors

● e.g. H.E.S.S.; planned: CTA

High-energy neutrinos: very low interaction cross section

● huge, deep underground water Cherenkov detectors 

● e.g. Super-Kamiokande, SNO

● neutrino telescopes in deep water, antarctic ice

● e.g. Antares; Amanda, IceCube

Positrons / antiprotons: backgrounds from air showers

● balloon or satellite experiments above atmosphere

● e.g. Pamela, Fermi, AMS-02

(Fermi)

(Hess)

(Antares)

(AMS-02)
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Experiments (II)

launch scheduled for 2018
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-rays: Space-Based Experiments
Principle of detection / reconstruction:

● layers of conversion foils 

● pair production  → e+e– 

● tracking detector: measure e+ and e– trajectories

● reconstruct direction of incident 
● calorimeter: measure e+ and e– energies

● reconstruct energy of incident 
● also: hadron rejection from shower shape

● anti-coincidence counter: 

● veto charged incident particles

Limitations by operation in space

● size and mass: detection area limited to O (1 m2)

● power consumption, other consumables (e.g. gas)

● cooling, temperature variations, radiation damage

conversion
foil

tracking
detector

calorimeter

anti-coincidence
counter
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Backgrounds
Hadronic cosmic rays

● 1000 × more abundant than -rays
● anti-coincidence counters
● hit distributions in tracking detector
● shower-shape in calorimeter
● Fermi: background rejection > 105,

maintaining 50 % efficiency for  rays

Astrophysical sources of –rays
● point sources and diffuse emission

● high-energy 0 from hadronic interactions
● e+/e– bremsstrahlung in interstellar gas
● Inverse Compton scattering of starlight

● indistinguishable from possible DM signal 
● model their distribution and subtract from 

the observed signal
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EGRET
In operation from 1991 till 1999

● all-sky  survey from 30 MeV to 30 GeV

● spark chambers + NaI(Tl) calorimeter

Diffuse emission spectrum

● energy spectrum after subtracting point sources

● observe large excess in flux above E

 ≈ 1 GeV 

● compatible with annihilation signal from a 60 GeV WIMP

● but would require complicated DM density distribution

● incompatible with observed anti-proton flux

● not confirmed by later FERMI measurements

● artefact from imperfect acceptance calibration ?

Detected ~270 point sources

● ≈ 1/3 of them identified with known objects

towards GC:
latitude |b|<5º 
longitude |ℓ|<30º

ℓ

b

mostly AGNs, Pulsars
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Fermi Large-Angle-Tracker
Launched in 2008

● energy range 20 MeV – 300 GeV

● tungsten converter foils

● silicon micro-strip detectors

● 18 double layers, 200 m strip pitch

● segmented CsI(Tl) calorimeter

● about 8.5 radiation lengths
calorimeter

grid

tracker

ACD thermal
blanket

DAQ
Electronics
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Fermi Large-Angle-Tracker
Performance comparison

● based on data from four years

● 100 MeV – 300 GeV  

● 3033 point sources with significance > 4 
● ≈ 2/3 of them associated with known sources

Latest point-source catalogue (3FGL)

ℓ

LAT, 5 years, E > 1 GeV

[1501.02003]

http://arxiv.org/abs/1501.02003
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Fermi: Diffuse -Spectrum
Measurement based on data from 24 months [1205.6474]

● investigated region between 5º and 15º in 
latitude and < 80º deg in longitude

● close to GC where DM density is highest 

● but not too close to exclude astrophysical 
sources near GC

● mask known point sources, model astrophysical diffuse emission

● 0 decays, bremsstrahlung, Inverse Compton scattering

● find good agreement between model and data, no need for DM component

data

model
(no DM)

residual
with DM

residual
(no DM)

http://arxiv.org/abs/1205.6474
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Fermi: Diffuse -Spectrum
Latest measurement based on data from 50 months [1410.3696]

● mask only small region around galactic plane,
fit data with templates for astrophysical sources

● known point sources ;  0 decays

● IC scattering of photons from starlight and from Sun

● synchrotron radiation from local magnetic field loops

● fit describes observed spectrum well

● “extragalactic” spectrum (latitude |ℓ| > 20º) matches 
measurements from experiments at lower energy

● use these results to
derive constraints 
on DM parameters

[1501.05464]

http://arxiv.org/abs/1410.3696
http://arxiv.org/abs/1501.05464
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Fermi: Spectral Lines
Spectral line = smoking gun signal for WIMP →  annihilation

● Fermi search based on 3.7 years of data

● five regions of interest

● optimized for different DM models

● no significant signals found

● derive upper limits on 
DM annihilation cross section

● preliminary results from search based on 5.8 years of data

● also improved energy reconstruction → better acceptance & resolution

● still no significant signal → improved upper limits

[1305.5597]

[A. Albert, Fermi Symposium, Oct 24, 2014]

http://arxiv.org/abs/1305.5597


Indirect DM detection (77) O. SteinkampOct 23, 2015

Fermi: Spectral Lines

● 2012: two independent groups claim 
evidence for a narrow feature in 
Fermi's 3.7-year data set

● E

 ~ 130 GeV, statistical significance > 4 σ

● location of source slightly offset from GC 

● N.B.: all Fermi data are made public within 
~ 24 h,  anyone can do their own analysis

Spectral line around 130 GeV ???
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Fermi: Spectral Lines

● observe feature at 133 GeV with 3.3 σ significance

● but narrower than expected for a DM signal

● no significant signals found in background-
dominated control samples

● “Earth limb”: 

-flux dominated by 

interactions of charged 
cosmic rays in the Earth's
atmosphere

● region in galactic plane opposite GC: low DM density, 
but similar astrophysical backgrounds

Fermi analysis using their 3.7 year data set [1305.5597]

http://arxiv.org/abs/1305.5597
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Fermi: Spectral Lines
Preliminary result from new analysis of 5.8 year data set

● also: re-analyzed 3.7 year data set with the improved energy reconstruction

● in both cases no longer a significant signal

[A. Albert, Fermi Symposium, Oct 24, 2014]

● conclusion from A. Albert's presentation: 

original feature consistent with statistical fluctuation
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Fermi: Galactic Centre
GC: expext large DM density, but also large astrophysical backgrounds

● highest CR intensities

● highest density of radiation fields and gas 

● large uncertainties modelling interstellar emission 

● long integration path over the entire Galactic disc

● significant foreground and background contribution

● large density of gamma-ray sources near GC,  
many energetic sources close to line of sight

● difficult to disentangle point sources and 
interstellar emission

● also: expect large population of  “undetectable” 
milli-second pulsars close to GC

● individual flux below Fermi detection sensitivity

● additional source of diffuse background

● various groups have claimed -ray excesses with possible DM interpretation

[1305.1584]

http://arxiv.org/abs/1305.1584
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Fermi: Galactic Centre
Daylan et al. analyzed Fermi data from 63 months

● fit data with templates for isotropic and diffuse 
galactic emission and known point sources

● find excess peaking at E = 1–3 GeV

● centered on GC; statistical significance 17  
● spherically symmetric; extending out to ~10º

● compatible with annihilation of DM candidate
with mass around 30–40 GeV
● according to the authors, the spatial extention of 

the excess disfavours other interpretations

[1402.6703]

http://arxiv.org/abs/1402.6703
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Fermi: Galactic Centre
Abazajian et al. analyzed Fermi data from 70 months

● look at 7º × 7º wide region around GC

● again, find spatially extended excess over 
modelled diffuse emission and point sources  

● fit energy spectrum and spatial distribution of
this excess to separate three components

● “direct” ; IC-upscattered starlight ; bremstrahlung 

● spatial templates derived from measurements 
at 3.4 μm (starlight) and 20 cm (interstellar gas)

● find IC and bremsstrahlung components 
compatible with being caused by the same 
population of CR electrons and positrons

● also find that this e–/e+ population and the 

“direct” -ray component could be caused by 

annihilation of a 8 GeV DM candidate to leptons

● but cannot exclude astrophysical explanation

[1410.6168]

directIC gas

IC direct

gas

http://arxiv.org/abs/1410.6168
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Fermi: Galactic Centre
Fermi collaboration focus on 15° × 15° wide region around GC

● model of diffuse emission from

● CR source distributions

● CR propagation

● model parameters tuned to observed
distributions in various control regions

● also find enhancement in GeV range, approximately centred on GC

● energy spectrum varies strongly depending on modelling of interstellar emission

● need better understanding of fore/background emission
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Fermi: Dwarf Spheroidal Galaxies
Satellites of our galaxy: promising target for DM searches

● mass seems strongly dominated by DM

● total mass ≈ (10–2000) × luminous mass

● astrophysical backgrounds small

● contain no astrophysical  sources

● located at high galactic latitude

● currently 25 known satellite dSph

Fermi: combined analysis of 15 dSph

● based on data from six years

● subtract known point sources

● model & subtract diffuse emission

● four WIMP annihilation channels considered

● no DM signal observed → upper limits start 
to cut into interesting parameter region

[1503.02641]

http://arxiv.org/abs/1503.02641
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Fermi: Dwarf Spheroidal Galaxies

● limits derived from latest dSph analysis start to be in tension with 
DM interpretations of the Galactic Center excess

● but compatibility can still be achieved by tweaking model parameters 

● e.g. higher local density at position of Earth, steeper slope of inner DM profile
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-rays: Surface Experiments
Above few × 100 GeV: flux too low for observation on satellites
● e.g. from Crab nebula (reference):

● about 10 -rays / m2 / year with E

 > 1 TeV 

● need 50,000 m2 detector to observe 1 event / min

Indirect detection by surface experiments
●  interacts in upper atmosphere → creates elm. shower

● large number of highly relativistic e+e– pairs produced

● e+/e– generate Cherenkov photons in air ( > 1 / n)

● wavelength around 300-350 nm → penetrate atmosphere

● observe Cherenkov photons in ground-based telescopes

● allows to reconstruct energy and direction of the initial -ray

But -rays do not penetrate the atmosphere
● radiation length of air: ≈ 38 g / cm²

● thickness of atmosphere: ≈ 1030 g / cm² ≙ 27 X0
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Imaging Telescope Arrays
Imaging Cherenkov Telescope

● large parabolic dish to focus Cherenkov
photons onto a segmented camera

● position in detection plane → angle of photon

● orientation of image → 2D direction of shower

● shape of image → suppress background

Telescope array

● stereo-views of the same shower

● 3D reconstruction of shower direction

Key parameters for telescope array

● size of telescope dishes: number of Cherenkov photons collected per shower

● important at lower -energies where fewer Cherenkov photons generated

● surface area over which telescopes are distributed: acceptance for showers 

● important at highest -energies where flux is lowest
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Hadronic Cosmic Rays

● hadronic showers: larger lateral extention than electromagnetic showers

● results in “fuzzier” shower image

● achieve ≈ 99.9% background rejection

● remaining S/B ≈ 1-10

● electron showers more difficult to 
distinguish

● but rate much lower at high energies

To estimate remaining backgrounds

● perform “off source” measurements

● extrapolate to source position

● subtract statistically from “on-source” 
measurements

Still the main source of background: 1000 × more abundant than -rays
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H.E.S.S. (II)
Array of 4 (+1) telescopes

● located in Namibia → view of GC

● four telescopes, 108 m² dish surface each
● commissioned 2003/2004
● spacing between telescopes: 120 m 
● camera: array of 960 photo-multipliers
● field of view: 5°, resolution: ≈ 0.1°

● one telescope with 614 m² dish surface

● added in summer 2012
● camera: array of 2048 photo-multipliers
● field of view: 3.5°, resolution: ≈ 0.4° – 0.1°

● energy threshold 100 GeV → 30 GeV

● observation time about 1000 hours / year

● only clear and “moonless” nights

● no e /  separation → no diffuse -ray spectrum
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H.E.S.S.: Dwarf Spheroidal Galaxies

[astro-ph/0610959]

Analysis of five Dwarf Spheroidal Galaxies [1410.2589]

● total observation time 140 hours 

● no excess observed, derive 
limits on DM parameters

● use “wobble” technique for 
background subtraction to avoid 
need for “off-source” data taking:

● size of source smaller than field of vision: can estimate 
backgrounds from control regions inside field of vision

● but: detection efficiency not 
uniform across field of vision

● position source off-centre 
within the field of vision  

● estimate backgrounds from
symmetrically placed control
regions inside field of vision

http://arxiv.org/abs/astro-ph/0610959
http://arxiv.org/abs/1410.2589
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H.E.S.S.: -rays from GC
Analysis based on data from 112 hours of observation time

● analysis based on data from 9 hours of observation time

● “ON/OFF” technique: point at source 
and at two symmetrically displaced 
control regions; swap every 33 minutes

● again no excess in signal region

● limits on DM parameters

[1502.03244]

[1103.3266]

● define signal region of 1º radius 
around GC ; symmetric control 
regions inside field of view

● exclude narrow band around 
galactic plane to avoid point sources

● observe no excess in signal region

● derive limits on DM parameters

New: test of DM scenarios with flat profile in innermost region

http://arxiv.org/abs/1502.03244
http://arxiv.org/abs/1103.3266
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H.E.S.S.: spectral lines
Complementing Fermi searches at higher energies
● analysis of region around GC based 

on 112 hours of observation time

● exclude narrow band around galactic plane

● combined analysis of data from various
measurements of extragalactic objects, 
total of 1153 hours of observation time

● exclude known point sources 

● null hypothesis (no lines): fit data with smooth empirical function

power-law term × (3rd-order polynomial + Gaussian term)

● search for narrow lines: add Gaussian with fixed mean and width

● width of Gaussian given 
by energy resolution of
the experiment

● no significant signal found,
upper limits derived
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Antiparticles: Pamela
Launched in 2006 – projected lifetime 5 years but still in operation

● time-of-flight counters: particle direction & velocity

● magnetic spectrometer: momentum & charge sign

● ability to distinguish particle ↔ antiparticle

● imaging calorimeter: energy & shower shape

● shower shape allows to distinguish (e+,e– ) ↔ (p,p)

● (e+,e–) rejection power ≈ 104 for 90% (p,p) efficiency

hadron (R=19GV) electron (R=17GV)

Nominal energy ranges:

● anti-protons: 80-190 GeV
● positrons: 50-270 GeV
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Antiparticles: Pamela

● e– flux ≈ 103 × p flux

● cuts on shower shape 
allow to reduce this to 
negligible level

Electron rejection
negative
charge

positive
charge

e–

pe+
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Pamela: Antiprotons
negative curvature positive curvature

increasing momentum

after e+e–

rejection cuts

all particles

“spillover”
p → p

increasing momentum

● p flux ≈ 104 × p flux

● use track curvature to measure charge sign

● accessible momentum range limited by finite 
position resolution of detector

● high momentum → small deflection

● finite resolution → chance to measure sign of 
deflection wrong, assign wrong charge sign

● to improve sensitivity at highest momenta: 
make use of event-by-event estimate of 
measurement uncertainty

Proton rejection

● selected ~ 2800 p from 60 MeV to 350 GeV
● measured p energy spectrum and p/p ratio 

compatible with expectation from cosmic ray 
models and with earlier measurements

Latest analysis based on data from 3½ years
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http://pamela.roma2.infn.it/index.php?option=com_docman&task=doc_details&gid=568&Itemid=251
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Measure positron fraction = e+ / (e+ + e–) as a function of energy

Pamela: Positrons (I)

● basic selection similar to p/p measurement

● “spillover” from e–  not critical

● at the highest energies only 10 × more e– than e+

● biggest challenge: p rejection

● p/e+ ratio ~103 at 1 GeV and 104 at 100 GeV
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Suppress protons by cutting on:
● shower energy vs. track curvature (momentum) 

● longitudinal and transverse shower profile
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Pamela: Positrons (II)
Transverse shower profile electron hadron

● fraction of shower energy deposited within 
predefined cylinder around shower axis

e–

e+

p

e–

e+

pe+p
(interacting)

p
(non-interacting)

p
(interacting)

p
(non-interacting)

e–

… after basic selection cuts … after cut on energy vs rigidity … after cut on shower profile

negative
curvature

positive
curvature

● use longitudinal shower profile to select
clean samples of e– showers and p showers

● e– sample →  template for signal shape

● p sample → template for background shape

● fit e+ sample with signal & background shapes

Estimate remaining p contamination e–

e+

p 

p

Exercises
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Pamela: Positrons (III)
First analysis based on 500 days of data taking

● observe steep increase of e+ fraction above 10 GeV

● incompatible with models of secondary e+ production 

p + ISM → + + X  followed by  + → + → e+

● lower e+ fraction at low end of energy spectrum 
attributed to modulation effect from solar activity

● earlier experiments  collected data during maximum 
of solar activity, Pamela data close to minimum

● similar effect observed in low-energy p flux

● cannot measure charge sign
 → sum of e+ and e– fluxes

● smooth spectrum up to ~ 1 TeV

● but “harder” than predicted 
by conventional CR model

[0810.4995]

Fermi / H.E.S.S. [0905.0025] [0905.0105]

http://arxiv.org/abs/0810.4995
http://arxiv.org/abs/0905.0025
http://arxiv.org/abs/0905.0105
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Positrons: Interpretations

Astrophysical sources

DM annihilations

● WIMP “leptophilic” to explain 
lack of an excess in p/p

● e.g. nearby pulsars (d < 1 kpc)

● Monogem (SNR)

● Geminga (Neutron star)

● can explain Fermi / H.E.S.S.
measurements of e++e– flux 
and Pamela e+ fraction

Pamela positron excess triggered ~ 200 theory papers in first year

● about 170 of them interpretations in terms of various DM models

[0905.0636]

grey lines: variation of pulsar model 
parameters within “reasonable assumptions”

[0905.0636]

http://arxiv.org/abs/0905.0636
http://arxiv.org/abs/0905.0636
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Pamela: Positrons (IV)
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Fermi: Positrons
Measurement exploiting magnetic field of the Earth

● trajectories of electrons and positrons 
bent in opposite directions

● at a given position of the satellite, certain 
trajectories for electrons or for positrons 
blocked by “shadow” of the Earth

● allows to measure electron and positron
fluxes and positron fraction

● result in good agreement with Pamela 
measurement

● increase continues above 100 GeV

[1109.0521]

http://arxiv.org/abs/1109.0521
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AMS-02

● silicon strip tracker (ETHZ contribution)

● electromagnetic calorimeter

● anti-coincidence counters

● spectrometer magnet

● e+/e– separation up to ~ 500 GeV

● Transition Radiation Detector

● redundant e+ / p separation

● Ring Imaging Cherenkov Counter

Launched in 2011, installed on ISS
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AMS-02: Positrons
First measurement (data from 18 months)

● 6.8 × 106 e+ and e– candidates 

● energy range from 0.5  – 350 GeV

● proton rejection by 

● comparison of energy measured 
in calorimeter and momentum 
measured in spectrometer

● 3D shower shape in ECAL

● transition radiation light 
produced in TRD

factor 104

factor 103–104

@ 90% efficiency

● confirm increase of positron fraction
above ~ 8 GeV

[PRL 110 (2013) 141102]

http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.110.141102
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AMS-02: Positrons
[PRL 113 (2014) 121101]Latest result (data from 30 months)

● more data, improved analysis → extend measurement to 500 GeV

● find that positron fraction “flattens out” at highest energies

● expected for both pulsar and DM interpretations

Distinguish between Pulsar and Dark Matter hypotheses ?

● slow decrease as function of energy vs. sharp fall-off at WIMP mass

● anisotropy in angular distribution  vs. isotropic distribution

→ collect more data to extend energy range and sensitivity

http://cds.cern.ch/record/1756484
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Future: CTA

● Large Cherenkov Telescope Array
(UZH and ETHZ involvement)

● tens of telescopes

● three different mirror sizes 

● a few 24m (for 10 < E < 100 GeV)

● some 10-12m
(intermediate energies, 100 GeV-1 TeV) 

● many 4-6m
(highest energies, > 10 TeV)

● expected energy resolution: 5-10%
(c.f. 15% for existing experiments)

● expected angular resolution: 0.03°
(c.f. 0.1° for existing experiments)
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Complementarity Ground-Based vs Space-Based
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Neutrinos from the Sun: Reminder

● can scatter elastically off protons and lose energy

● same process that is used in direct detection

● trapped if energy after scatter smaller than escape energy

● capture rate for a given WIMP-nucleon scattering cross section 
SD

C ∝ ρ local
DM ⋅M∘⋅σSD

● annihilation rate

A ≡
1
2
ΓA⋅NDM

2 ∝ ⟨σ v ⟩⋅NDM
2

● time evolution

N (t ) = √ CΓA
⋅tanh ( tτeq ) ⇒ A(t ) =

1
2
C ⋅tanh2 ( tτeq )

About 1027 WIMPs per second pass through the Sun

● equilibrium time

dN
dt

= C − 2A

τeq =
1

√C ΓA

∝
1

√σSD ⟨σ v ⟩

σSD = 10−41 cm2

⇒

τeq = 0.28 × 109 y ≪ t ∘
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Neutrinos from the Sun: Super-Kamiokande

50'000-ton water Cherenkov detector

● fiducial volume 22'500 tons, 11'100 × 20” PMT 

● outer part of detector as veto, 1'800 × 8” PMT

● detect Cherenkov light of charged leptons 
created by interactions of neutrinos in 
detector material or surrounding rock

● study upward-going events to suppress 
background from cosmic/atmospheric muons

● large background from atmospheric neutrinos

Analysis based on 1996–2008 data (3100 days)

● look only at stopping and through-going muons

● best angular resolution (1 – 1.4)°

● look for excess in neutrino flux in direction of Sun

● no excess found → set upper limits on WIMP 
scattering cross section

[1
10

8.
33

84
]

fully
contained

partially
contained

through-going

stopping

http://arxiv.org/abs/arXiv:1108.3384
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Neutrinos from the Sun: Super-Kamiokande

Update adding data till March 2012 (+ 1097 days)

● use also partially and fully contained events
to extend energy range down to 10 GeV

● worse angular resolution for contained events

● use also energy spectrum and  / e
 /  / e

 ratio

to discriminate between signal and atmospheric

● again no excess found, upper limits set on WIMP-nucleon cross section  
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Neutrinos: Antares

● installed in Mediterranean sea, near Toulon

● 12 detection lines, each line 25 storeys, 
each storey three 10” PMTs

● again, study upward-going events

● 20 MHz clock distribution system to 
calibrate timing between PMT signals to < 1 ns

● monitoring by LED and laser systems

● positions of lines monitored to < 20 cm

● tilt-meter compass system on each storey

● high-frequency acoustic emitters/transponders
at known positions on the sea floor and 
hydrophones at known positions along each line

● angular resolution ~ 0.3° for  with E > 10 TeV

Use sea water as Cherenkov radiator

  5 lines
  9 lines    operational
12 lines

 → 
decay angle
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Neutrinos: Antares

Neutrinos from the Sun

Antares
(Sun)

IceCube
(GC)

IceCube
(Virgo)

FERMI
(dSph)

MAGIC
(Segue 1)

interpreting e+ excess
as leptophilic DM:

Pamela alone
Pamela+Fermi+H.E.S.S.

[1302.6516]

● published analysis based on 2007/2008 data, update using 2007-2012 data

● find no excess in direction of Sun, derive upper limits on flux, 
SD

 and <
A 
v>

● “full-sky” search: look for clusters of events within
a cone of a given diameter (1° or 3°)

● specific search: look for excess of events in 
the direction of 50 selected candidate sources

● autocorrelation of 3058 neutrino candidates

● no significant excess found,  derive upper limits on fluxes

Also: various searches for point sources [1402.6182] [1402.2809]

http://arxiv.org/abs/arXiv:1302.6516
http://arxiv.org/abs/arXiv:1402.6182
http://arxiv.org/abs/arXiv:1402.2809
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Neutrinos: IceCube

Use polar ice as Cherenkov radiator
● installed close to South Pole

● southern hemisphere: galactic neutrinos 
cause downward-going events 

● sensitivity affected by large backgrounds 
from atmospheric muons

● 86 vertical strings, 1.5–2.5 km below surface

● each string 60 optical sensors, 10” PMTs

● strings 125 m apart → 1 km³ detection volume

● “track-like” events (from muons):

● angular resolution ~ 1° but no energy 
measurement → search for point sources

● “cluster-like” events: 

● energy measurement but limited angular 
resolution → search for diffuse emission

size: signal height
colour: signal time
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Neutrinos: IceCube

Various searches for point sources  (2008–2011/2 data)

[1212.4097]Neutrinos from the Sun  (2010/2011, 317 days of data)
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simulation: 1 TeV WIMP

simulation: 50 GeV WIMP

● no excess over
background
observed

● set upper limits
on WIMP-nucleon
scattering 
cross sections

● look for excess of events in the direction 
of selected candidate sources

● generic searches using auto-correlation and
multipole fits of neutrino candidates

● multipole analysis to search for DM annihilation
in galactic halo

● no signals found in any search → derive upper limits

[1408.0634]

[1406.6757]

[1406.6868]

http://arxiv.org/abs/arXiv:1212.4097
http://arxiv.org/abs/arXiv:1408.0634
http://arxiv.org/abs/arXiv:1406.6757
http://arxiv.org/abs/arXiv:1406.6868
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Summary

Choice of messenger particles

Choice of potential sources
● galactic centre and halo

● extra-galactic (e.g. dSph)

● neutrinos from the Sun

Different experimental approaches
● above atmosphere at lower energies

● ground-based at highest energies

● photons

● neutrinos

● anti-particles  –  

point back
to source

deviated in
magnetic fields

Problem: find an unambiguous signature
● almost any signal can be interpreted in

terms of Dark Matter annihilations

● almost any signal can be interpreted in
terms of astro-physical backgrounds
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