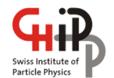


PhD Winter School 2013

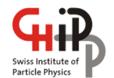

Grindelwald, Switzerland January 21-25, 2013

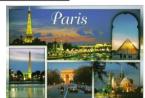
Olaf Steinkamp

olafs@physik.uzh.ch



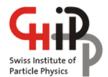
Your Lecturer


- born in Bremen, Germany
- studied physics in Bonn
- PhD work at CERN
 - · on a small experiment you will never have heard of
- 1st PostDoc at Saclay
 - working on the construction of the NA48 detector
 - observation of direct CP violation in neutral kaon decays
- 2nd PostDoc at NIKHEF
 - working on the construction of the HERA-B detector
 - (failed) attempt to search for CP violation in the $B^0\overline{B}^0$ system
- "Wissenschaftlicher Mitarbeiter" at Universität Zürich
 - working on the LHCb experiment
 - indirect search for "New Physics" (= physics beyond the Standard Model) via precision measurements of CP violation and rare heavy quark decays



Your Lecturer

- born in Bremen, Germany
- studied physics in Bonn
- PhD work at CERN
 - on a small experiment you will never have heard of
- 1st PostDoc at Saclay
 - working on the construction of the NA48 detector
 - observation of direct CP violation in neutral kaon decays
- 2nd PostDoc at NIKHEF
 - working on the construction of the HERA-B detector
 - a (failed) attempt to search for CP violation in the $B^0\overline{B}^0$ system
- "Wissenschaftlicher Mitarbeiter" at Universität Zürich
 - working on the LHCb experiment
 - indirect search for "New Physics" (= physics beyond the Standard Model) via precision measurements of CP violation and rare heavy quark decays

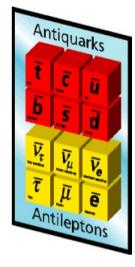


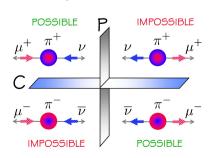
Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- · Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{\star 0} \, \mu^+ \, \mu^-$

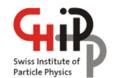
[selected topics, no attempt at giving a comprehensive overview of the field!]


Outline

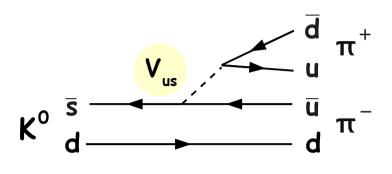

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$

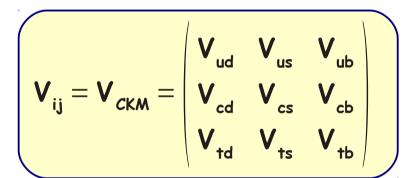


Flavour Physics


- study properties of the three fermion families and their interactions
 - masses, lifetimes, ...
 - couplings, amplitudes, phases, ...
- · it's all about the weak interaction
 - flavour conserved in strong and electromagnetic interactions
- three distinct sectors (theoretical questions and experimental approaches)
 - quarks: measure mixing parameters, test Standard Model predictions
 - charged leptons: test lepton number conservation
 - neutrinos: measure oscillation parameters, masses, Dirac ↔ Majorana?
- guiding principle: symmetries and their violation
 - Parity (P), Charge Conjugation (C), Time reversal (T),
 combined CP symmetry, all violated in weak interactions

this course



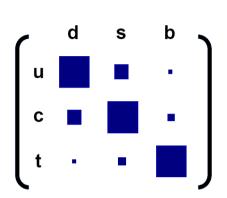

CKM Matrix

Observe mixing between quark families in charged-current interactions

- e.g. kaons and B mesons would otherwise be stable particles
- described by quark mixing matrix V_{ij}
 (Cabibbo-Kobayashi-Maskawa = CKM)
 in the charged current Lagrangian

$$-L_{cc} = \frac{g}{\sqrt{2}} \overline{u}_{i} \gamma^{\mu} \left(1 - \gamma_{5}\right) V_{ij} d_{j} W_{\mu}^{+} + h.c.$$

- studying the parameters of the CKM matrix is one of the main goals of quark flavour physics
- 3 quark families: 4 free parameters = 3 rotation angles + complex phase
- · this complex phase is the only source of CP violation in the Standard Model



Wolfenstein Parametrization

Values of the CKM matrix elements not predicted by theory

measured magnitudes show clear hierarchy

• measured magnitudes show clear hierarchy [PDG 2012]
$$V_{CKM} = \begin{pmatrix} 0.97425 \pm 0.00022 & 0.2252 \pm 0.0009 & 0.00389 \pm 0.00044 \\ 0.2230 \pm 0.0011 & 1.023 \pm 0.036 & 0.0406 \pm 0.0013 \\ 0.0084 \pm 0.0006 & 0.0387 \pm 0.0021 & 0.88 \pm 0.07 \end{pmatrix} \qquad \qquad \begin{array}{c} d & s & b \\ u & \blacksquare & \bullet \\ c & \blacksquare & \blacksquare & \bullet \\ t & \bullet & \blacksquare & \bullet \\ \end{array}$$

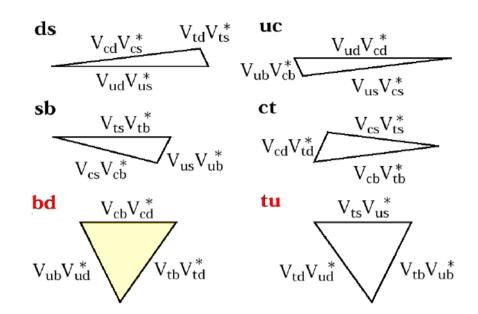
is there some deeper meaning hidden in this?

This hierarchy reflected in Wolfenstein parametrisation

• expand all CKM elements in terms of $\lambda = \sin \theta_c \approx 0.23$

L. Wolfenstein, [PRL 51 (1983) 1945]

- approximate to order λ^3
- assign the complex phase to the smallest elements, V_{td} and V_{ub}

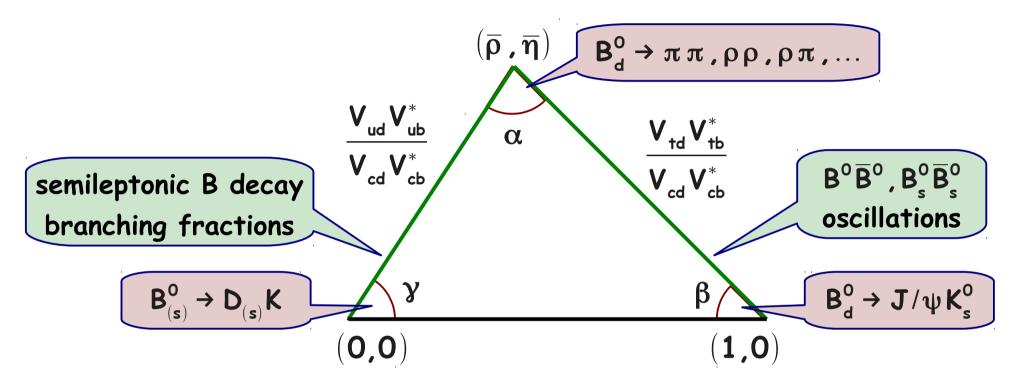

$$V_{CKM} \approx egin{array}{c|c} 1-\lambda^2/2 & \lambda & A \cdot \lambda^3 & \rho - i\eta \\ -\lambda & 1-\lambda^2/2 & A \cdot \lambda^2 \\ A \cdot \lambda^3 & 1-\rho - i\eta & -A \cdot \lambda^2 & 1 \\ \end{array} + O(\lambda^4)$$

Unitarity Triangles

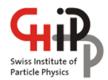
Unitarity of CKM matrix \rightarrow 6 orthogonality relations

$$\begin{split} &V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0 \quad (\lambda,\lambda,\lambda^5) \\ &V_{ud}V_{td}^* + V_{us}V_{ts}^* + V_{ub}V_{tb}^* = 0 \quad (\lambda^3,\lambda^3,\lambda^3) \\ &V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0 \quad (\lambda^4,\lambda^2,\lambda^2) \\ &V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0 \quad (\lambda,\lambda,\lambda^5) \\ &V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \quad (\lambda^3,\lambda^3,\lambda^3) \\ &V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{td}V_{tb}^* = 0 \quad (\lambda^4,\lambda^2,\lambda^2) \end{split}$$

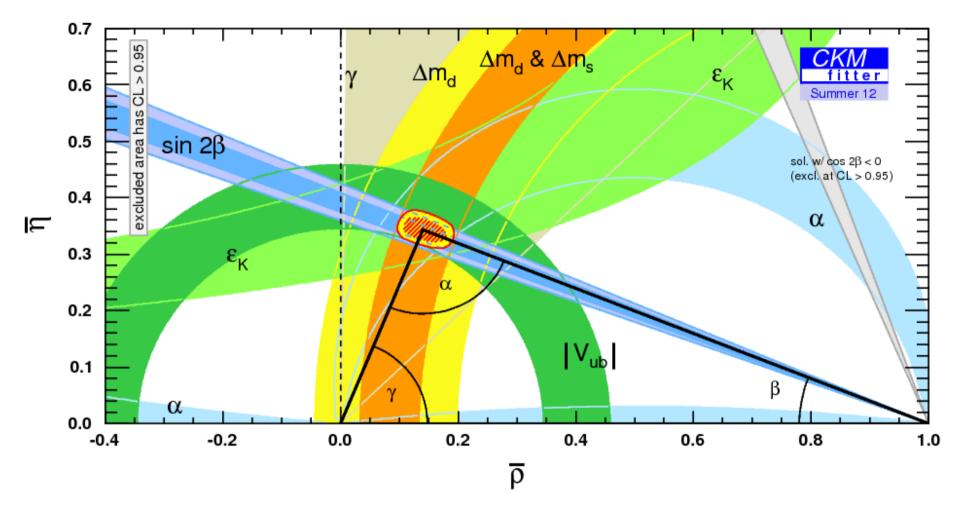
- can be visualized as triangles in the complex plane
 - all six triangles have the same surface area \propto CP violation
 - but four of them are "squashed"


- C.Jarlskog,
 [PRL 55 (1985) 1039]
- the two non-squashed triangles are identical in Wolfenstein approximation
 - differences appear at higher orders of $\lambda \rightarrow$ become relevant at LHCb

angles and sides of these triangles are related to measurable quantities


"The" Unitarity Triangle

Use
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
 and normalize to $V_{cd}V_{cb}^*$

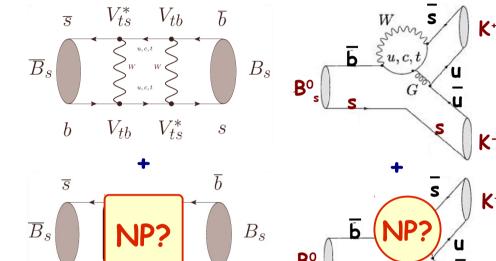


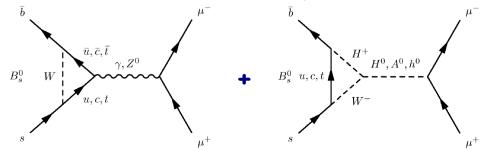
- measure the lengths of the two sides: CP conserving quantities
- measure all three angles: CP violating quantities (angles = phases!)
- many observables → overconstraint determination of triangle

consistency check of Standard Model!

"The" Unitarity Triangle 2012

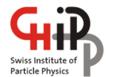
- so far a huge success story for the Standard Model
- current measurement precision permits ~20% contribution from New Physics


need more precise measurements: this is the goal of LHCb!


Loops!

Why do we expect New Physics to show up in these observables?

- many processes involve loop diagrams:
 - box diagrams (mixing)
 - Penguin diagrams (decays)
- New Physics models usually predict new, heavy particles (e.g. SUSY)
- these particles can appear in the loops and affect magnitudes and phases


- searches are sensitive to the appearance of virtual particles in loops
 - test much higher mass scales than direct searches for new particles (limited by center-of-mass energy) \bar{b}
- another promising hunting ground:
 rare heavy quark decays

Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$

Isospin

Observe similar behaviour of proton/neutron

· different charge but similar masses, same couplings in nuclear interactions

Heisenberg (1932): p/n form an Isospin doublet

ZfP 77 (1932) 1

• nuclear interaction invariant under global SU(2) rotation in Isospin space

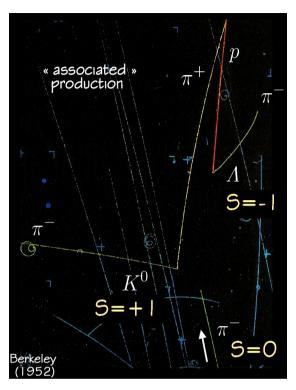
$$p: (I,I_z) = (1/2,+1/2) ; n: (I,I_z) = (1/2,-1/2)$$

• similarly: $\pi^+/\pi^0/\pi^-$ form an Isospin triplet

$$\pi^{+}: (\mathbf{I}, \mathbf{I}_{z}) = (\mathbf{1}, +\mathbf{1}) ; \pi^{0}: (\mathbf{I}, \mathbf{I}_{z}) = (\mathbf{1}, 0) ; \pi^{-}: (\mathbf{I}, \mathbf{I}_{z}) = (\mathbf{1}, -\mathbf{1})$$

In today's language: $I_z = +1/2 \rightarrow u$ quark, $I_z = -1/2 \rightarrow d$ quark

$$p = (uud)$$
, $n = (udd)$ $\pi^+ = (u\overline{d})$, $\pi^0 = 1/\sqrt{2}(u\overline{u} + d\overline{d})$, $\pi^- = (\overline{u}d)$

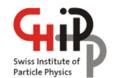

- · Isospin is not an exact symmetry but rather successful as a concept
 - works so well because $m_u \sim m_d$ and m_u , $m_d \ll \Lambda_{QCD} \approx 200$ MeV

Strangeness

Observe "strangely behaved" particles

- large production cross sections
 - typical for strong interaction
- but long lifetimes of order 10^{-10} s
 - typical for weak decays
- always produced in pairs: "associated production"

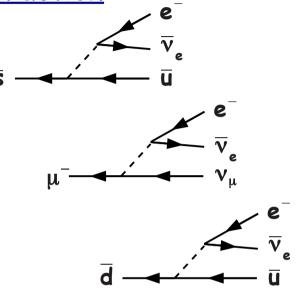
Gell-Mann (1953) / Nishijima (1955): "strangeness" quantum number


conserved in production (strong interaction)

PR 92 (1953) 833 PTP 13 (1955) 285

not conserved in decay (weak interaction)

In today's language: strangeness → s quark


associated production: creation of an ss-pair in strong interaction

Cabibbo Angle

Observe different coupling strengths of weak interaction

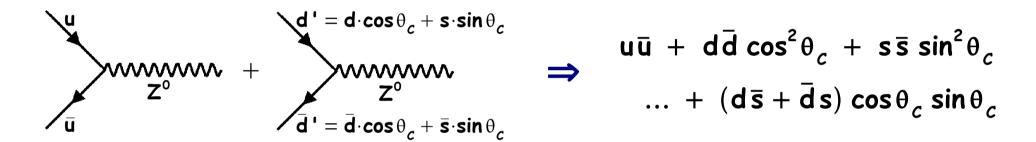
- weak coupling constant should be universal if weak interactions are a fundamental force, but:
 - coupling in decays of strange particles seems about a factor 20 smaller than in muon decay
 - coupling in neutron decay about 4% smaller than in muon decay

Cabibbo (1963): weak interaction couples to a linear combination

[PRL 10 (1963) 531]

$$d' = \cos \theta_c \cdot d + \sin \theta_c \cdot s$$
 with $\lambda = \sin \theta_c \approx 0.22$

coupling strengths in hadronic decays are then (using today's language)


$$\frac{d \to u W^{-}}{\mu^{-} \to \nu_{\mu} W^{-}} = \cos^{2}\theta_{c} \approx 0.96 \qquad \frac{s \to u W^{-}}{d \to u W^{-}} = \frac{\sin^{2}\theta_{c}}{\cos^{2}\theta_{c}} \approx \frac{1}{20}$$

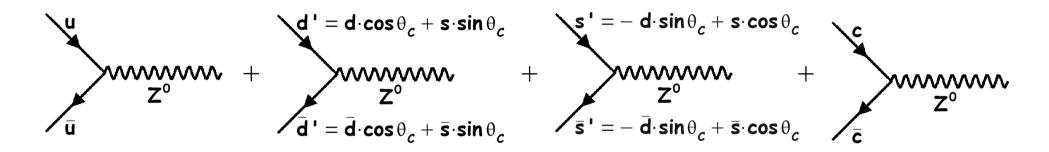
GIM Mechanism

Observe strong suppression of Flavour-Changing Neutral Currents

- · but would expect sizeable amplitude if weak interaction couples to u and d'

Glashow, Ilioupolis, Maiani (1970): quark doublets

[PRD 2 (1970) 1285]


$$\begin{pmatrix} \mathbf{u} \\ \mathbf{d'} \end{pmatrix} \quad \begin{pmatrix} \mathbf{c} \\ \mathbf{s'} \end{pmatrix} \qquad \text{with} \qquad \begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \cdot \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \end{pmatrix}$$

- leads to cancellation of FCNC amplitudes at tree level (\rightarrow next slide)
- requires an additional, not yet observed quark (c quark discovered in 1974)

GIM Mechanism

Quark doublets -> suppression of FCNC at tree level

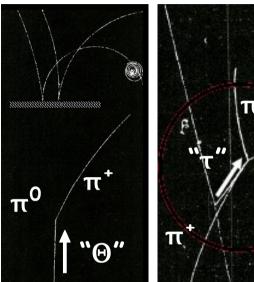
$$\begin{aligned} \mathbf{u}\bar{\mathbf{u}} + \mathbf{c}\bar{\mathbf{c}} + (\mathbf{d}\bar{\mathbf{d}} + \mathbf{s}\bar{\mathbf{s}}) \cdot \mathbf{cos}^2 \theta_c + (\mathbf{d}\bar{\mathbf{d}} + \mathbf{s}\bar{\mathbf{s}}) \cdot \mathbf{sin}^2 \theta_c \\ \dots + (\mathbf{d}\bar{\mathbf{s}} + \bar{\mathbf{d}}\mathbf{s}) \cdot \mathbf{cos} \theta_c \mathbf{sin} \theta_c - (\mathbf{d}\bar{\mathbf{s}} + \bar{\mathbf{d}}\mathbf{s}) \cdot \mathbf{sin} \theta_c \mathbf{cos} \theta_c = \mathbf{u}\bar{\mathbf{u}} + \mathbf{c}\bar{\mathbf{c}} + \mathbf{d}\bar{\mathbf{d}} + \mathbf{s}\bar{\mathbf{s}} \end{aligned}$$

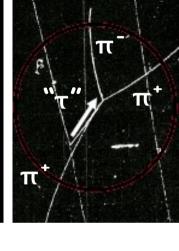
- cancellation only exact if all quark masses are the same
 - valid to very good approximation, because quark masses « Z⁰ mass
- FCNC can proceed through 2nd order processes (e.g. double W-exchange)
 - · but strongly suppressed because of smallness of weak coupling constant

Parity Violation

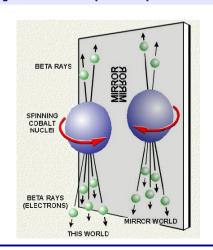
"Θ/τ-puzzle": observe two charged, strange, spin-0 mesons

- same mass (~ 500 MeV) and same lifetime, but:
- one (" Θ ") decays into $\pi^{+}\pi^{0}$ (even parity)
- the other (" τ ") decays into $\pi^{\dagger}\pi^{\dagger}\pi^{-}$ (odd parity)


Yang, Lee (1956): V-A theory of weak interactions

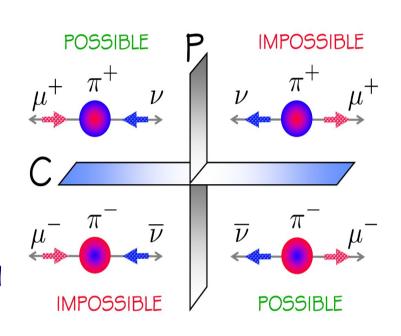

[PR 104 (1956) 254]

- parity is not conserved in weak interactions
- " Θ " and " τ " are in fact the same particle (K^{+})


Wu et al. (1957): experimental proof of parity violation

- measure angular distribution of electrons from β -decay of polarized ⁶⁰Co (spin=5⁺) to ⁶⁰Ni* (spin=4⁺)
- must be up-down symmetric if parity is conserved
- observation: electrons are emitted predominantly opposite to 60 Co-spin \rightarrow parity is maximally violated !

[PR 105 (1957) 1413]


O. Steinkamp

CP Symmetry

Parity violation in semi-leptonic pion decays

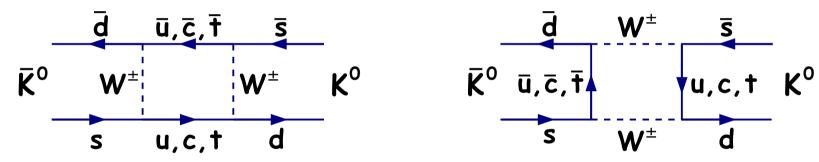
- muons from π^{\pm} decays are polarized:
 - μ^{-} from π^{-} -decays are left-handed
 - μ^{+} from π^{+} -decays are right-handed
- · parity is maximally violated, as expected
- · charge conjugation is also maximally violated
- but: decay rates for $\pi^{\text{-}}$ to left-handed $\mu^{\text{-}}$ and for $\pi^{\text{+}}$ to right-handed $\mu^{\text{+}}$ are the same !

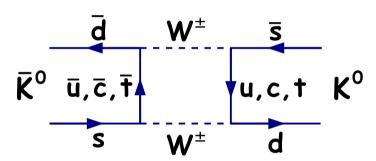
Landau, Okun (1957): relevant symmetry in weak interactions is CP

• CP = Charge conjugation × Parity

[Nucl Phys 3 (1957) 127] [Zh Eksp Teor Fiz 32 (1957) 1587]

• Richard Feynman in Symmetries in Physical Laws, 1963:


"it is really true that right and left symmetry is still maintained ... the right-handed matter behaves the same way as the left-handed antimatter"



Two K^o States

Short excursion: K°K° mixing

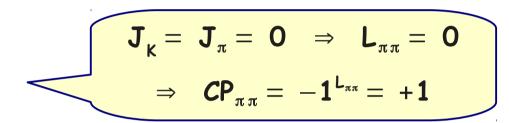
- strangeness is the only quantum number that distinguishes K^o from K^o
- strangeness is not conserved in weak interactions: transitions $K^o \leftrightarrow \overline{K}{}^o$
 - in today's language: transitions via double W exchange ("box diagrams")

• pure state $|K^0\rangle$ produced at time t=0 will evolve into a mixed state at t>0

$$| \psi (t) \rangle = \alpha (t) \cdot | K^{o} \rangle + b(t) \cdot | \bar{K}^{o} \rangle$$

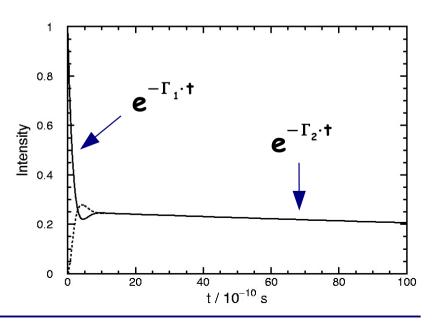
define Eigenstates of CP operator:

$$\begin{vmatrix} \mathbf{K}_{1} \rangle = \frac{1}{\sqrt{2}} \cdot \left\{ \begin{vmatrix} \mathbf{K}^{0} \rangle + \begin{vmatrix} \bar{\mathbf{K}}^{0} \rangle \right\} \quad \Rightarrow \quad \mathbf{CP} \begin{vmatrix} \mathbf{K}_{1} \rangle = + \begin{vmatrix} \mathbf{K}_{1} \rangle \\ |\mathbf{K}_{2} \rangle = \frac{1}{\sqrt{2}} \cdot \left\{ \begin{vmatrix} \mathbf{K}^{0} \rangle - \begin{vmatrix} \bar{\mathbf{K}}^{0} \rangle \right\} \quad \Rightarrow \quad \mathbf{CP} \begin{vmatrix} \mathbf{K}_{2} \rangle = - \begin{vmatrix} \mathbf{K}_{2} \rangle \end{vmatrix}$$


Two K^o States

Gell-Mann, Pais (1955): two K^o states with different lifetimes

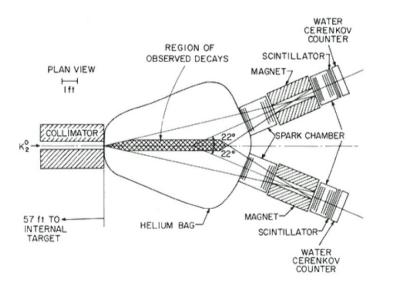
• if CP conserved in weak interactions, then

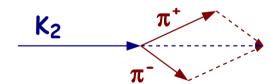

[PR 97 (1955) 1387]

- K₁ and K₂ are also eigenstates of weak interaction
- K₁ can decay into 2 pions
- K₂ cannot decay into 2 pions

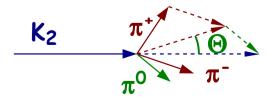
- all possible decay channels for K₂ suppressed:
 - decays to 3 pions by phase space
 - semi-leptonic decays by parity violation
- K_2 must have much longer lifetime than K_1
 - measured lifetimes:

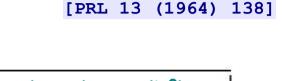
$$\tau \left(\mathbf{K}_{2} \right) \approx 500 \times \tau \left(\mathbf{K}_{1} \right)$$

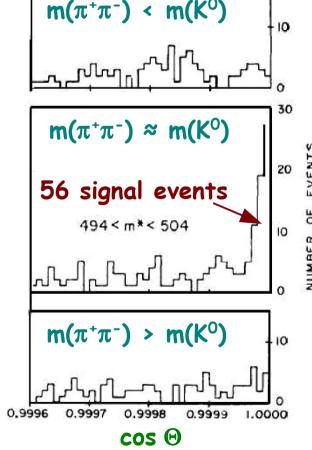



CP Violation

Christenson, Cronin, Fitch, Turlay (1964): observation of $K_2 \to \pi^+\pi^-$


- shoot protons into fixed target, produce K^0 and \overline{K}^0
 - let them propagate in a vacuum tube
 - K_1 component decays away \rightarrow obtain pure K_2 beam
- search for $\pi^+\pi^-$ decays in this K_2 beam
 - energy conservation: invariant mass of $\pi^+\pi^-$ pair
 - momentum conservation: momentum balance


2-body decays:



3-body decays:

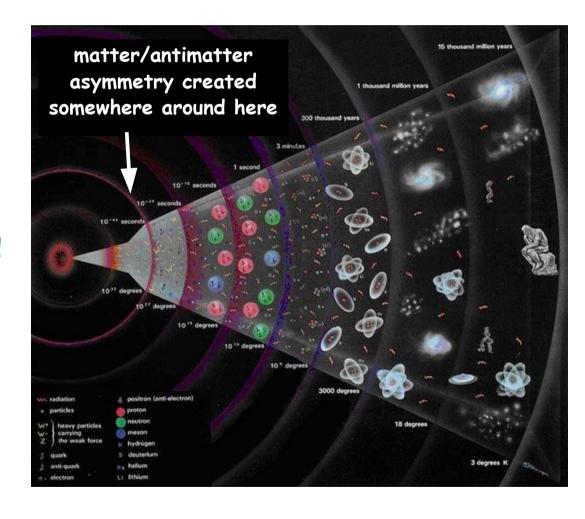
observe excess of 56 events in signal region ⇒

BR
$$(K_2 \rightarrow \pi^+ \pi^-) \approx 2 \times 10^{-3}$$

Sakharov Conditions

Sakharov (1967): CP violation required to create a matter/antimatter

asymmetry in the Universe


[JETP Lett 5 (1967) 24]

- Sakharov's three conditions:
 - Baryon-number violation
 - C violation and CP violation
 - thermal non-equilibrium
- but: baryon asymmetry observed in the universe is

$$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6 \times 10^{-10}$$

CKM-induced CP violation gives

$$\eta \approx 10^{-18}$$

need additional sources of CP violation

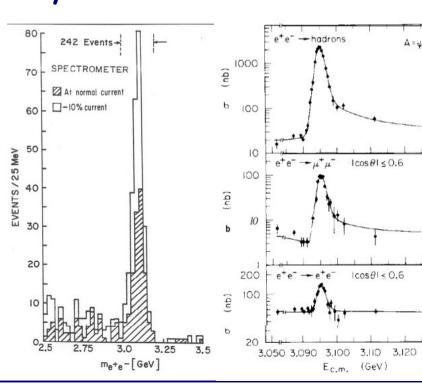
CKM Mechanism

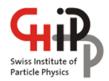
Kobayashi, Maskawa (1972): CP violation if three quark doublets

- 9 complex numbers = 18 parameters
 - 9 unitarity constraints ($V^{\dagger}V = VV^{\dagger} = 1$)
 - 5 arbitrary ("unphysical") phases
 - = 4 free parameters: 3 rotation angles + 1 complex phase
- CP violation due to interference if diagrams with different weak phase contribute to the same process
- "prediction" of third quark family before even charm quark was discovered Various other models proposed at the time to explain CP violation
- most prominent: new "superweak" force that acts only in kaon mixing

 $\begin{vmatrix}
\mathbf{u}_{i} \rightarrow \mathbf{e}^{i\phi_{i}} \mathbf{u}_{i} \\
\mathbf{d}_{i} \rightarrow \mathbf{e}^{i\phi_{j}} \mathbf{d}_{i}
\end{vmatrix}
\Leftrightarrow
\mathbf{V}_{ij} \rightarrow \mathbf{e}^{i(\phi_{j} - \phi_{i})} \mathbf{V}_{ij}$

Charm Quark

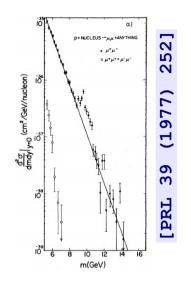

"November revolution" (1974)

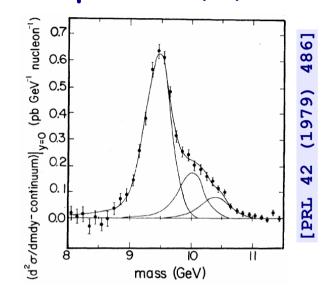

[PRL 33 (1974) 1404] [PRL 33 (1974) 1406]

- observation of a narrow resonance at a mass of 3.1 GeV, simultaneously
 - in p + Be \rightarrow e⁺ e⁻ + X at BNL (Ting et al.) \rightarrow "J"
 - in $e^+e^- \to e^+e^-$, $\mu^+\mu^-$, hadrons at SLAC (Richter et al.) \to " Ψ "
 - · in both cases, measured width dominated by the detector resolution
- narrow width → long lifetime
 - → cannot be an excited u,d,s state
- interpretation: bound cc state

$$m(c) \sim 1.5 GeV$$

 soon confirmed by observation of other cc states and of open charm (D mesons)

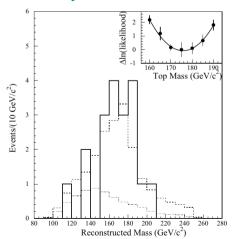


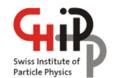

Bottom and Top Quarks

<u>Lederman et al. (1977): search for bb resonances in p + Cu $\rightarrow \mu^+ \mu^- + X$ </u>

- observe excess of $\mu^+\mu^-$ pairs around an invariant mass of 9.4-10.4 GeV
- resolved into three resonances,
 interpreted as bound bb states

 $m(b) \sim 4.5 GeV$




[PRL 74 (1995) 2626] [PRL 74 (1995) 2632]

CDF/DO (1995): first observation of top quark

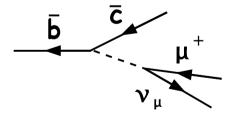
- existence of top quark taken for granted after discovery of b quark
- mass around 170 GeV predicted from fits to electroweak precision measurements at LEP and SLC
- production in 1.8 TeV pp collisions at Tevatron
- detection in $t \rightarrow W$ b decays

m(t) ~ 176 GeV

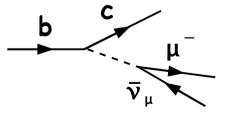
BoBo Mixing

Argus experiment at DESY (1987)

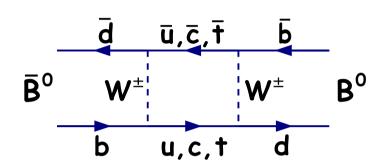
[PLB192 (1987) 245]

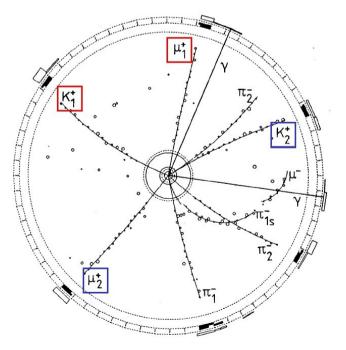

- e^+e^- collider operating at Y(4s) resonance
- produce $B^0\overline{B}^0$ pairs through

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B^0\bar{B}^0$$


- BoBo mixing through box diagrams
- can be observed in semi-leptonic decays

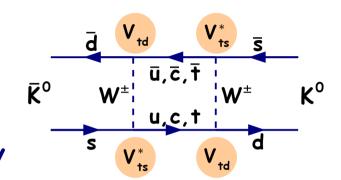
$$B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$$

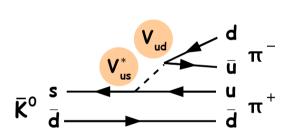

$$\bar{\mathsf{B}}^{\mathsf{0}} o \mathsf{D}^{*+} \mu^- \bar{\nu}_{\mu}$$

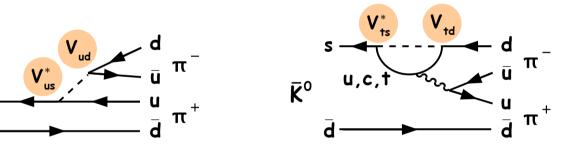


21 Jan 2013

- observe "like-sign event" with two $\mu^{\scriptscriptstyle -}$ or two $\mu^{\scriptscriptstyle +}$ \to B° or $\overline B{}^{\scriptscriptstyle 0}$ must have mixed
- strong mixing observed → predict large top quark mass






Direct CP Violation

CKM: CP violation from interference of diagrams with different phase

- interference of box diagrams with different internal quarks: "indirect" CP violation in K mixing
- interference of tree and penguin decay diagrams with different phases: "direct" CP violation in decay

• can be tested by comparing CP violation in $\pi^{\dagger}\pi^{-}$ and $\pi^{0}\pi^{0}$ decays: u T different decay diagrams - expect CP violation to be slightly different

$$\eta_{+-} = \frac{\Gamma\left(\mathsf{K}_{\mathsf{L}} \to \pi^{+} \pi^{-}\right)}{\Gamma\left(\mathsf{K}_{\mathsf{s}} \to \pi^{+} \pi^{-}\right)} = \varepsilon + \varepsilon' \quad ; \quad \eta_{oo} = \frac{\Gamma\left(\mathsf{K}_{\mathsf{L}} \to \pi^{o} \pi^{o}\right)}{\Gamma\left(\mathsf{K}_{\mathsf{s}} \to \pi^{o} \pi^{o}\right)} = \varepsilon - 2 \varepsilon'$$

- in Standard Model expect $\epsilon'/\epsilon \approx 10^{-3}$
- if CP violation only in K mixing (superweak interaction): $\eta_{+-} = \eta_{00}$, $\epsilon' = 0$

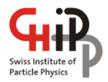
Direct CP Violation

Experimental approach: measure the "double ratio"

$$\mathbf{R} \; = \; \left| \frac{\eta_{oo}}{\eta_{+-}} \right|^{2} \; = \; \frac{\Gamma \left(\mathbf{K_{L}} \! \to \! \pi^{o} \pi^{o} \right) \, / \; \Gamma \left(\mathbf{K_{s}} \! \to \! \pi^{o} \pi^{o} \right)}{\Gamma \left(\mathbf{K_{L}} \! \to \! \pi^{+} \pi^{-} \right) \, / \; \Gamma \left(\mathbf{K_{s}} \! \to \! \pi^{+} \pi^{-} \right)} \; \approx \; \mathbf{1} - \mathbf{6} \cdot \mathbf{Re} \left(\frac{\epsilon'}{\epsilon} \right)$$

- challenge: control systematics to $O(10^{-4})$
- many systematic effects cancel to first order if all four decay rates are measured simultaneously (same beam, same detector)

same decay volume for Ki and Ks NA48 simultaneous K₁ and K₅ beams


NA48/KTeV (2001): observation of $\varepsilon'/\varepsilon \neq 0$

NA48@CERN:
$$Re(\epsilon'/\epsilon) = (14.7 \pm 2.2) \times 10^{-4}$$

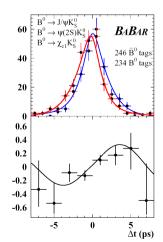
KTeV@FNAL: Re
$$(\epsilon'/\epsilon) = (19.2 \pm 2.1) \times 10^{-4}$$

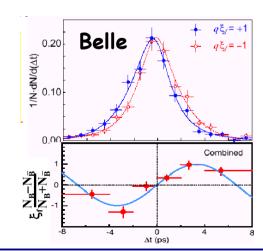
[PRD 83 (2011) 092001]

- vindication of CKM model of CP violation
- but large hadronic uncertainties, do not learn much about CKM parameters

CP Violation in The BoBo System

Many advantages over K°K° system


 many decay channels and observables, large CP asymmetries, theoretically "clean" predictions, ...


But experimental challenges

- ullet B mesons heavy o small production cross section
- many decay channels \rightarrow small branching ratios
- short lifetime and fast oscillation frequency

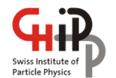
need high-luminosity accelerators and very precise detectors

- dedicated "B factories" constructed especially for CP measurement:
 - BaBar at PEP-II, Belle at KEKB
- 2001: both observe CP asymmetry in "golden decay channel" $B^{o} \to J/\psi \ K^{o}_{s}$
 - measured values in good agreement with CKM prediction

2001 ++

Many more and much more precise results

- BaBar/Belle, CDF/DO at Tevatron, now LHCb
- results so far in very good agreement with CKM predictions (2-3σ deviations came and went)


remainder of this lecture

- Babar and Belle stopped data taking, Belle collected ~ 1 ab⁻¹
- Tevatron stopped in autumn 2011 \rightarrow CDF/DO collected \sim 9 fb⁻¹
- LHCb collected ~1 fb⁻¹ at 7 TeV in 2011 and ~2 fb⁻¹ at 8 TeV in 2012
 - $b\overline{b}$ production cross section ~ 5 x Tevatron, ~ 500'000 x Babar/Belle
 - many analyses ongoing, already ~ 80 papers published
- LHC shutdown in 2013/2014, resume at ≥ 13 TeV in 2015
 - another factor two in bb production cross section
- "Belle II" under construction; goal: collect $\sim 50 \times$ Belle luminosity by 2022

Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$

PoPo Mixing

<u>Applies for all neutral meson systems</u> $(K^{\circ}\overline{K}^{\circ}, D^{\circ}\overline{D}^{\circ}, B^{\circ}\overline{B}^{\circ}, B^{\circ}_{s}\overline{B}^{\circ})$

- · different phenomenologies due to different mass and lifetime differences
- flavour mixing through box diagrams → coupled system

$$\left| \psi \left(\mathbf{t} \right) \right\rangle \ = \ \mathbf{a}(\mathbf{t}) \left| \mathbf{P}^{\mathbf{o}} \right\rangle \ + \ \mathbf{b}(\mathbf{t}) \left| \mathbf{\bar{P}}^{\mathbf{o}} \right\rangle$$

· time evolution described by two-component Schrödinger equation

$$-i \frac{\partial}{\partial t} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = H \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$$

- · with an effective Hamiltonian H
 - H is not Hermitian since it does not include decay products
- decompose H into Hermitian parts:

$$\mathbf{M} \ \equiv \ \frac{1}{2} \left(\mathbf{H} + \mathbf{H}^{\dagger} \right) \qquad ; \qquad \frac{1}{2} \, \mathbf{\Gamma} \ \equiv \ \frac{1}{2 i} \left(\mathbf{H} - \mathbf{H}^{\dagger} \right)$$

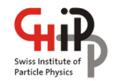
$$\mathbf{H} = \mathbf{M} - \frac{\mathbf{i}}{2} \mathbf{\Gamma} = \begin{pmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{pmatrix} - \frac{\mathbf{i}}{2} \begin{pmatrix} \mathbf{\Gamma}_{11} & \mathbf{\Gamma}_{12} \\ \mathbf{\Gamma}_{21} & \mathbf{\Gamma}_{22} \end{pmatrix}$$

PoPo Mixing (ii)

assume CPT is conserved: particle/antiparticle have same mass/lifetime

$$\left.\begin{array}{lll} \mathbf{M} & \equiv & \mathbf{M}_{11} & = & \mathbf{M}_{22} \\ \boldsymbol{\Gamma} & \equiv & \boldsymbol{\Gamma}_{11} & = & \boldsymbol{\Gamma}_{22} \end{array}\right\} \quad \Rightarrow \quad \mathbf{H} = \left[\begin{array}{ccc} \mathbf{M} - \frac{\mathbf{i}}{2} \boldsymbol{\Gamma} & \mathbf{M}_{12} - \frac{\mathbf{i}}{2} \boldsymbol{\Gamma}_{12} \\ \mathbf{M}_{12}^* - \frac{\mathbf{i}}{2} \boldsymbol{\Gamma}_{12}^* & \mathbf{M} - \frac{\mathbf{i}}{2} \boldsymbol{\Gamma} \end{array}\right]$$

Eigenvalues


$$\omega_{\text{H,L}} \; = \; \mathbf{M} - \frac{\mathrm{i}}{2} \; \mathbf{\Gamma} \; \pm \; \sqrt{\left(\mathbf{M}_{12} - \frac{\mathrm{i}}{2} \; \mathbf{\Gamma}_{12}\right) \left(\mathbf{M}_{12}^* - \frac{\mathrm{i}}{2} \; \mathbf{\Gamma}_{12}^*\right)} \; \equiv \; \mathbf{m}_{\text{H,L}} - \frac{\mathrm{i}}{2} \; \mathbf{\Gamma}_{\text{H,L}}$$

· Eigenstates (labeled by their mass, H for "heavy", L for "light")

$$\left|\mathsf{P}_{\mathsf{H,L}}\right> = \mathsf{p}\left|\mathsf{P}^\mathsf{o}\right> \mp \mathsf{q}\left|\bar{\mathsf{P}}^\mathsf{o}\right> \qquad \mathsf{with} \qquad \frac{\mathsf{q}}{\mathsf{p}} = -\sqrt{\frac{\mathsf{H}_{21}}{\mathsf{H}_{12}}} = -\sqrt{\frac{\mathsf{M}_{12}^* - \frac{\mathsf{i}}{2}\,\Gamma_{12}^*}{\mathsf{M}_{12} - \frac{\mathsf{i}}{2}\,\Gamma_{12}}}$$

these are states with well-defined mass and decay width

$$\begin{aligned} \left| \mathbf{P}_{H}(\mathbf{t}) \right\rangle &= \left(\mathbf{p} \cdot \left| \mathbf{P}^{O} \right\rangle - \mathbf{q} \cdot \left| \overline{\mathbf{P}}^{O} \right\rangle \right) \cdot \mathbf{e}^{-i m_{H} t} \cdot \mathbf{e}^{-\Gamma_{H} t / 2} \\ \left| \mathbf{P}_{L}(\mathbf{t}) \right\rangle &= \left(\mathbf{p} \cdot \left| \mathbf{P}^{O} \right\rangle + \mathbf{q} \cdot \left| \overline{\mathbf{P}}^{O} \right\rangle \right) \cdot \mathbf{e}^{-i m_{L} t} \cdot \mathbf{e}^{-\Gamma_{L} t / 2} \end{aligned}$$

Popo Mixing (iii)

time evolution of initially pure flavour states

$$\begin{vmatrix} \mathbf{P}_{(t=0)}^{0}(t) \rangle = \mathbf{g}_{+}(t) \cdot \begin{vmatrix} \mathbf{P}^{0} \rangle + \frac{\mathbf{q}}{\mathbf{p}} \cdot \mathbf{g}_{-}(t) \cdot \begin{vmatrix} \overline{\mathbf{P}}^{0} \rangle \end{vmatrix}$$
$$\begin{vmatrix} \overline{\mathbf{P}}_{(t=0)}^{0}(t) \rangle = \mathbf{g}_{+}(t) \cdot \begin{vmatrix} \overline{\mathbf{P}}^{0} \rangle + \frac{\mathbf{p}}{\mathbf{q}} \cdot \mathbf{g}_{-}(t) \cdot \begin{vmatrix} \mathbf{P}^{0} \rangle \end{vmatrix}$$

with:

$$\begin{split} g_{\pm}(t) &= \frac{1}{2} \left(e^{-\omega_L t} \pm e^{-\omega_H t} \right) \\ &= \frac{1}{2} \left(e^{-iMt} e^{-\Gamma t/2} \left(e^{+i\Delta m t/2} e^{+\Delta \Gamma t/4} \pm e^{-i\Delta m t/2} e^{-\Delta \Gamma t/4} \right) \end{split} \qquad \begin{aligned} \Delta m &\equiv m_H - m_L > 0 \\ \Delta \Gamma &\equiv \Gamma_H - \Gamma_L \end{aligned}$$

$$\Delta \mathbf{m} \equiv \mathbf{m}_{\mathsf{H}} - \mathbf{m}_{\mathsf{L}} > \mathbf{0}$$
 $\Delta \Gamma \equiv \Gamma_{\mathsf{H}} - \Gamma_{\mathsf{L}}$

mixing probabilities as a function of time t:

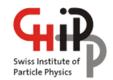
$$\begin{split} & \mathsf{Prob}_{(\mathsf{P}^0 \to \mathsf{P}^0)}(\mathsf{t}) \, = \, \mathsf{Prob}_{(\bar{\mathsf{P}}^0 \to \bar{\mathsf{P}}^0)}(\mathsf{t}) \, = \, \left| g_{_+}(\mathsf{t}) \right|^2 \, = \, \frac{1}{2} \, e^{-\Gamma \cdot \mathsf{t}} \, \left\{ \, \mathsf{cosh} \Big(\frac{\Delta \Gamma}{2} \cdot \mathsf{t} \Big) + \overline{\left(\mathsf{cos} \big(\Delta \, \mathsf{m} \cdot \mathsf{t} \big) \right)} \right\} \\ & \mathsf{Prob}_{(\mathsf{P}^0 \to \bar{\mathsf{P}}^0)}(\mathsf{t}) \, = \, \left| \frac{q}{p} \right|^2 \cdot \left| g_{_-}(\mathsf{t}) \right|^2 \, = \, \frac{1}{2} \cdot \left| \frac{q}{p} \right|^2 \cdot e^{-\Gamma \cdot \mathsf{t}} \cdot \left\{ \, \mathsf{cosh} \Big(\frac{\Delta \Gamma}{2} \cdot \mathsf{t} \Big) - \overline{\left(\mathsf{cos} \big(\Delta \, \mathsf{m} \cdot \mathsf{t} \big) \right)} \right\} \\ & \mathsf{Prob}_{(\bar{\mathsf{P}}^0 \to \mathsf{P}^0)}(\mathsf{t}) \, = \, \left| \frac{p}{q} \right|^2 \cdot \left| g_{_-}(\mathsf{t}) \right|^2 \, = \, \frac{1}{2} \cdot \left| \frac{p}{q} \right|^2 \cdot e^{-\Gamma \cdot \mathsf{t}} \cdot \left\{ \, \mathsf{cosh} \Big(\frac{\Delta \Gamma}{2} \cdot \mathsf{t} \Big) - \overline{\left(\mathsf{cos} \big(\Delta \, \mathsf{m} \cdot \mathsf{t} \big) \right)} \right\} \end{split}$$

PoPo Mixing (iv)

observable time-dependent asymmetries

$$\begin{split} \alpha_{\text{mix}}(\textbf{t}) \; &\equiv \; \frac{N(P^{0} \! \to \! P^{0}) \; - \; N(P^{0} \! \to \! \overline{P}^{0})}{N(P^{0} \! \to \! P^{0}) \; + \; N(P^{0} \! \to \! \overline{P}^{0})} \; = \; \frac{\cos(\Delta \, m \cdot t) \; + \; \delta \cdot \cosh(\Delta \, \Gamma \cdot t/2)}{\cosh(\Delta \, \Gamma \cdot t/2) \; + \; \delta \cdot \cos(\Delta \, m \cdot t)} \\ \overline{\alpha}_{\text{mix}}(\textbf{t}) \; &\equiv \; \frac{N(\overline{P}^{0} \! \to \! \overline{P}^{0}) \; - \; N(\overline{P}^{0} \! \to \! P^{0})}{N(\overline{P}^{0} \! \to \! \overline{P}^{0}) \; + \; N(\overline{P}^{0} \! \to \! P^{0})} \; = \; \frac{\cos(\Delta \, m \cdot t) \; - \; \delta \cdot \cosh(\Delta \, \Gamma \cdot t/2)}{\cosh(\Delta \, \Gamma \cdot t/2) \; - \; \delta \cdot \cos(\Delta \, m \cdot t)} \end{split}$$

with


$$\delta \equiv \frac{1 - \left| \mathbf{q}/\mathbf{p} \right|^2}{1 + \left| \mathbf{q}/\mathbf{p} \right|^2}$$

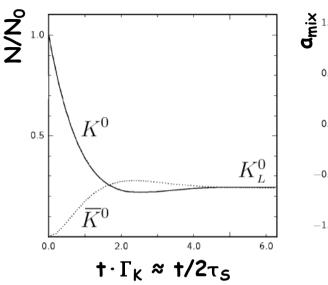
 $\delta \neq 0 \Leftrightarrow CP \text{ violation in mixing}$

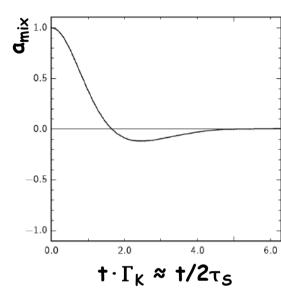
assume for now that CP is conserved in mixing, i.e. $\delta = 0$

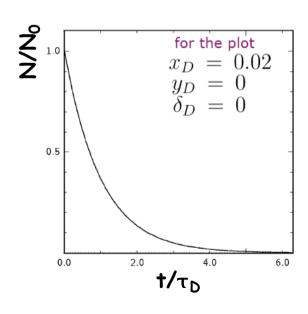
$$\alpha_{\text{mix}}(\textbf{t}) \ = \ \overline{\alpha}_{\text{mix}}(\textbf{t}) \ = \ \frac{\cos(\Delta\,\textbf{m}\cdot\textbf{t})}{\cosh(\Delta\,\boldsymbol{\Gamma}\cdot\textbf{t}/2)} \ = \ \frac{\cos(\textbf{x}\cdot\boldsymbol{\Gamma}\cdot\textbf{t})}{\cosh(\textbf{y}\cdot\boldsymbol{\Gamma}\cdot\textbf{t})} \qquad \text{with} \qquad \left\{ \begin{array}{c} \textbf{x} = \Delta\,\textbf{m}/\boldsymbol{\Gamma} \\ \textbf{y} = \Delta\,\boldsymbol{\Gamma}/2\,\boldsymbol{\Gamma} \end{array} \right.$$

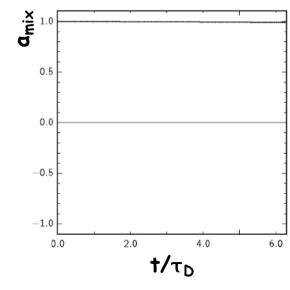
- oscillation frequency x: mass difference
- damping parameter y: lifetime difference | between the two weak Eigenstates

Mixing: $K^{0}\overline{K}^{0}$ and $D^{0}\overline{D}^{0}$




- $x_K \approx 0.95$
- $y_{K} \approx -0.996 (\tau_{L} \gg \tau_{S})$
- strong damping, only K_L left after about one oscillation

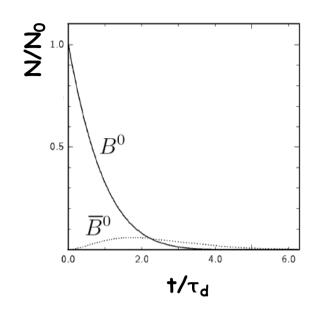


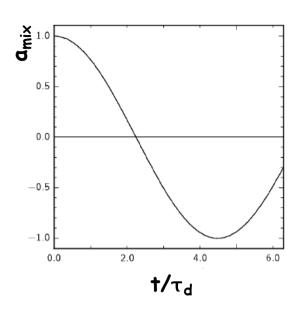

- $x_D \approx 0.008$
- $y_D \approx 0.007$
- mixing very small, e.g.
 time-integrated probability

$$\chi_{D} = \frac{x_{D}^{2} + y_{D}^{2}}{2(1 + x_{D}^{2})} \approx 3 \times 10^{-5}$$



2007: first evidence @ B factories; 2012: first observation @ LHCb

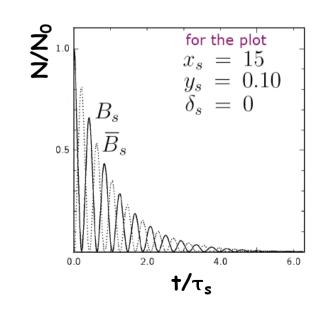


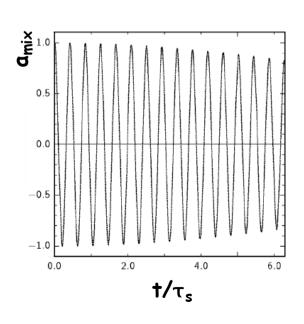

Mixing: $B^0\overline{B}^0$ and $B^0_sB^0_s$

$B^0\overline{B}^0$

- $x_d \approx 0.7$
- y_d ≈ 0
- significant mixing:

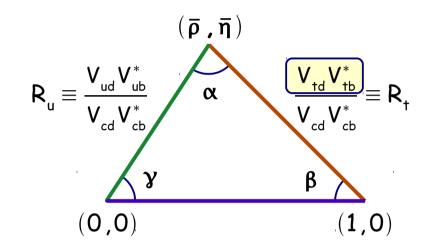
$$\chi_d = \frac{x_d^2}{2(1+x_d^2)} \approx 18\%$$

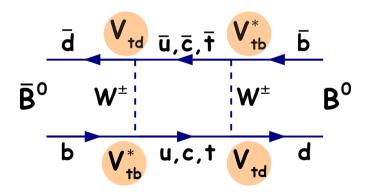




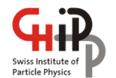
- x_s ≈ 26
- $y_s \approx 0.07$
- very fast oscillation, complete mixing:

$$\chi_s = \frac{x_s^2 + y_s^2}{2(1 + x_s^2)} \approx 50\%$$


B°B° Oscillations

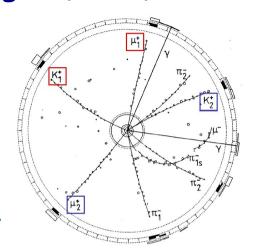

$\underline{B^0}\overline{B^0}$ oscillation frequency \rightarrow length of R₊ side of the Unitarity Triangle

• B°B° transitions due to the off-diagonal elements of the effective Hamiltonian


$$H_{12} = M_{12} - (i/2) \Gamma_{12}$$

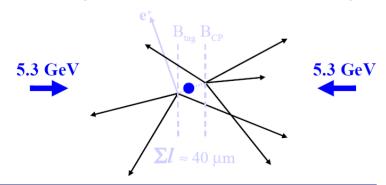
- M₁₂: dispersive part of the amplitude,
 transitions via <u>off-shell</u> intermediate states
 - dominated by t-box: $M_{12} \propto (V_{td} V_{tb}^*)^2$
- Γ_{12} : "absorptive part of the amplitude, transitions via <u>on-shell</u> intermediate states
 - dominated by c-box: $\Gamma_{12} \ll M_{12}$

$$\Rightarrow \left[\Delta m = 2 \left| M_{12} \right| \propto \left| V_{td} \right|^2 \cdot \left| V_{tb} \right|^2 \right]$$



B°B° Oscillations

First observation of time-integrated asymmetry by Argus (1987)


$$e^+e^- \rightarrow \Upsilon (4s) \rightarrow B^0 \bar{B}^0$$

• look at semi-leptonic decays, count fraction of like-sign dimuon events \rightarrow gives integrated mixing probability

But: impossible to observe oscillation pattern at Argus

- symmetric beam energies \rightarrow lab frame = $\Upsilon(4s)$ rest frame
 - $m_{\gamma(4s)} = 10.58 \, \text{GeV} \rightarrow p_B = 340 \, \text{MeV} \rightarrow \beta \gamma = 0.064$
 - mean B decay length $c\tau_{\rm B}\cdot\beta\gamma$ ~ 30 μ m, too small to resolve
- B°B° produced in coherent quantum state, oscillate in phase until one decays
 - need to measure difference of decay times to observe oscillation pattern
 - but B°B° produced back-to-back, cannot reconstruct position of production vertex

B Factories

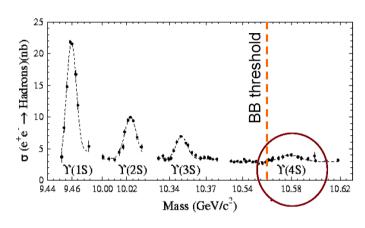
High-luminosity e⁺e⁻ colliders with asymmetric beam energies

produce Y(4s) with Lorentz boost

- Babar: 9 GeV e- + 3.1 GeV
 - $\beta y = 0.56$, $\langle \Delta z \rangle = 260 \, \mu m$
- Belle: 8 GeV e- + 3.5 GeV e+
 - $\beta \gamma = 0.425$, $\langle \Delta z \rangle = 200 \ \mu m$

Flavor Taa Btag and vertex Y (4s) B_{rec} \mathbf{K}^{-} Δ z $\Delta t \equiv \Delta z / (\beta \gamma c)$ Exclusive B meson + vertex reconstruction

Reconstruction strategy:


- reconstruct B_{rec} fully $\rightarrow B_{rec}$ decay vertex, momentum and flavour at decay
- assign remaining final-state particles to B_{tag} decay (no full reconstruction)
 - reconstruct B_{taa} decay vertex \rightarrow fixes t=0 for oscillation measurement
 - infer flavour of B_{taa} at its decay \rightarrow fixes flavour of B_{rec} at t=0
- B_{rec} oscillated (not oscillated) if opposite (same) flavour at t=0 and decay
- calculate oscillation time from B_{rec} momentum and Δz of decay vertices

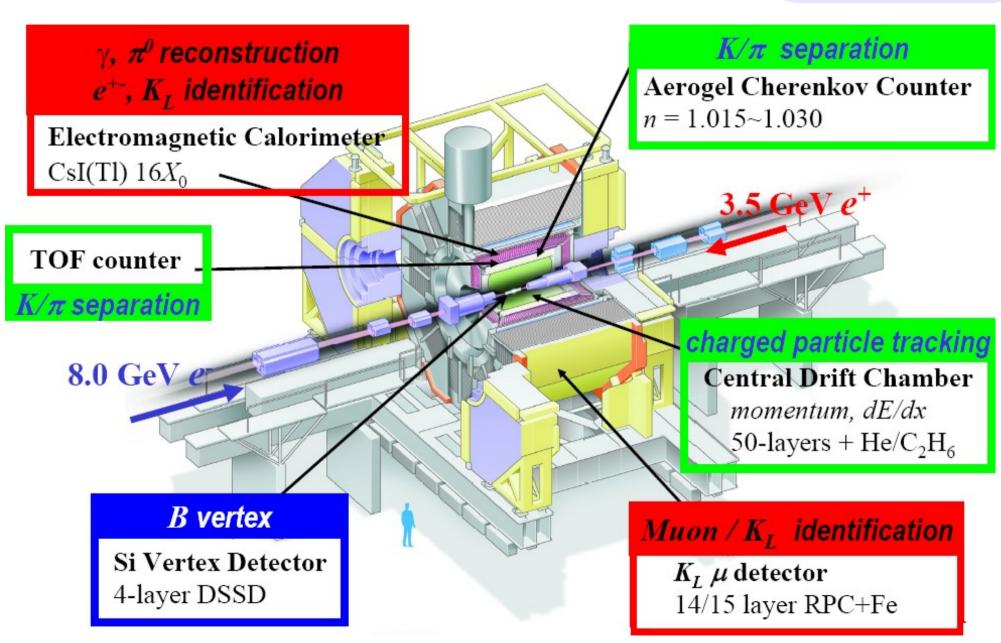
B factories

Y(4s) resonance: bound bb state just above BB threshold

- decays ~ 50% to B^+B^- and ~ 50% to $B^0\overline{B}{}^0$
- $\sigma_{b\overline{b}} \approx 1$ nb \rightarrow with 1 fb⁻¹ produce 10⁶ B \overline{B} pairs
- $\sigma_{b\bar{b}} / \sigma_{tot} \approx 0.25 \rightarrow large fraction of B events$
- "clean" events → only tracks from B decays

Need highest possible luminosity to beat small production cross section

- PEP-II ring at SLAC, California
 - peak luminosity 12×10^{33} cm⁻²s⁻¹
 - integrated luminosity: 553 fb⁻¹
- KEK-B ring at KEK, Japan
 - peak luminosity 21 × 10³³ cm⁻²s⁻¹
 - integrated luminosity: 1040 fb⁻¹


Babar

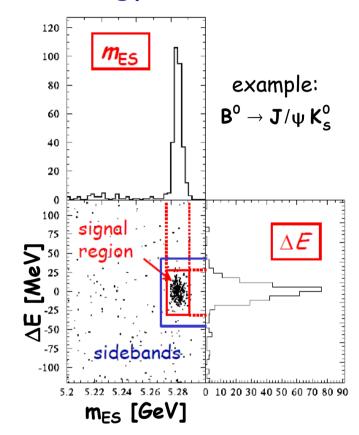
[NIM A479 (2002) 1] Electromagnetic Calorimeter 6580 CsI crystals Instrumented Flux Return e^{\pm} ID, π^{0} and y reconstruction 12-18 layers of RPC/LST µ ID Cherenkov Detector 144 quartz bars K, π , p separation e⁺ [3.1 GeV] Drift Chamber 40 wire layers tracking, dE/dx e [9 GeV] Silicon Vertex Tracker 5 layers double-sided sensors 1.5T Magnet vertexing, tracking (+ dE/dx)

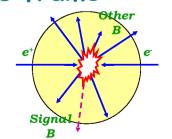
Belle

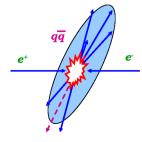
[NIM A479 (2002) 117]

Event Selection

Kinematic variables: exploit precisely known beam energy

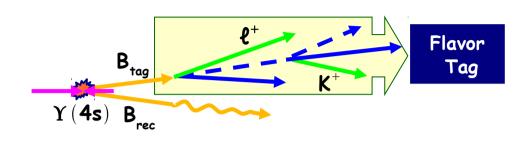

energy conservation in center-of-mass frame


$$\mathbf{E}_{\mathrm{B}}^{*} = \frac{\sqrt{s}}{2} = \mathbf{E}_{\mathrm{beam}}^{*} \qquad \begin{cases} \Delta \mathbf{E} \equiv \mathbf{E}_{\mathrm{B}}^{*} - \mathbf{E}_{\mathrm{beam}}^{*} = \mathbf{0} \\ \mathbf{m}_{\mathrm{ES}} \equiv \sqrt{(\mathbf{E}_{\mathrm{beam}}^{*})^{2} - (\vec{\mathbf{p}}_{\mathrm{B}}^{*})^{2}} \end{cases}$$


- m_{Es}: "energy-substituted" invariant mass
 - E* beam energy, known to ~ 2.5 MeV
 - E* energy of B meson, only known to
 - ~ 10-40 MeV from detector resolution

Event shape:

- B mesons produced almost at rest in center-of-mass frame
 - → decay products isotropically distributed
- · light quarks produced with high momenta
 - \rightarrow boost along flight direction \rightarrow jet-like topology



Flavour Tagging

Infer flavour of B_{rec} at t=0 from decay properties of B_{taa}

- lepton tag (b \rightarrow c $t^-\overline{v}$)
 - small wrong-tag fraction < 5%
 - contamination of wrong-sign leptons from $b\rightarrow c\rightarrow s$ cascade decays small
 - clean identification of e^{\pm} , μ^{\pm}
 - low efficiency: BF only 11% each
- kaon tag (b \rightarrow c \rightarrow s)
 - high efficiency: 66% of B° decay to K⁺
 - but significant wrong-tag fraction:
 - 13% of B^o have a K⁻ in the decay chain
 - contamination from mis-identified π^+
- inclusive tags (e.g. decay vertex charge)
 - typically use neural-net techniques
 - · high efficiency, high wrong-tag fraction

efficiency E:

fraction of reconstructed events for which flavour tag is obtained

wrong-tag fraction ω :

fraction of tagged events for which tagging decision is wrong

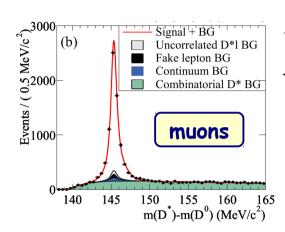
figure of merit:

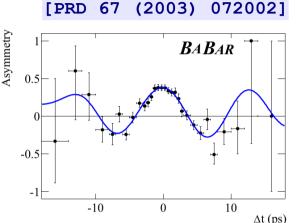
effective tagging power

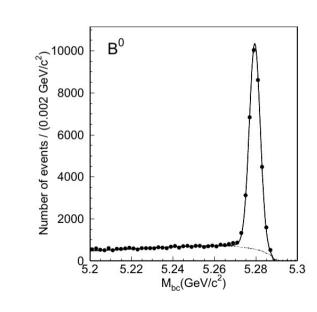
$$\mathbf{\epsilon} \cdot \mathbf{D}^2 = \mathbf{\epsilon} \cdot (\mathbf{1} - \mathbf{2}\mathbf{\omega})^2$$

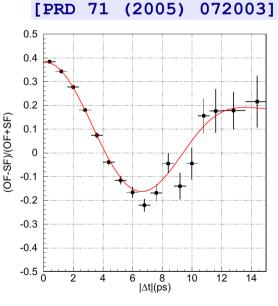
total tagging power at B factories, combining all algorithms

$$\varepsilon \cdot D^2 \approx 30\%$$

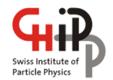

B_{rec} Reconstruction

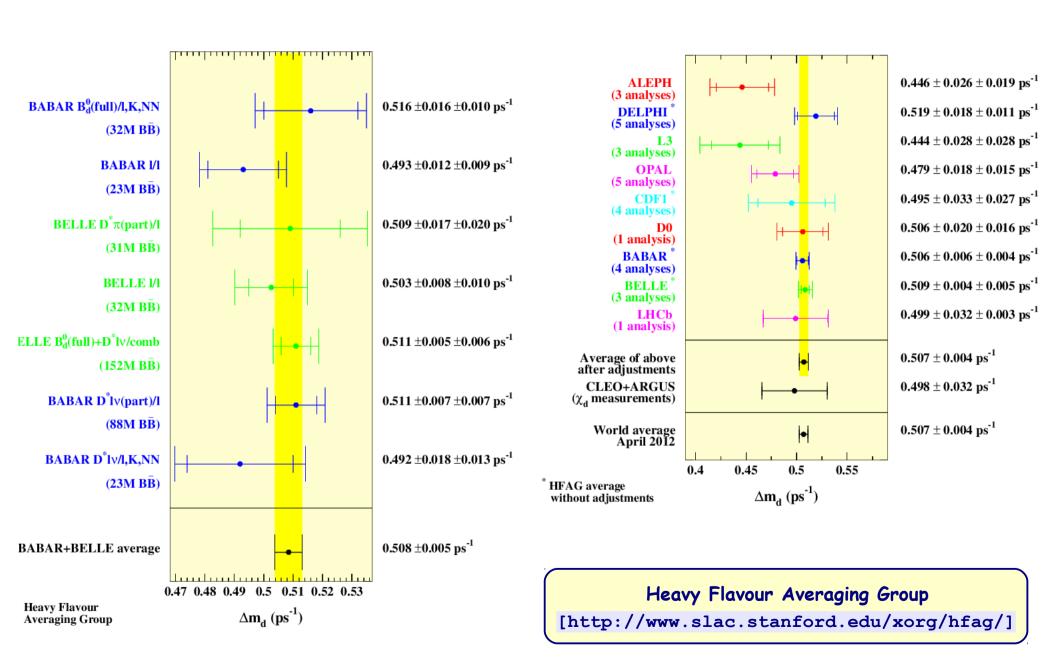

Semi-leptonic decays:


- $B^0 \to D^{\star_-} \, \ell^+ \, \nu_\ell^-$ with $D^{\star_-} \to \overline{D}{}^0 \, \pi^-$
- reasonable branching fraction
- clean event sample
 - soft pion from $D^{*-} \rightarrow \overline{D}{}^{0}\pi^{-}$
- but neutrino not reconstructed
- B flavour from lepton charge

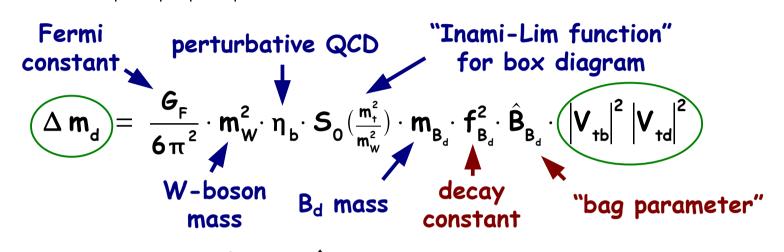

Hadronic decays:

- $B^0 \to D^{\star -} \pi^{\star}$ with $D^{\star -} \to \overline{D}{}^0 \pi^{-}$
- $B^0 \to J/\psi \ K^{\star_0}$ with $K^{\star_0} \to K^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle -}$
- clean event samples
- all particles reconstructed
- but small branching fractions





• B flavour from charge of fast pion (D*- π) or Kaon (J/ ψ K*0)


Results Δm_d

Theory Uncertainties

Uncertainty on $\left|V_{tb}\right|^2 \cdot \left|V_{td}\right|^2$ dominated by non-perturbative QCD factors

• best determination of f_B^2 and \hat{B}_B from lattice QCD \rightarrow uncertainty ~ 10 %

Theory uncertainties partially cancel in the ratio $\Delta m_d / \Delta m_s$

- uncertainty from lattice QCD ~ 3%
- still measure R_t side of unitarity triangle, since $|V_{tb}|^2 \cdot |V_{ts}|^2$ hardly depends on ρ and η
- measure Δm_s from $B^0_s \overline{B}{}^0_s$ oscillation frequency

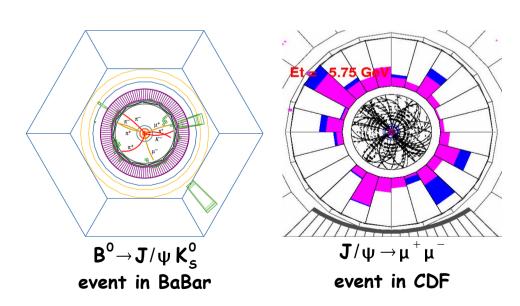
since
$$|V_{tb}|^2 \cdot |V_{ts}|^2$$
 hardly depends on ρ and η

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d}}{m_{B_s}} \cdot \frac{|V_{tb}|^2 |V_{td}|^2}{|V_{tb}|^2 |V_{ts}|^2}$$

measure Δm from $R^0 R^0$ oscillation frequency

• B° not produced at the $\Upsilon(4s) \rightarrow$ hadron colliders

bb Production at Hadron Colliders

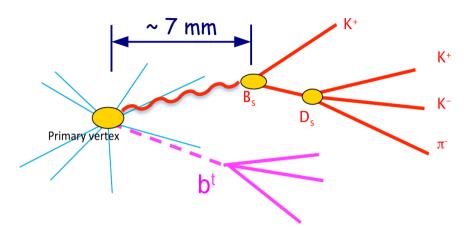

Advantages and disadvantages with respect to $e^+e^- \rightarrow \Upsilon(4s)$ B factories

all species of b hadrons produced:

$$B^{\pm}$$
, B^{0} , B^{0}_{s} , B^{+}_{c} , Λ_{b}

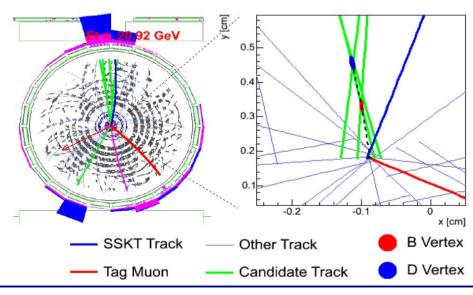
- $\sigma_{b\overline{b}}$ much higher than at B factories
- $\sigma_{b\overline{b}}/\sigma_{tot}$ much smaller than at B factories
- large number of additional particles from underlying hadronic interaction
- selective and efficient trigger vital
- exploit features of B decays:
 - B mesons heavy \rightarrow decay products have large transverse momentum $p_{\scriptscriptstyle T}$
 - B mesons live long → decay products have large impact parameters with respect to primary vertex

Facility	√s	$\sigma_{\!\scriptscriptstyle bar b}$ [nb]	$\sigma_{\!\scriptscriptstyle b\overline{b}}/\sigma_{\!\scriptscriptstyle tot}$
e ⁺ e ⁻ @ Y(4s)	10.58 GeV	1	0.25
HERA-B pA	42 GeV	~ 30	10-6
Tevatron pp	1.96 TeV	5 x 10 ³	10-3
LHC pp	7 TeV	3×10^5	10-2
LHC pp	14 TeV	6 × 10 ⁵	10-2



bb Production at Hadron Colliders

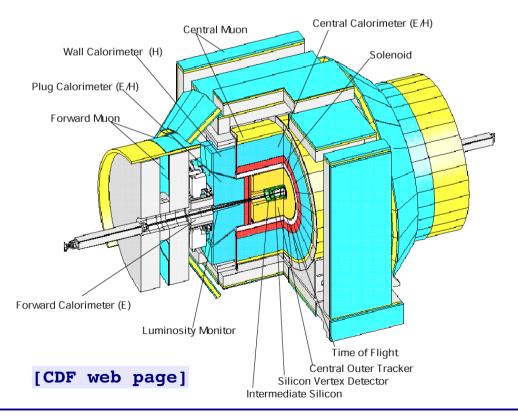
bb pair is not created in a coherent quantum state

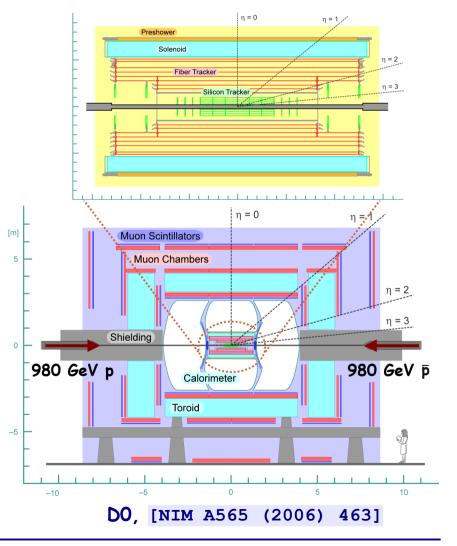

- reference for oscillation measurement: primary vertex, B flavour at production
- primary vertex reconstruction: excellent precision due to large number of charged tracks from underlying event

Flavour tagging: more challenging due to the many extra tracks

- "opposite side tagging" a la B factories (lepton, kaon, vertex charge)
- in addition "same side tagging": charge of a kaon from b fragmentation chain or from B** decays
 - select kaon close to B in phase space
- combined tagging power

$$\varepsilon \cdot D^2 = \text{few } \%$$

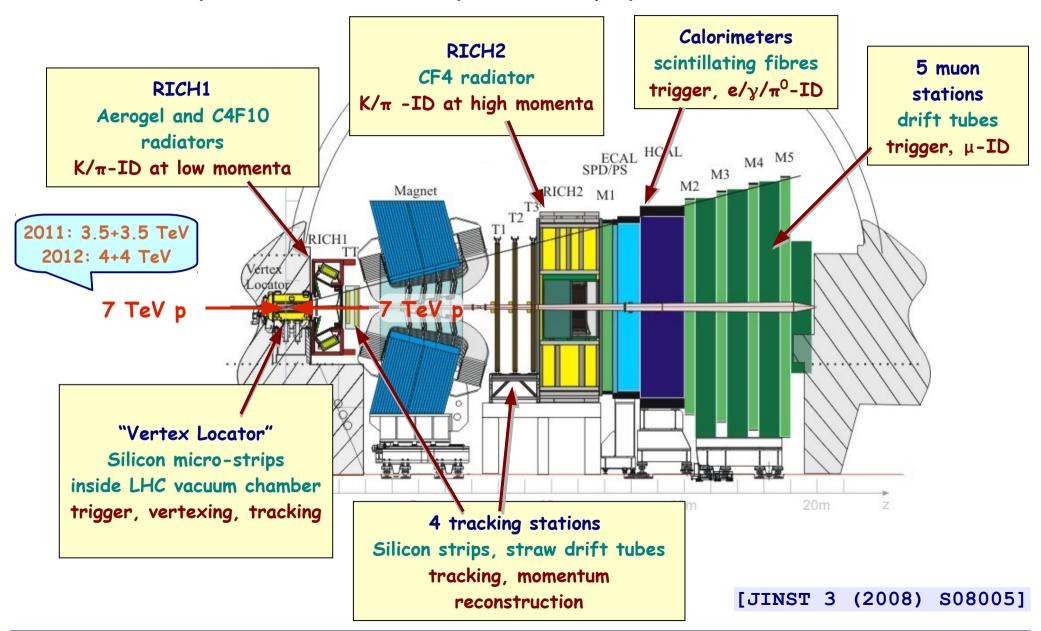




Tevatron: CDF and DO

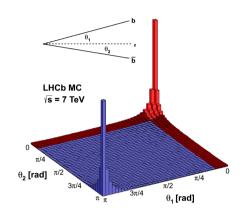
Typical general-purpose detectors

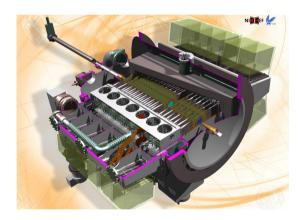
- main focus: high-energy frontier, top-quark physics and Higgs searches
- but also significant B-physics programme
 - e.g. first observation of $B_s^0 \overline{B}_s^0$ oscillation
 - main limitations: trigger, π/K separation



LHCb

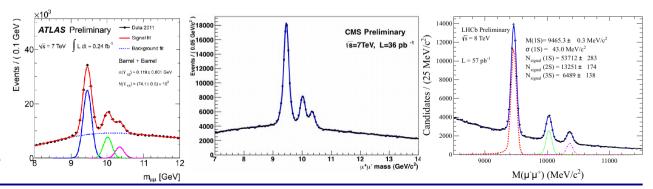
Dedicated experiment for heavy flavour physics at the LHC




LHCb

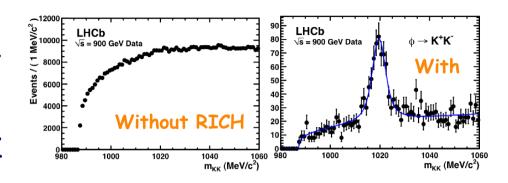
Key features that distinguish LHCb from general purpose detectors

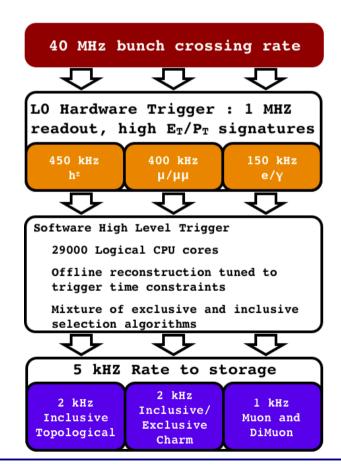
- forward geometry
 - large acceptance, bb production forward peaked
 - large Lorentz boost, helps with proper-time resolution
 - lower p_{τ} trigger thresholds than at central detectors

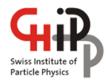


- vertex detector inside LHC vacuum vessel
 - impact parameter resolution to identify tracks from B decays (\rightarrow trigger)
 - proper-time resolution, e.g. to resolve fast $B_s^0 \overline{B}_s^0$ oscillations

tracking system

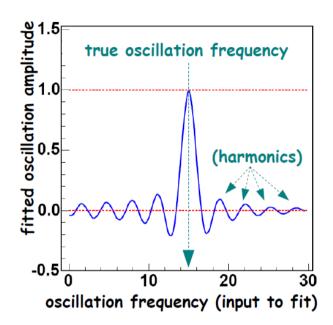

 momentum and invariant mass resolution to fight combinatorial backgrounds

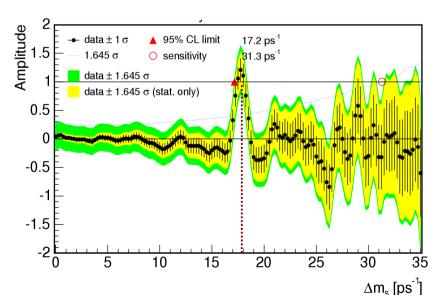



LHCb

- two RICH detectors for
 - efficient K/ π separation from few GeV for flavour tagging up to 100 GeV, e.g. to separate $B^0 \rightarrow \pi\pi$, $B^0_{(s)} \rightarrow K\pi$, $B^0_s \rightarrow KK$

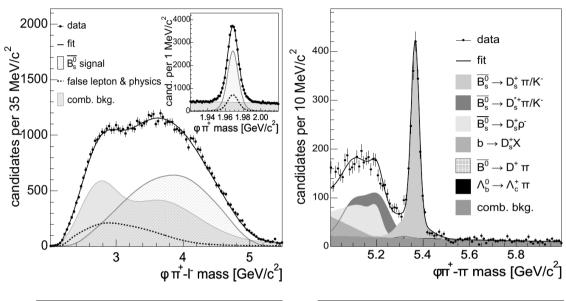
- flexible, selective and efficient trigger,
 also for hadronic final states
 - hardware level (L0):
 - high-pT track segments in muon system
 - high-ET clusters (e,h, γ) in calorimeters
 - software level (HLT):
 - multi-processor computing farm
 - access to full detector data
 - combined efficiency:
 - 90 % for dimuon channels (e.g. J/psi)
 - 30 % for fully hadronic final states

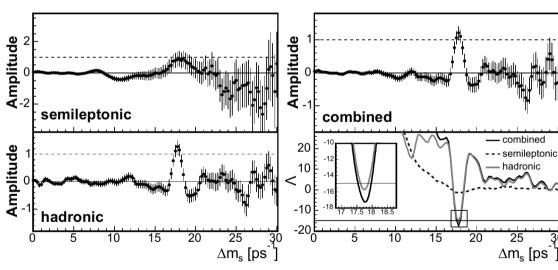

Back to Δm_s : Amplitude Scan


Perform frequency-domain analysis

- scan over oscillation frequency, fit amplitude A
 as a function of the assumed frequency
- normalize to the expected signal amplitude
 - \rightarrow A=1 at true mixing frequency, A~0 elsewhere
- useful method for combining results from different experiments when no clear signals observed
- · similar method applied for Higgs searches now

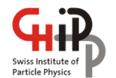
- clear signal at $\Delta m_s = 17.75 \text{ ps}^{-1}$
 - \rightarrow statistical significance A/ σ_A = 6.05
- lower limit at 95 % CL: $\Delta m_s = 17.2 \text{ ps}^{-1}$
 - \rightarrow frequency below which A+1.645· σ_A < 1
- sensitivity: 31.3 ps⁻¹
 - \rightarrow value for which 1.645 $\cdot \sigma_A = 1$


Δm_s at CDF

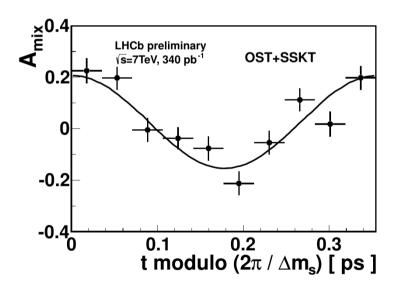

Semi-leptonic decays:

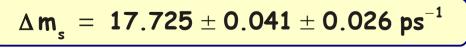
- $B^0_s \to D^-_s \,\ell^+ \,\nu_\ell$ with $D_s^- \to \varphi \,\pi^-, \,K^{\!\star\!0} \,K^- \,\, or \,\, \pi^- \pi^+ \,\pi^-$
- B flavour from lepton charge
- reasonable branching fraction
- but neutrino not reconstructed
 - limits proper time resolution

<u>Hadronic decays:</u>


- $B_s^0 \to D_s^- \pi^+$, $B_s^0 \to D_s^- 3\pi$ with $D_s^- \to \phi \, \pi^-$, $K^{*0} \, K^-$ or $\pi^- \pi^+ \pi^-$
- B flavour from fast pion charge
- smaller branching fraction
- but all particles reconstructed

$$\Delta \, \mathrm{m_s} \, = \, 17.75 \pm 0.10 (\, \mathrm{stat}) \pm 0.07 (\, \mathrm{syst}) \, \mathrm{ps}^{-1}$$


[PRL 97 (2006) 242003]



Δm_s at LHCb

Analysis strategy inspired by CDF

- but look only at fully reconstructed hadronic decays $B^0_s \to D^-_s \, \pi^+$ to fully exploit excellent proper-time resolution
- employ opposite-side tagging and same-side kaon tagging algorithms

[LHCb-CONF-2011-050]

preliminary

B _s mi	\rightarrow D' _s π^+ \rightarrow D' _s K' sid. bkg. mb. bkg.	→ data (a) — fit
	LHCb	CDF
signal event yields $B^0_s \to D^s \pi^+$	9200 in 0.34 fb ⁻¹	4100 in 1 fb ⁻¹
proper time resolution	45 ps	87 ps
tagging power	3.2 %	1.8 %

opposite side

tagging power

same side

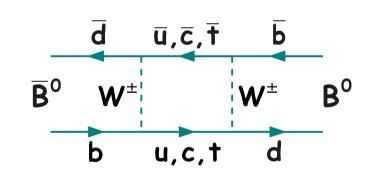
3.7 %

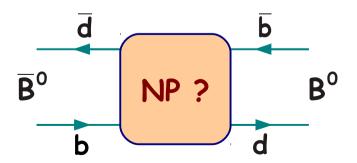
1.3 %

Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: sin 2 β , CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$

CP Violation in Mixing


<u>CP violated in PoPo mixing if $\overline{a}_{mix}(t) \neq a_{mix}(t)$ </u>

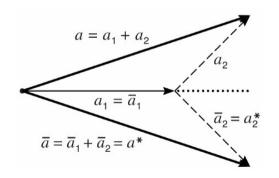

• requires relative phase arg (q/p) \neq 0 between M₁₂ and Γ_{12}

$$\begin{array}{l} \alpha_{\text{mix}}(\textbf{t}) \; = \; \frac{\cos(\Delta\,m\cdot\textbf{t}) + \,\delta\cdot\cosh(\Delta\,\Gamma\cdot\textbf{t}/2)}{\cosh(\Delta\,\Gamma\cdot\textbf{t}/2) + \,\delta\cdot\cos(\Delta\,m\cdot\textbf{t})} \\ \\ \overline{\alpha}_{\text{mix}}(\textbf{t}) \; = \; \frac{\cos(\Delta\,m\cdot\textbf{t}) - \,\delta\cdot\cosh(\Delta\,\Gamma\cdot\textbf{t}/2)}{\cosh(\Delta\,\Gamma\cdot\textbf{t}/2) - \,\delta\cdot\cos(\Delta\,m\cdot\textbf{t})} \end{array} \right\} \quad \delta \; = \; \frac{1 - \left| \,q/p \,\right|^2}{1 + \left| \,q/p \,\right|^2} \quad ; \quad \frac{q}{p} \; = \; -\sqrt{\frac{\,M_{12}^* - (i/2)\Gamma_{12}^*}{\,M_{12} - (i/2)\Gamma_{12}^*}}$$

$$\delta = \frac{1 - |q/p|^2}{1 + |q/p|^2} ; \frac{q}{p} = -\sqrt{\frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}}$$

- remember, for $B^0\overline{B}^0$ (and similar for $B^0_{\epsilon}\overline{B}^0_{\epsilon}$)
 - Γ_{12} dominated by c-box, $\Gamma_{12} \propto \left(\mathbf{V_{cd}} \mathbf{V_{cb}^*} \right)^2$
 - M_{12} dominated by t-box, $M_{12} \propto (V_{td}V_{tb}^*)^2$
 - different weak phases involved, but $\Gamma_{12} \ll M_{12}$
 - expect CP violation in mixing to be very small
- promising hunting ground for New Physics:

new heavy particles can enter in box, have significant effect!

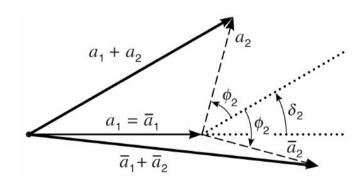

CP Violation in Decay

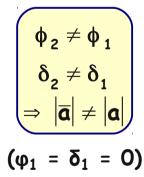
<u>CP</u> violated in decay if $A(\overline{P}^0 \to \overline{f}) \neq A(P^0 \to f)$

 requires interference of (at least) two decay amplitudes with different weak phase and different strong phase leading to the same final state

$$\begin{array}{lll} \boldsymbol{A}_{f} & \equiv & \boldsymbol{A}(\boldsymbol{P}^{0} \boldsymbol{\rightarrow} \boldsymbol{f}) = \sum_{i} \boldsymbol{a}_{i} \; \boldsymbol{e}^{i \left(\delta_{i} + \varphi_{i} \right)} \\ \overline{\boldsymbol{A}}_{\overline{f}} & \equiv & \boldsymbol{A}(\overline{\boldsymbol{P}}^{0} \boldsymbol{\rightarrow} \overline{\boldsymbol{f}}) = \sum_{i} \boldsymbol{a}_{i} \; \boldsymbol{e}^{i \left(\delta_{i} - \varphi_{i} \right)} \end{array} \right\} \begin{array}{l} \boldsymbol{\phi}_{i} : \; \text{weak phase, changes sign under CP} \\ \boldsymbol{\delta}_{i} : \; \text{strong phase, does not change sign under CP} \end{array}$$

$$\left|\mathbf{A}_{\mathbf{f}}\right|^{2}-\left|\overline{\mathbf{A}}_{\overline{\mathbf{f}}}\right|^{2} = -2\sum_{ij}\mathbf{a}_{i}\mathbf{a}_{j}\cdot\sin(\phi_{i}-\phi_{j})\cdot\sin(\delta_{i}-\delta_{j})$$



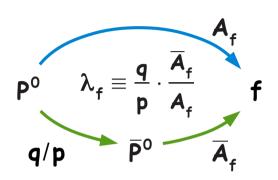

$$\phi_{2} \neq \phi_{1}$$

$$\delta_{2} = \delta_{1}$$

$$\Rightarrow |\overline{\mathbf{a}}| = |\mathbf{a}|$$

$$(\phi_{1} = \delta_{1} = 0)$$

- interference and CP violation can be large
 - New Physics can enter through loops if Penguin diagrams involved
- but have to battle large theoretical uncertainties due to the strong phase



HIR CP Violation in Interference of Mixing and Decay

For decays into a CP eigenstate f that is accessible to both P^0 and \overline{P}^0

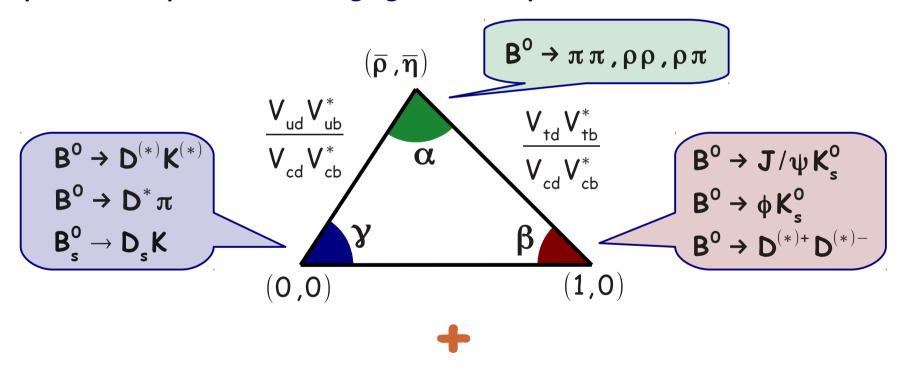
 CP violated due to interference between direct decay and decay after mixing if

$$\mathbf{Im}\left(\frac{\mathbf{q}}{\mathbf{p}}\cdot\frac{\overline{\mathbf{A}}_{\mathbf{f}}}{\mathbf{A}_{\mathbf{f}}}\right)\neq\mathbf{0}$$

measure time-dependent decay rate asymmetry:

$$\alpha_{\rm f}({\bf t}) \; = \; \frac{{\sf N}({\sf P}_{({\bf t}={\bf 0})}^{\rm O}\!\rightarrow\!{\sf f},\,{\bf t}) \; - \; {\sf N}(\overline{{\sf P}}_{({\bf t}={\bf 0})}^{\rm O}\!\rightarrow\!{\sf f},\,{\bf t})}{{\sf N}({\sf P}_{({\bf t}={\bf 0})}^{\rm O}\!\rightarrow\!{\sf f},\,{\bf t}) \; + \; {\sf N}(\overline{{\sf P}}_{({\bf t}={\bf 0})}^{\rm O}\!\rightarrow\!{\sf f},\,{\bf t})} \; \approx \; \frac{-\,C_{\rm f}\cos(\Delta\,{\sf m}\cdot{\bf t}) \; + \; S_{\rm f}\sin(\Delta\,{\sf m}\cdot{\bf t})}{\cosh(\Delta\,\Gamma\cdot{\bf t}/2) \; + \; \Omega_{\rm f}\sinh(\Delta\,\Gamma\cdot{\bf t}/2)}}{c_{\rm f}=\frac{1-|\lambda_{\rm f}|^2}{1+|\lambda_{\rm f}|^2}\; ; \; S_{\rm f}=\frac{2\cdot\Im(\lambda_{\rm f})}{1+|\lambda_{\rm f}|^2}\; ; \; \Omega_{\rm f}=1-S_{\rm f}^2-C_{\rm f}^2}}$$

- the ideal case: asymmetries can be large and no strong phase involved
- prominent example: measurement of CKM angle sin 2β in $B^0\to J/\psi~K^0_s$
 - one dominating decay amplitude, negligible CP violation in mixing, $\Delta\Gamma\ll 1$


$$\Rightarrow \left(\mathbf{a}_{\mathsf{f}}(\mathsf{t}) = \Im(\lambda_{\mathsf{f}}) \cdot \sin(\Delta m \cdot \mathsf{t}) = \sin 2\beta \cdot \sin(\Delta m \cdot \mathsf{t}) \right)$$

CP Violation: Observables

CP-violating observables depend on phases of CKM elements

- · can be used to measure angles of Unitarity Triangle
- β easiest, "golden channel" $B^0 \to J/\psi~K^0_s$: measured to $\pm~0.5^\circ$ at B factories
- γ experimentally most challenging: currently measured to about $\pm 15^{\circ}$

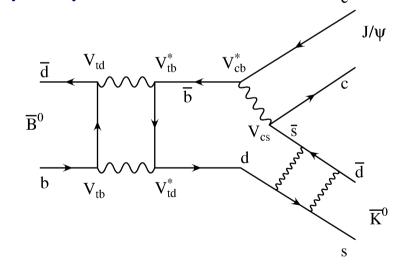
 $B_s^0 \to J/\psi \phi \to "golden channel" to measure CP mixing phase in <math>B_s^0 \overline{B}_s^0$ system

sin 2 β from $B^0 \rightarrow J/\psi \ K^0_s$

CP violation due to interference between mixing and decay

• J/ ψ K°_s is a CP-odd eigenstate, accessible to both B° and \overline{B} °

$$B^{0} \xrightarrow{\overline{c}} \overline{J/\psi}$$


$$d \xrightarrow{\overline{s}} K^{0} \approx > K_{s}^{0}$$

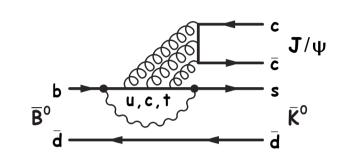
$$\overline{B}^{0} \xrightarrow{\overline{c}} \overline{J/\psi}$$

$$\overline{d} \xrightarrow{\overline{d}} \overline{K}^{0} \approx > K_{s}^{0}$$

• CKM phase for the dominating tree decay amplitude:

$$\begin{array}{lll} \lambda_{J/\psi K_{s}} & = & \left(\frac{q}{p}\right)_{B^{\circ}} \cdot \left(\frac{\overline{A}_{J/\psi K^{\circ}}}{A_{J/\psi K^{\circ}}}\right) \cdot \left(\frac{q}{p}\right)_{K^{\circ}} \\ & = & \left(\frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}}\right) \cdot \left(\frac{V_{cs}^{*} V_{cb}}{V_{c} V_{cb}^{*}}\right) \cdot \left(\frac{V_{cd}^{*} V_{cs}}{V_{cd} V_{cs}^{*}}\right) \\ & = & \left(\frac{V_{tb}^{*} V_{td}}{V_{cb}^{*} V_{cd}}\right) / \left(\frac{V_{tb}^{*} V_{td}^{*}}{V_{cb}^{*} V_{cd}^{*}}\right) \\ & = & 2 \cdot arg \left(\frac{V_{tb}^{*} V_{td}}{V_{*}^{*} V_{td}}\right) = & 2 \cdot \beta \qquad \Rightarrow \end{array}$$

$$\Rightarrow \left(\mathbf{a}_{\mathbf{B}^{0} \rightarrow \mathbf{J}/\psi \mathbf{K}_{s}^{0}}(\mathbf{t}) = \sin 2\beta \cdot \sin(\Delta \mathbf{m_{d}} \cdot \mathbf{t}) \right)$$

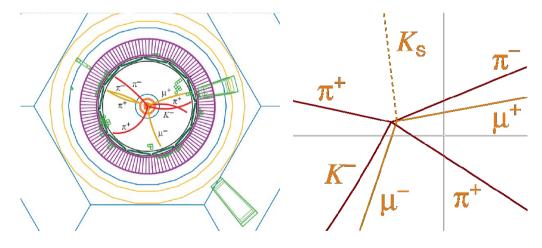

sin 2β from $B^0\to J/\psi~K^0_s\colon$ "Golden" Channel

Theory "clean": leading Penguin (P) has same weak phase as Tree (T)

$$\boldsymbol{A}_{\boldsymbol{J}/\psi\boldsymbol{K}^{o}} \ = (\boldsymbol{T} + \boldsymbol{P}_{\boldsymbol{c}}) \cdot (\boldsymbol{V}_{\boldsymbol{c}\boldsymbol{b}}^{*}\boldsymbol{V}_{\boldsymbol{c}\boldsymbol{s}}) + \boldsymbol{P}_{\boldsymbol{t}} \cdot (\boldsymbol{V}_{\boldsymbol{t}\boldsymbol{b}}^{*}\boldsymbol{V}_{\boldsymbol{t}\boldsymbol{s}}) + \boldsymbol{P}_{\boldsymbol{u}} \cdot (\boldsymbol{V}_{\boldsymbol{u}\boldsymbol{b}}^{*}\boldsymbol{V}_{\boldsymbol{u}\boldsymbol{s}})$$

• unitarity of CKM matrix: $V_{tb}^*V_{ts} = -V_{cb}^*V_{cs}^* - V_{ub}^*V_{us}^*$

$$\textbf{A}_{\textbf{J}/\psi \textbf{K}^{0}} \; = \; \big(\textbf{T} \; + \; \underbrace{\textbf{P}_{\textbf{c}} - \, \textbf{P}_{\textbf{t}}}_{\approx \textbf{0}. \, \textbf{1} \cdot \textbf{T}} \big) \cdot \underbrace{\big(\textbf{V}_{\textbf{cb}}^{*} \, \textbf{V}_{\textbf{cs}}\big)}_{\propto \; \lambda^{2}} \; + \; \big(\underbrace{\textbf{P}_{\textbf{u}} - \, \textbf{P}_{\textbf{t}}}_{\approx \textbf{0}. \, \textbf{1} \cdot \textbf{T}} \big) \cdot \underbrace{\big(\textbf{V}_{\textbf{ub}}^{*} \, \textbf{V}_{\textbf{us}}\big)}_{\propto \; \lambda^{4}}$$



• contamination from $V_{ub}^* V_{us}$ smaller than 1%

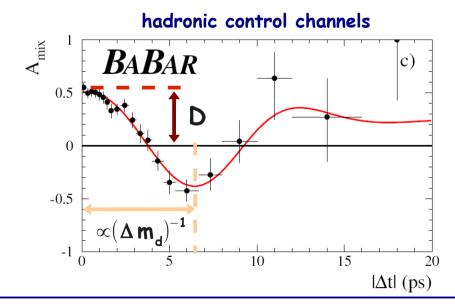
Also attractive from point of view of experiment

- clear event signature
 - lepton pair from J/ψ decay
 - 2nd displaced vertex from K⁰_s decay
 - J/ψ and K_s^0 invariant masses
- reasonably large branching ratio

$$\text{BF} \left(\text{B}^{\text{O}} \rightarrow \text{J}/\psi \, \text{K}_{\text{s}}^{\text{O}} \right) \; \times \; \text{BF} \left(\text{J}/\psi \rightarrow \text{\ell}^{\scriptscriptstyle{+}} \text{\ell}^{\scriptscriptstyle{-}} \right) \; \times \; \text{BF} \left(\text{K}_{\text{s}}^{\text{O}} \rightarrow \pi^{\scriptscriptstyle{+}} \pi^{\scriptscriptstyle{-}} \right) \; \approx \; 7 \times 10^{-5}$$



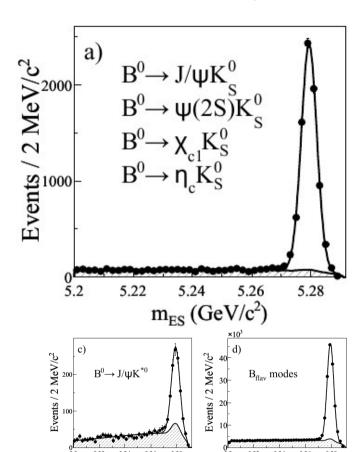
$\sin 2\beta$ from $B^0 \rightarrow J/\psi K_s^0$: Measurement Principle

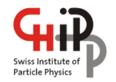

Similar approach as for mixing measurements

- fully reconstruct signal B in final state $J/\psi K_S$
- reconstruct the two B decay vertices, determine Δz and Δt
- infer flavour at "t=0" from decay products of tagging B

Extract sin 2B from oscillation AMPLITUDE

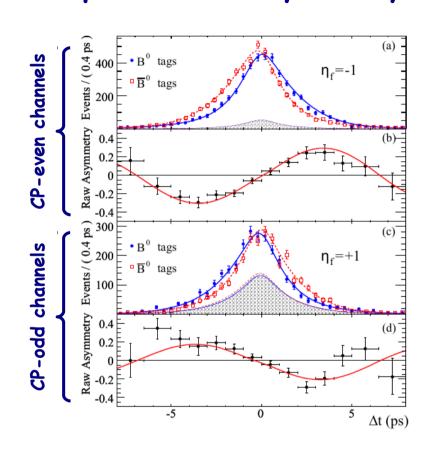
- measured asymmetry reduced by
 - tagging dilution $D = 1 2 \cdot \omega$
 - finite decay-time resolution
- determine these effects from data using flavour-specific decay modes
 - e.g. $B^0 \to D^{(*)+} \pi^-$ and $B^0 \to J/\psi \ K^* (K^+ \pi^-)$


sin 2β from $B^0 \rightarrow J/\psi K_s^0$: Analysis


Fit m_{rs} distributions to determine composition of the event sample

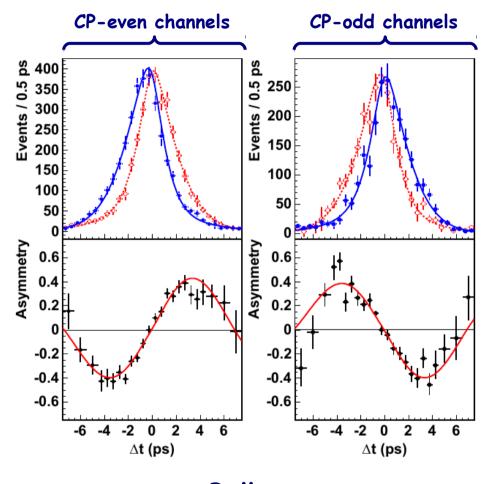
- $J/\psi K^0_S$ and other $b \to c\bar{c}s$ signal channels
 - other cc resonances: $\psi(2s)$, χ_c , η_c
 - CP odd final state: J/ψ K⁰_L
- $B^0 \rightarrow D^{(*)+} \pi^-$, $B^0 \rightarrow J/\psi K^*$ control channels

Fit Δt distributions to extract sin 2β


- simultaneous fit to signal and control channels
- e.g. Babar fit has 71 free parameters:
 - S_f (= $sin 2\beta$) and C_f
 - 7 to parametrize Δt resolution in signal channels
 - 12 for average mis-tag fractions ω and possible differences $\Delta\omega$ between B° and $\overline{B}{}^{0}$
 - 7 for possible difference in reconstruction and tagging efficiencies for B° and \overline{B}°
 - 43 to describe mis-tag fraction, Δt resolution, possible CP violation in backgrounds

sin 2β from $B^0 \rightarrow J/\psi K_s^0$: Results

Time-dependent CP asymmetry



<u>Babar</u>

$$\sin 2\beta = 0.687 \pm 0.028 \pm 0.012$$

[PRD 79 (2009) 072009]

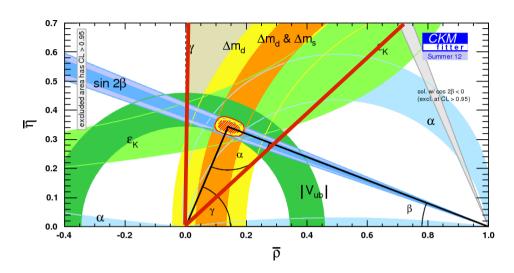
• $C_f = 0.024 \pm 0.020 \pm 0.016$

<u>Belle</u>

$$\sin 2\phi_1 \ = \ 0.667 \pm 0.023 \pm 0.012$$

[PRL 108 (2012) 171802]

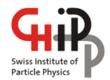
• $C_f = 0.006 \pm 0.019 \pm 0.012$


Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$

CKM angle γ from Tree Decays

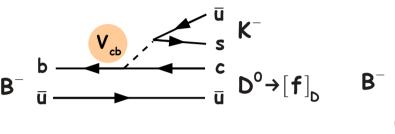
- CKM fits so far in good agreement with Standard Model
- need more precise measurements to test for subtle effects from possible New Physics



• the CKM parameter that is least well constrained by direct measurements:

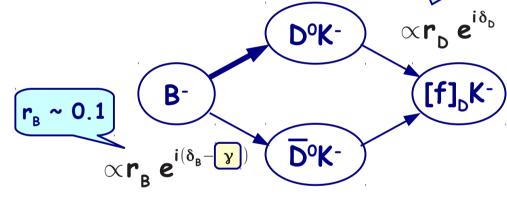
$$oldsymbol{\gamma} = oldsymbol{\mathsf{arg}} egin{pmatrix} oldsymbol{\mathsf{V}}_{\mathsf{ud}} oldsymbol{\mathsf{V}}_{\mathsf{ub}}^* \ oldsymbol{\mathsf{V}}_{\mathsf{cd}} oldsymbol{\mathsf{V}}_{\mathsf{cb}}^* \end{pmatrix}$$

$$\gamma = (66 \pm 12)^{\circ}$$
 [CKMfitter] $\gamma = (72 \pm 9)^{\circ}$ [UTfit]


- ullet tree-level B decays can provide a theoretically "clean" measurement of γ
 - no loops \rightarrow largely unaffected by possible effects from New Physics
- but experimentally very challenging
 - decays to purely hadronic final states (\rightarrow trigger, K/ π separation)
 - branching fractions are small (→ need large number of B's)

γ from Trees: $B^{\pm} \rightarrow D K^{\pm}$

$B^{\pm} \rightarrow D K^{\pm}$ tree decays to final states [f] accessible to D^0 and \overline{D}^0


• interference of $b\to c$ and $b\to u$ ($V_{ub}\propto e^{i\gamma}$) tree diagrams:

 $B^{-} \xrightarrow{V_{ub} \propto e^{i\gamma}} \overline{c} \xrightarrow{\overline{D}^{0}} [f]$

 $r_D \sim 1$ for GLW, ~ 0.05 for ADS

- theory uncertainties due to
 - strong phase difference $\delta_{_{B}}$
 - \bullet ratio r_B of the magnitudes of the two interfering amplitudes

- different methods proposed that in principle allow clean extraction of γ
 - named after initials of their proponents: "GLW", "ADS", "GGSZ"
 - combined analysis to extract γ and hadronic parameters ${\bf r_{\rm B}},\,\delta_{\rm B},\,{\bf r_{\rm D}},\,\delta_{\rm D}$

(formalisms also hold for $B^{\pm} \rightarrow D^{*} K^{\pm}$ and $B^{\pm} \rightarrow D K^{*\pm}$)

γ from Trees: $B^{\pm} \rightarrow D K^{\pm}$

"GLW": Gronau, London, Wyler

[PLB 253 (1991) 483] [PLB 265 (1991) 172]

- D decays to CP eigenstates $D^0 \to K^+K^-$, $D^0 \to \pi^+\pi^-$
- disadvantage: small value of $r_{_{B}} \rightarrow$ small interference

"ADS": Atwood, Dunietz, Soni

```
[PRL 78 (1997) 3257]
[PRD 63 (2001) 036005]
```

- Cabibbo favoured D0 \to K+ π / doubly Cabibbo suppressed D0 \to K- π +
- advantage: small $r_{_D}$ compensates small $r_{_B} \rightarrow$ larger interference
- disadvantage: very small branching fraction for suppressed decay (~ 10-7)

"GGSZ": Giri, Grossman, Soffer, Zupan

```
[PRD 68 (2003) 054018]
[PRD 70 (2004) 072003]
```

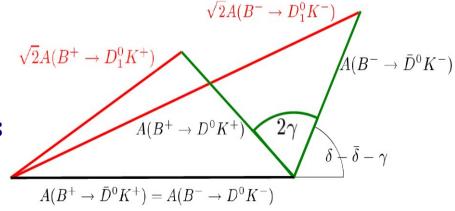
- exploit interference patterns in $D^0 \to K^0_s h^+ h^-$ Dalitz plot (h = π , K)
- powerful method, dominates precision on γ from B factories
- complication: rich resonance structure, δ_{N} varies across Dalitz plot

y from Trees: GLW modes

Measure decay rates to CP eigenstates and flavour-specific states

- CP eigenstates $D^0_{~cP^+} \to \pi^+ \, \pi^-$, $K^+ \, K^-$, $D^0_{~cP^-} \to K^0_{~s} \, \pi^0$, $K^0_{~s} \, \omega$, $K^0_{~s} \, \phi$
- flavour-specific final states: $D^0 \to K^+\pi^-$, $\overline{D}{}^0 \to K^-\pi^+$
- $|D^0_{CP+}\rangle = \frac{1}{2} (|D^0\rangle + |\overline{D}^0\rangle) \rightarrow \text{two triangles in complex plane}$

$$\sqrt{2} \cdot A(B^+ \rightarrow D_{CP^+}^0 K^+) = A(B^+ \rightarrow D^0 K^+) + A(B^+ \rightarrow \overline{D}^0 K^+)$$


$$\sqrt{2} \cdot A(B^- \to D_{CP+}^0 K^-) = A(B^- \to \overline{D}^0 K^-) + A(B^- \to D^0 K^-)$$

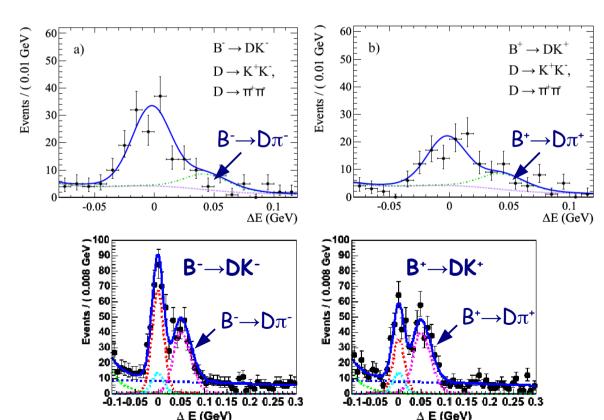
• one common side (b \rightarrow c real)

$$A(B^+ \rightarrow \overline{D}^0K^+) = A(B^- \rightarrow D^0K^-)$$

• extract γ from angle between $b \rightarrow u$ sides

$$A(B^+ \rightarrow D^0K^+) = e^{2i\gamma} \cdot A(B^- \rightarrow \overline{D}^0K^-)$$

• r_B small \rightarrow triangles very squashed \rightarrow sensitivity to γ limited



GLW modes at B Factories

Decay rate ratios and asymmetries (→ cancellation of systematics)

$$\textbf{R}_{\textit{CP+}} = \frac{\Gamma\left(\textbf{B}^{-} \rightarrow \left[\textbf{h}^{+}\textbf{h}^{-}\right]_{\textbf{D}}\textbf{K}^{-}\right) + \Gamma\left(\textbf{B}^{+} \rightarrow \left[\textbf{h}^{+}\textbf{h}^{-}\right]_{\textbf{D}}\textbf{K}^{+}\right)}{1/2 \cdot \left[\Gamma\left(\textbf{B}^{-} \rightarrow \left[\textbf{K}^{+}\boldsymbol{\pi}^{-}\right]_{\textbf{D}}\textbf{K}^{-}\right) + \Gamma\left(\textbf{B}^{+} \rightarrow \left[\textbf{K}^{-}\boldsymbol{\pi}^{+}\right]_{\textbf{D}}\textbf{K}^{+}\right)\right]} = 1 + \frac{\textbf{r}_{\textbf{B}}^{2}}{\textbf{r}_{\textbf{B}}} + 2 \cdot \frac{\textbf{r}_{\textbf{B}}}{\textbf{r}_{\textbf{B}}} \cdot \frac{\textbf{cos} \delta_{\textbf{B}}}{\textbf{cos} \delta_{\textbf{B}}} \cdot \frac{\textbf{cos} \delta_{\textbf{B}}}{\textbf{r}_{\textbf{B}}} \cdot \frac{\textbf{r}_{\textbf{B}}}{\textbf{r}_{\textbf{B}}} \cdot \frac{\textbf{r}$$

$$\boldsymbol{A}_{\mathcal{CP}^{+}} = \frac{\boldsymbol{\Gamma}(\boldsymbol{B}^{-} \rightarrow [\boldsymbol{h}^{+}\boldsymbol{h}^{-}]_{\boldsymbol{D}}\boldsymbol{K}^{-}) - \boldsymbol{\Gamma}(\boldsymbol{B}^{+} \rightarrow [\boldsymbol{h}^{+}\boldsymbol{h}^{-}]_{\boldsymbol{D}}\boldsymbol{K}^{+})}{\boldsymbol{\Gamma}(\boldsymbol{B}^{-} \rightarrow [\boldsymbol{h}^{+}\boldsymbol{h}^{-}]_{\boldsymbol{D}}\boldsymbol{K}^{-}) + \boldsymbol{\Gamma}(\boldsymbol{B}^{+} \rightarrow [\boldsymbol{h}^{+}\boldsymbol{h}^{-}]_{\boldsymbol{D}}\boldsymbol{K}^{+})} = + \frac{2 \cdot \mathbf{r}_{\boldsymbol{B}} \cdot \mathbf{cos} \delta_{\boldsymbol{B}} \cdot \mathbf{cos}$$

Babar

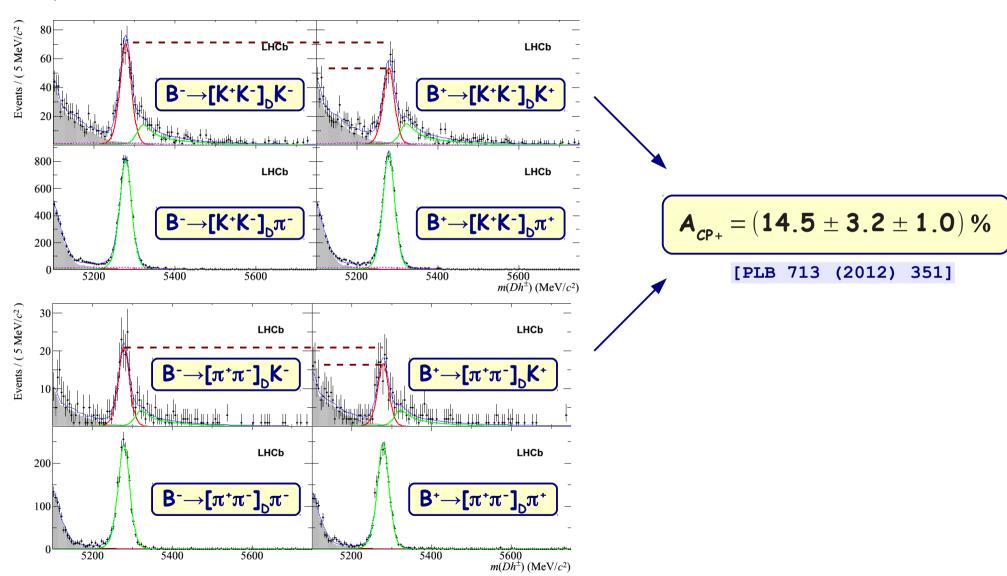
 $467 \times 10^6 \text{ Y(4s)} \rightarrow B\overline{B} \text{ decays}$

$$\mathbf{A}_{CP+} = (\mathbf{25} \pm \mathbf{6} \pm \mathbf{2}) \%$$

[PRD 82 (2010) 072004]

<u>Belle</u>

 $772 \times 10^6 \text{ Y(4s)} \rightarrow B\overline{B} \text{ decays}$

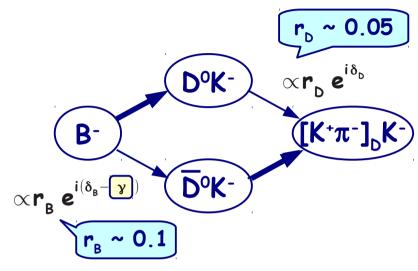

$$A_{CP+} = (29 \pm 6 \pm 2) \%$$

[arXiv:1112.1984]

GLW modes at LHCb

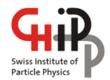
<u>Analysis of 1.0 fb</u>⁻¹ (2011 data set)

• note suppression of $B^{\scriptscriptstyle \pm} o D \, \pi^{\scriptscriptstyle \pm}$ contamination in the $B^{\scriptscriptstyle \pm} o D \, K^{\scriptscriptstyle \pm}$ samples !

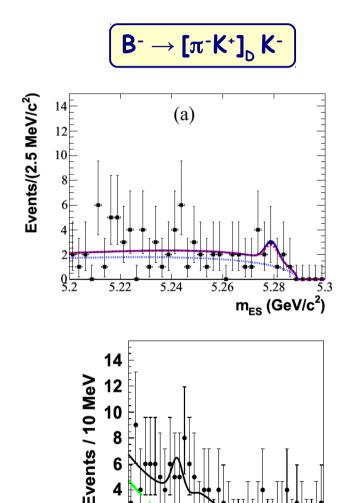


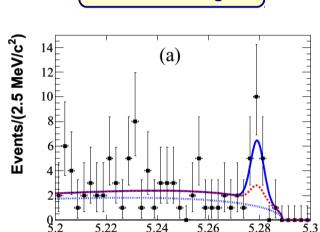
y from Trees: ADS modes

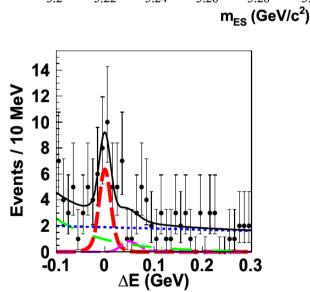
Do decay Cabibbo-allowed / Do decay doubly Cabibbo-suppressed


- interfering amplitudes of similar magnitude, larger CP violation
- price to pay: very low branching fraction for the doubly Cabibbo-suppressed mode

$$\mathbf{r}_{D} = \frac{\left| \mathbf{A} (D^{0} \rightarrow \mathbf{K}^{+} \boldsymbol{\pi}^{-}) \right|}{\left| \mathbf{A} (\overline{D}^{0} \rightarrow \mathbf{K}^{+} \boldsymbol{\pi}^{-}) \right|} \approx \frac{\left| \mathbf{V}_{cd}^{*} \mathbf{V}_{us} \right|}{\left| \mathbf{V}_{ud}^{*} \mathbf{V}_{cs} \right|} = \lambda^{2} \approx 0.05$$


again, measure ratios and asymmetries to cancel systematics


$$\mathsf{R}_{\mathsf{ADS}} = \frac{\Gamma\left(\mathsf{B}^{^{-}} \rightarrow \left[\mathsf{K}^{^{+}} \pi^{^{-}}\right]_{\mathsf{D}} \mathsf{K}^{^{-}}\right) + \Gamma\left(\mathsf{B}^{^{+}} \rightarrow \left[\mathsf{K}^{^{-}} \pi^{^{+}}\right]_{\mathsf{D}} \mathsf{K}^{^{+}}\right)}{\Gamma\left(\mathsf{B}^{^{-}} \rightarrow \left[\mathsf{K}^{^{-}} \pi^{^{+}}\right]_{\mathsf{D}} \mathsf{K}^{^{-}}\right) + \Gamma\left(\mathsf{B}^{^{+}} \rightarrow \left[\mathsf{K}^{^{+}} \pi^{^{-}}\right]_{\mathsf{D}} \mathsf{K}^{^{+}}\right)} = \boxed{\mathbf{r}_{\mathsf{B}}^{2}} + \boxed{\mathbf{r}_{\mathsf{D}}^{2}} + 2 \cdot \boxed{\mathbf{r}_{\mathsf{B}} \mathbf{r}_{\mathsf{D}}} \cdot \boxed{\cos\left(\delta_{\mathsf{B}} + \delta_{\mathsf{D}}\right)} \boxed{\cos \gamma}$$


ADS modes at B Factories

Limited statistics in the doubly Cabibbo suppressed decay mode

 $B^{\scriptscriptstyle +} \rightarrow \left[\pi^{\scriptscriptstyle +} K^{\scriptscriptstyle -}\right]_{\scriptscriptstyle D} K^{\scriptscriptstyle +}$

0.3

Babar $467 \times 10^6 \text{ Y(4s)} \rightarrow \overline{BB} \text{ decays}$

$$\mathbf{A}_{\mathtt{ADS}}(\mathtt{DK}) = (-86 \pm 47 \, ^{+12}_{-16}) \, \%$$

[arXiv:1006.4241]

Belle

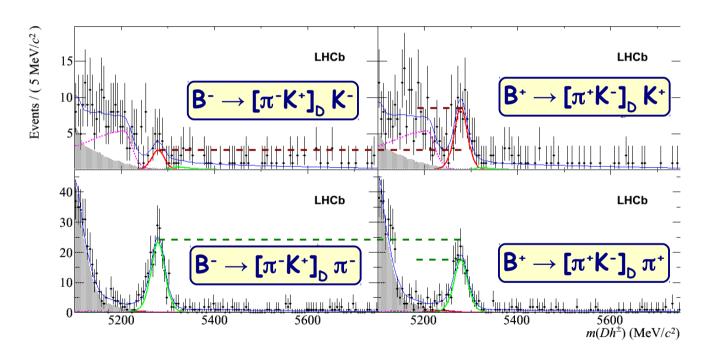
772 x 10^6 Y(4s) \rightarrow BB decays

$$\mathbf{A}_{\mathtt{ADS}}(\mathtt{DK}) = (-39\,^{+26}_{-28}\,^{+4}_{-3})\ \%$$

[PRL 106 (2011) 231803]

10

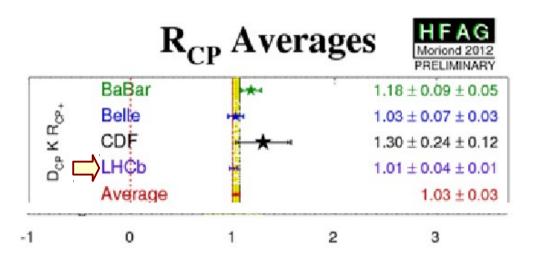
-0.1

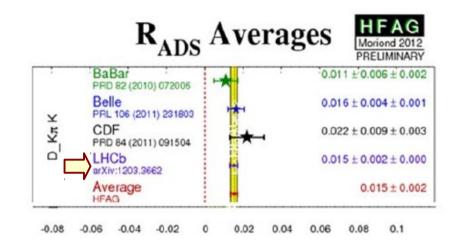

 ΔE (GeV)

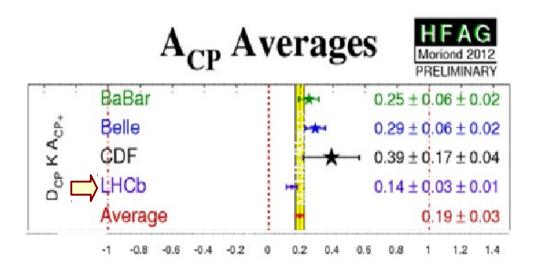
ADS modes at LHCb

Analysis of 1 fb⁻¹ (2011 data set)

- first observation of the doubly Cabibbo suppressed mode (10 σ significance)
- evidence for asymmetry in $B^{\pm} \rightarrow DK^{\pm}$ (4 σ significance)


$$A_{ADS}(DK) = (-52 \pm 15 \pm 2) \%$$

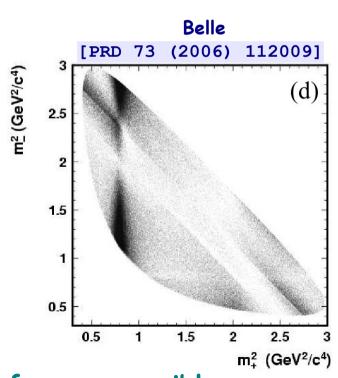

PLB 712 (2012) 203]


• hint of a positive asymmetry in $B^{\scriptscriptstyle\pm} \to D \, \pi^{\scriptscriptstyle\pm}$ (2.4 σ significance)

GLW / ADS: LHCb Impact

y from Trees: GGSZ

Exploit interference patterns in $D \rightarrow K^0_s h^+ h^- Dalitz$ plots (h = π , K)


• Dalitz plot: $D \to K_s^0 h^+ h^-$ decay amplitude f_D as a function of

$$m_{_{+}}^{2} \equiv m^{2}(K_{_{S}}^{0} h^{_{+}})$$
 ; $m_{_{-}}^{2} \equiv m^{2}(K_{_{S}}^{0} h^{_{-}})$

- intermediate resonances \rightarrow structure above flat phase-space distribution
- assuming no CP violation in D decays (expected to be very small)

$$f_{\overline{D}^0}(m_+^2, m_-^2) = f_{D^0}(m_-^2, m_+^2)$$

- measure f_D (m_-^2 , m_+^2) using large samples of flavour-tagged $D \to K_s^0$ $h^+ h^-$ decays
 - B factories: $D^{*_{\pm}} \rightarrow D \pi^{\pm}$
 - use pion charge to tag D flavour
 - CLEO-c: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}{}^0$
 - use flavour-specific decay of accompanying D to tag D flavour

ullet observe rich resonance structure o large interference possible

y from Trees: GGSZ

Extract r_B , δ_B , γ from difference in B^- and B^+ interference patterns

• $B^- \rightarrow [K^0_s h^+ h^-]_b K^-$:

$$\Gamma_{\mathsf{B}^{-}}(\mathsf{m}_{+}^{2},\mathsf{m}_{-}^{2}) \propto \left| \begin{array}{c} \mathsf{m}_{-}^{2} \\ \mathsf{p}_{-}^{2} \\$$

2.5 E 2 1.5 1

• $B^+ \rightarrow [K^0_s \ h^+ \ h^-]_D \ K^+$ ($f_{D^0} \leftrightarrow f_{\overline{D}^0}$, $-\gamma \leftrightarrow +\gamma$)

$$\Gamma_{\mathsf{B}^+}(\mathsf{m}_+^2,\mathsf{m}_-^2) \propto \left| \begin{array}{c} \mathsf{m}^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{array} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2 \end{aligned} \right| \times \left| \begin{array}{c} \mathsf{m}_-^2 \\ \mathsf{m}_+^2 \\ \mathsf{m}_+^2$$

0.5 1 1.5 2 2.5 3 m² (GeV²/c⁴)

2.5 (b)

1.5 (c)

1.6 (c)

1.7 (c)

1.7 (c)

1.7 (c)

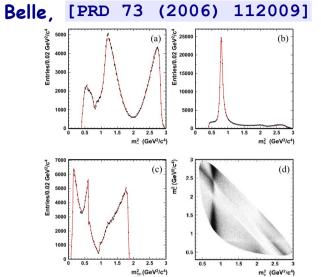
1.8 (c)

1.9 (c)

1

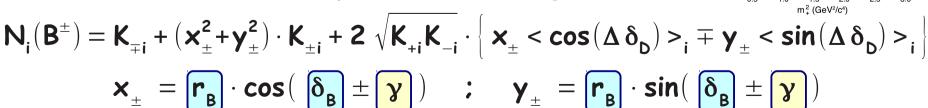
difference:

$$\begin{split} \Delta \, \Gamma \left(m_{-}^{2} \,,\, m_{+}^{2} \right) \, & \propto \quad \left| f_{D}^{} \left(m_{-}^{2} \,,\, m_{+}^{2} \right) \right|^{2} + \underbrace{ \left| r_{B}^{2} \right| \cdot \left| f_{D}^{} \left(m_{+}^{2} \,,\, m_{-}^{2} \right) \right|^{2} } \\ & + \, 2 \underbrace{ \left| r_{B}^{} \right| \cdot Re \left| f_{D}^{} \left(m_{-}^{2} \,,\, m_{+}^{2} \right) \cdot f_{D}^{*} \left(m_{+}^{2} \,,\, m_{-}^{2} \right) \cdot e^{-i \left(\delta_{B}^{} - \gamma \right)} \right|}_{} \end{split}$$



y from Trees: GGSZ

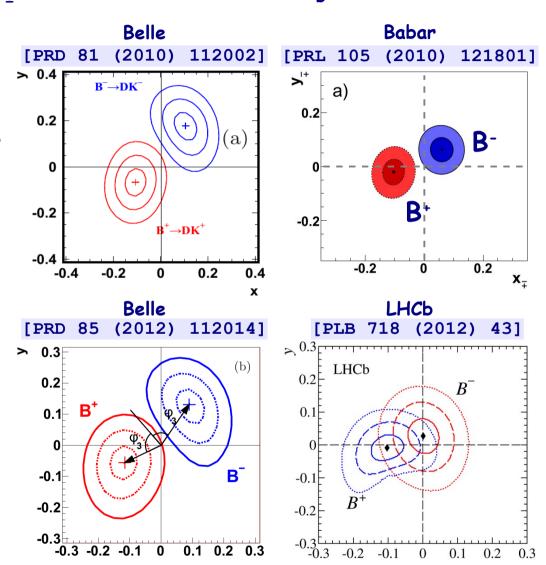
Fit for r_R, δ_R, γ : model-dependent approach


- model $f_D(m_+^2, m_-^2)$ by a coherent sum of two-body resonances and a non-resonant amplitude
 - e.g. Belle: 18 + 1 amplitudes
- model uncertainty starts to limit precision on γ

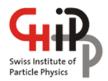
Intermediate state	Amplitude	Phase (°)	Fit fraction
$K_S^0 \sigma_1$	1.43 ± 0.07	212 ± 3	9.8%
$K_S^0 \rho^0$	1.0 (fixed)	0 (fixed)	21.6%
$K_S^0 \omega$	0.0314 ± 0.0008	110.8 ± 1.6	0.4%
$K_S^0 f_0(980)$	0.365 ± 0.006	201.9 ± 1.9	4.9%
$K_S^0 \sigma_2$	0.23 ± 0.02	237 ± 11	0.6%
$K_S^0 f_2(1270)$	1.32 ± 0.04	348 ± 2	1.5%
$K_S^0 f_0(1370)$	1.44 ± 0.10	82 ± 6	1.1%
$K_S^0 \rho^0 (1450)$	0.66 ± 0.07	9 ± 8	0.4%
$K^*(892)^+\pi^-$	1.644 ± 0.010	132.1 ± 0.5	61.2%
$K^*(892)^-\pi^+$	0.144 ± 0.004	320.3 ± 1.5	0.55%
$K^*(1410)^+\pi^-$	0.61 ± 0.06	113 ± 4	0.05%
$K^*(1410)^-\pi^+$	0.45 ± 0.04	254 ± 5	0.14%
$K_0^*(1430)^+\pi^-$	2.15 ± 0.04	353.6 ± 1.2	7.4%
$K_0^*(1430)^-\pi^+$	0.47 ± 0.04	88 ± 4	0.43%
$K_2^*(1430)^+\pi^-$	0.88 ± 0.03	318.7 ± 1.9	2.2%
$K_2^*(1430)^-\pi^+$	0.25 ± 0.02	265 ± 6	0.09%
$K^*(1680)^+\pi^-$	1.39 ± 0.27	103 ± 12	0.36%
$K^*(1680)^-\pi^+$	1.2 ± 0.2	118 ± 11	0.11%
non-resonant	3.0 ± 0.3	164 ± 5	9.7%

Fit for r_B, δ_B, γ : model-independent approach

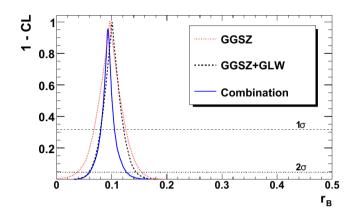
- use CLEO-c measurements of $\delta_{\rm D}$, divide Dalitz plot in regions i of ~ constant phase difference $\Delta \delta = \delta_{{\rm D}^0} \delta_{{\rm D}^0}$
- determine B⁺ and B⁻ event yields in each region i:

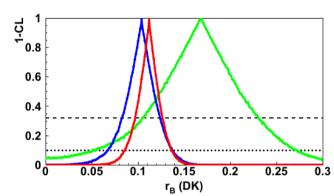


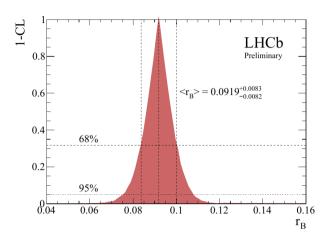
GGSZ: Results

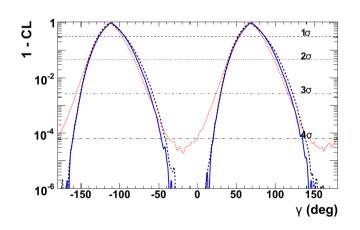

Fit in "cartesian" coordinates x_1, y_1 to avoid bias from $r_1 > 0$

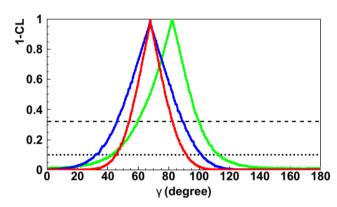
- model-dependent approach:
 - Belle, $657 \times 10^6 \text{ Y}(4s) \rightarrow B\overline{B} \text{ decays}$
 - Babar, $467 \times 10^6 \text{ Y}(4s) \rightarrow B\overline{B}$ decays

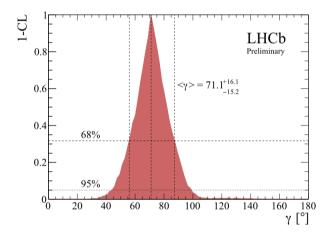

- model-independent approach:
 - Belle, $772 \times 10^6 \text{ Y}(4s) \rightarrow B\overline{B} \text{ decays}$
 - LHCb, 1fb⁻¹ (2011 data set)
- LHCb results already match precision from B factories



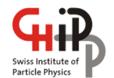

• LHCb result indicates smaller value of $r_{_{b}} \rightarrow$ sensitivity to γ reduced




y from Trees: Combinations



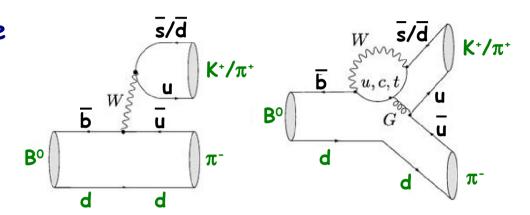
$$\left(\left\langle \gamma\right\rangle _{\mathsf{Babar}}\ =\left(\left.69\right._{-16}^{+17}\right)^{\circ}
ight)$$


$$\langle \gamma \rangle_{\text{Belle}} = \left(68^{+15}_{-14}\right)^{\circ}$$

$$\left[\left\langle \gamma\right\rangle_{\mathsf{LHCb}}^{}=\left(71^{\,+16.1}_{\,-15.2}\right)^{\circ}_{\,}\right]$$

[arXiv:1301.1029]

[arXiv:1301.2033]

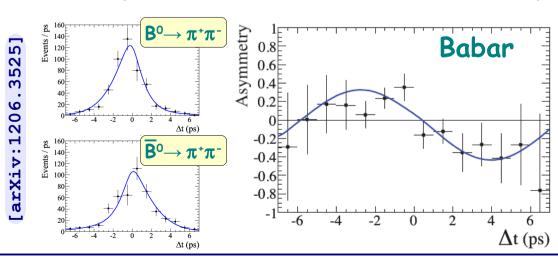

[LHCb-CONF-2012-032] preliminary

γ from Loops

Direct CP violation in 2-body charmless B decays

- sensitivity to γ through interference of b→u Tree diagrams (V_{ub} ~ e^{iγ}) and b→s(d) Penguin diagrams
- sensitive to possible contribution
 from New Physics in Penguin loops
- comparison with from y Trees!
- hadronic uncertainties: can be controlled using U-Spin symmetry between B^o and B^o decays
- two approaches:
 - time-dependent CP asymmetry in $B^0 \to \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$ and $B^0_{\ _s} \to K^{\scriptscriptstyle +} \, K^{\scriptscriptstyle -}$
 - time-integrated CP asymmetry in $B^0 \to K^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$ and $B^0_{\ s} \to \pi^{\scriptscriptstyle +} \, K^{\scriptscriptstyle -}$

R.Fleischer, [EPJ C52 (2007) 267]



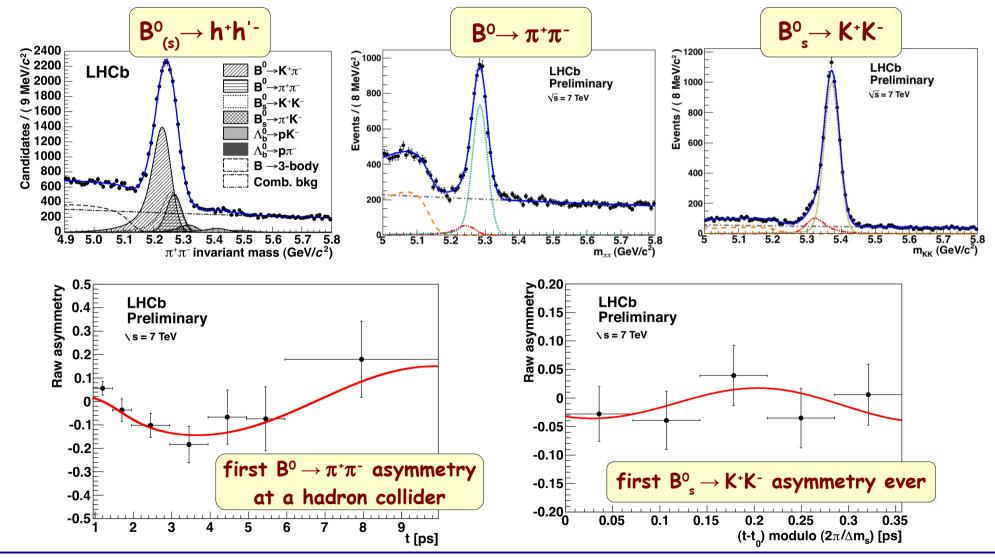

$B^0 \to \pi^+ \pi^-$: B factories

Measure time-dependent asymmetry of decay rates

$$A_{\mathcal{CP}}(\textbf{t}) \ = \ \frac{\Gamma(B_{(s)}^{0}(\textbf{t}=\textbf{0}) \rightarrow \textbf{f}) - \Gamma(\overline{B}_{(s)}^{0}(\textbf{t}=\textbf{0}) \rightarrow \textbf{f})}{\Gamma(B_{(s)}^{0}(\textbf{t}=\textbf{0}) \rightarrow \textbf{f}) + \Gamma(\overline{B}_{(s)}^{0}(\textbf{t}=\textbf{0}) \rightarrow \textbf{f})} \ = \frac{A_{f}^{\text{dir}} \cos(\Delta m_{(s)} \textbf{t}) + A_{f}^{\text{mix}} \sin(\Delta m_{(s)} \textbf{t})}{\cosh(\Delta \Gamma_{(s)} \textbf{t}) - A_{f}^{\Delta \Gamma} \sinh(\Delta \Gamma_{(s)} \textbf{t})}$$

- both mixing-induced CP violation (A_f^{mix}) and CP violation in decay (A_f^{dir})
 - for γ measurements, we are interested in ${\bf A}_{\rm f}^{\rm dir}$
- A_f^{mix} in $B^0 \to \pi^+ \pi^-$ allows to extract CKM angle sin 2α at B factories
 - exploiting Isospin relations between $B^0 \to \pi^+ \pi^-$, $B^0 \to \pi^0 \pi^0$ and $B^\pm \to \pi^\pm \pi^0$
 - sorry, no time to cover this here (maybe in the discussion session?)

[PRL 98 (2007) 211801]



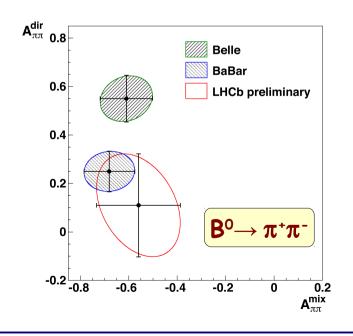
$B_{(s)}^{0} \rightarrow h^{+} h^{-}$: LHCb

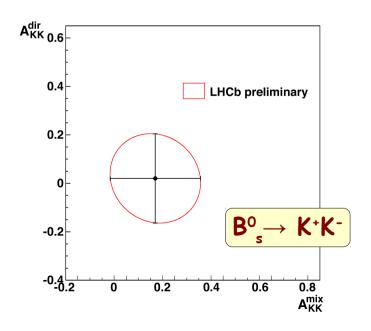
Analysis of 0.69 fb⁻¹ (2/3 of 2011 data set)

[LHCb-CONF-2012-007] preliminary

• note the power and importance of π/K separation:

First LHCb results promising


[LHCb-CONF-2012-007] preliminary

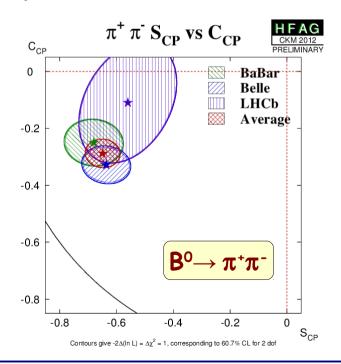

- \bullet statistical precision not yet sufficient to attempt a γ determination
 - but systematic uncertainties very small and six times more data "on tape"

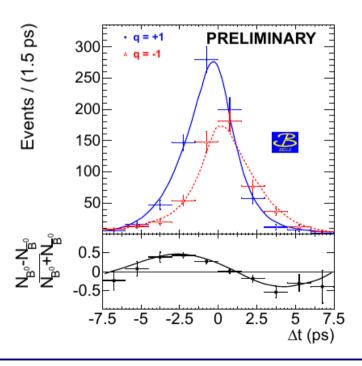
$$A_{\pi\pi}^{dir} = 0.11 \pm 0.21 \pm 0.03$$

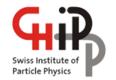
$$A_{KK}^{dir} = 0.02 \pm 0.18 \pm 0.04$$

• $A_{\pi\pi}^{dir}$ comparison with B factories: LHCb result favours Babar over Belle

First LHCb results promising

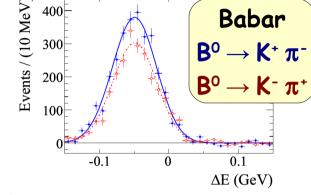

[LHCb-CONF-2012-007] preliminary


- \bullet statistical precision not yet sufficient to attempt a γ determination
 - · but systematic uncertainties very small and six times more data "on tape"


$$A_{\pi\pi}^{dir} = 0.11 \pm 0.21 \pm 0.03$$

• $A_{\pi\pi}^{dir}$ comparison with B factories: new preliminary Belle result

[CKM 2012]


$$B^0_{(s)} \rightarrow K \pi$$

Time-integrated decay rate asymmetry to flavour-specific final states

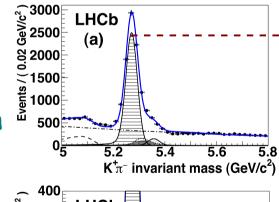
$$\mathbf{A}_{CP} = \frac{\Gamma(\mathbf{B}_{(s)}^{0} \to \mathbf{f}) - \Gamma(\overline{\mathbf{B}}_{(s)}^{0} \to \overline{\mathbf{f}})}{\Gamma(\mathbf{B}_{(s)}^{0} \to \mathbf{f}) + \Gamma(\overline{\mathbf{B}}_{(s)}^{0} \to \overline{\mathbf{f}})}$$

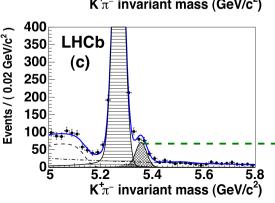
Babar analysis of full dataset [arxiv:1206.3525]

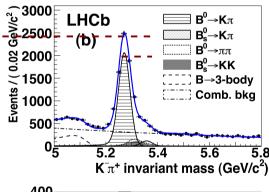
$$A_{CP} = -0.107 \pm 0.016^{+0.006}_{-0.004}$$

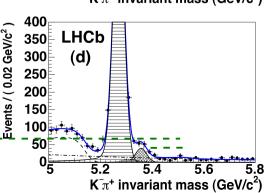
LHCb analysis of 0.35 fb⁻¹ (1/3 of 2011 data set)

[PRL 108 (2012) 201601]


•
$$B^0 o K^*\pi^-$$
 / $\overline B{}^0 o K^-\pi^+$

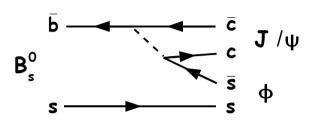

$$A_{CP} = -0.088 \pm 0.011 \pm 0.008$$

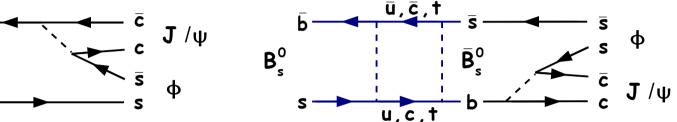

- first observation of CP violation at a hadron collider (6 σ)
- $B^{0} \rightarrow K^{-}\pi^{+} / \overline{B}^{0} \rightarrow K^{+}\pi^{-}$


$$A_{CP} = 0.27 \pm 0.08 \pm 0.02$$

 first evidence for CP violation in the B^0 system (3.2 σ)

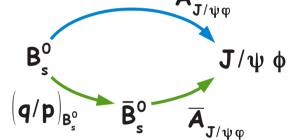
Outline

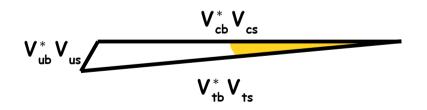

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B^o_s \overline{B}^o_s$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$



CP violation in $B^{0}_{\ s} \to J/\psi \, \varphi$

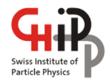
"Golden decay" of the B⁰ system, equivalent of B⁰ \rightarrow J/ ψ K⁰


CP violation through interference between mixing and decay


but CP violating phase predicted to be very small

$$\lambda_{\mathbf{J}/\psi\phi} = \left(\frac{\mathbf{q}}{\mathbf{p}}\right)_{\mathsf{B}_{\mathsf{s}}^{\mathsf{o}}} \cdot \left(\frac{\overline{\mathbf{A}}_{\mathbf{J}/\psi\phi}}{\mathbf{A}_{\mathbf{J}/\psi\phi}}\right) = \mathbf{2} \left(\frac{\mathbf{V}_{\mathsf{tb}}^{*} \mathbf{V}_{\mathsf{ts}}}{\mathbf{V}_{\mathsf{cb}}^{*} \mathbf{V}_{\mathsf{cs}}}\right) = \mathbf{e}^{-\mathbf{i}\,\phi_{\mathsf{s}}}$$

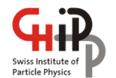
• φ_s is the small angle in one of the "squashed" unitarity triangles


$$\begin{vmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{vmatrix} \times \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts}^* & V_{tb}^* \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Standard Model prediction:

$$\phi_s = 0.036 \pm 0.002 \text{ rad}$$

sensitive to possible New Physics contributions in B^0_s - \overline{B}^0_s mixing


CP violation in $B^o_{\ s} \to J/\psi \ \varphi$

Measure time-dependent CP asymmetry

• for CP eigenstate f with eigenvalue $\eta_f = \pm 1$

- determine flavour of B_s meson at t = 0 \rightarrow mis-tag fraction ω_{tag}
- resolve rapid B^0_s \overline{B}^0_s oscillations \to finite proper time resolution σ_t

- final state in $B^0_{\ s} \to J/\psi \, \varphi$ is a mix of CP even and odd (L $_{J/\psi \varphi}$ = 0,1,2)
 - three polarisation amplitudes, plus non-resonant K⁺ K⁻ amplitude (S-wave)
 - time-dependent angular analysis to disentangle these and determine ϕ_s
- finite lifetime difference $\Delta\Gamma_s$ between CP eigenstates in $B_s^0 \overline{B}_s^0$ system
 - not well measured yet, needs to be determined simultaneously with ϕ_s

$B_s^0 \rightarrow J/\psi \phi$: Fit

Unbinned Maximum Likelihood fit to extract physics parameters

• fit parameters:

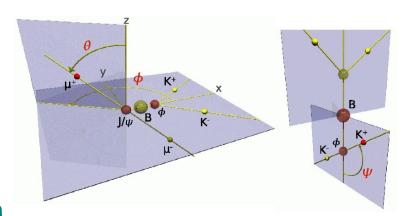
 ϕ_s , $\Delta\Gamma_s$

usually constrained to the value obtained in oscillation measurements

$$\frac{\mathrm{d}^4\Gamma(B_s^0 \to J/\psi \,\phi)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) \,f_k(\Omega)$$

$$\mathbf{m}_{s}$$
, $\overline{\Gamma}_{s}$, $(\Delta \mathbf{m}_{s})$

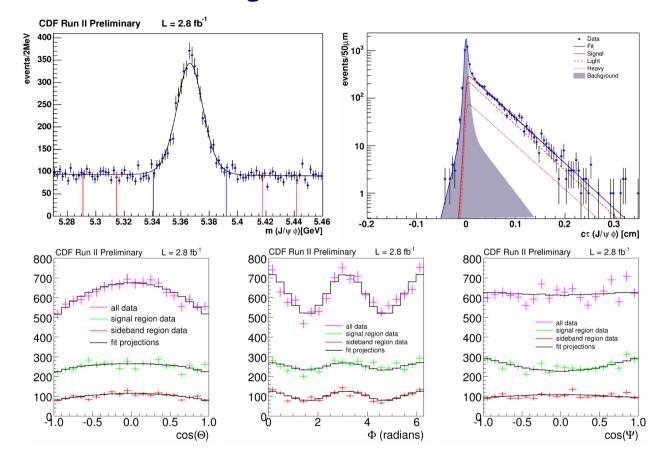
•
$$(|A_0|, |A_{\parallel}|, |A_{\perp}|, \delta_{\parallel}, \delta_{\perp}, \delta_{0})$$

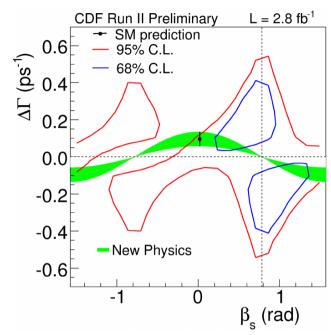

- tagging parameters
- signal fraction
- background parameters

$$h_k(t) = N_k e^{-Gt} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$

k	$f_k(heta_\mu, heta_K,\phi_h)$	N_k	a_k	b_k	c_k	d_k
1	$2\cos^2\theta_K\sin^2\theta_\mu$	$ A_0(0) ^2$	1	D	C	-S
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \phi_h\right)$	$ A_{ }(0) ^2$	1	D	C	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \phi_h\right)$	$ A_{\perp}^{"}(0) ^2$	1	-D	C	S
4	$\sin^2 \theta_K \sin^2 \theta_\mu \sin 2\phi_h$	$ A_{ }(0)A_{\perp}(0) $	$C\sin(\delta_{\perp} - \delta_{\parallel})$	$S\cos(\delta_{\perp}-\delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp}-\delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\cos\phi_h$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel}-\delta_0)$	$C\cos(\delta_{\parallel}-\delta_0)$	$-S\cos(\delta_{\parallel}-\delta_0)$
6	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\sin\phi_h$	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp} - \delta_0)$
7	$\frac{2}{3}\sin^2\theta_{\mu}$	$ A_s(0) ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\theta_K\sin2\theta_\mu\cos\phi_h$	$ A_s(0)A_{\parallel}(0) $	$C\cos(\delta_{\parallel}-\delta_S)$	$S\sin(\delta_{\parallel}-\delta_S)$	$\cos(\delta_{\parallel} - \delta_S)$	$D\sin(\delta_{\parallel} - \delta_S)$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_K\sin2\theta_\mu\sin\phi_h$	$ A_s(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_S)$	$-D\sin(\delta_{\perp}-\delta_S)$	$C\sin(\delta_{\perp}-\delta_S)$	$S\sin(\delta_{\perp}-\delta_S)$
10	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$	$ A_s(0)A_0(0) $	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0 - \delta_S)$

$$(S = \frac{\sin \phi_s}{\sin \phi_s}; C = \frac{\cos \phi_s}{\cos \phi_s}; D = 1 - C - S)$$

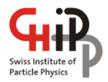

- event-by-event inputs:
 - · reconstructed invariant mass & uncertainty
 - reconstructed decay time & uncertainty
 - three decay angles $\Omega = (\theta = \theta_u, \phi = \phi_h, \psi = \theta_K)$
 - · tagging decision & estimated tagging dilution



$B_s^0 \rightarrow J/\psi \phi$: Tevatron 2008

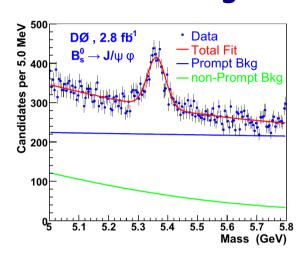
CDF: ~ 3'200 signal events from 2.8 fb⁻¹

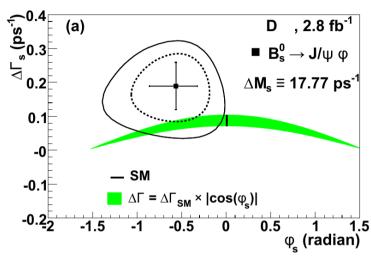
1.8 σ deviation from


Standard Model prediction

(p-value = 7 %)

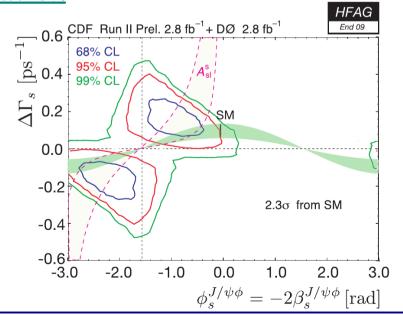
[CDF/ANAL/BOTTOM/PUBLIC 9458]


- note different convention: $\phi_s = -2 \beta_s$
- note two-fold ambiguity: fit function invariant under transformation


$$(\phi_{\rm s}, \Delta\Gamma_{\rm s}, \delta_{\parallel}, \delta_{\perp}) \quad \Longleftrightarrow \quad (\pi-\phi_{\rm s}, -\Delta\Gamma_{\rm s}, 2\pi-\delta_{\parallel}, -\delta_{\perp})$$

$B^0_s \rightarrow J/\psi \phi$: Tevatron 2008

DØ: ~ 2'000 signal events from 2.8 fb⁻¹

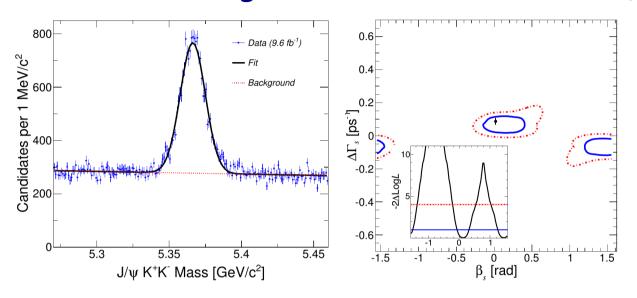


1.5 σ deviation from Standard Model prediction (p-value = 6.6 %)

[PRL 101 (2008) 241801]

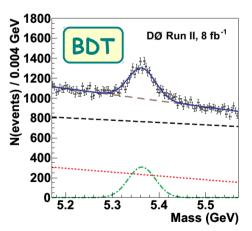
CDF + DO combination

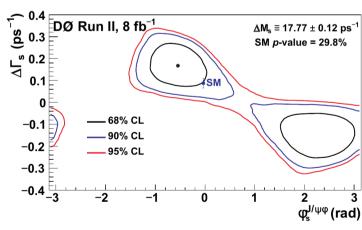
 2.3σ deviation from Standard Model prediction


2.8 σ deviation when including D0 result for A_{sl}^{s}

[arXiv:1010.1589]

$B_s^0 \rightarrow J/\psi \phi$: Tevatron 2012


CDF: ~-11'000 signal events from 9.6 fb⁻¹ (their full dataset)



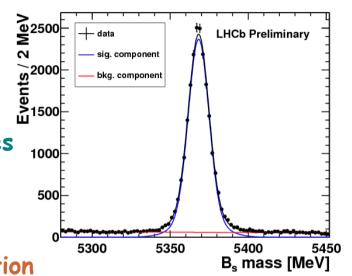
 $-0.60 < \phi_s < 0.12$ @ 68% C.L.

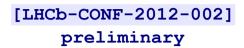
$$\left(\phi_{s} = -2\beta_{s}\right)$$
[PRL 109 (2012) 171802]

DØ: ~ 5'600 signal events from 8.0 fb⁻¹ (for BDT-based selection)

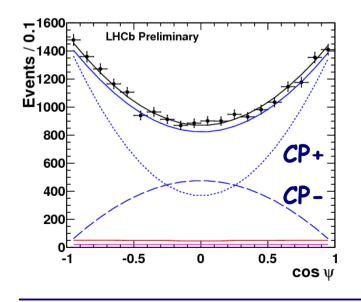
$$\phi_s = -0.55^{+0.38}_{-0.36} \otimes 68\% C.L.$$

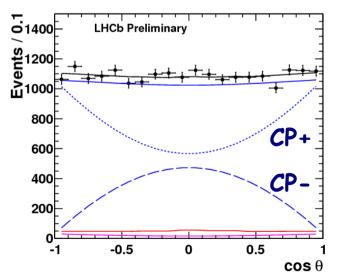
[PRD 85 (2012) 032006]

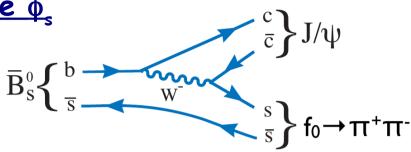

both compatible with Standard Model prediction



$B_s^0 \rightarrow J/\psi \phi$: LHCb


Analysis based on 1 fb⁻¹ (2011 data set)

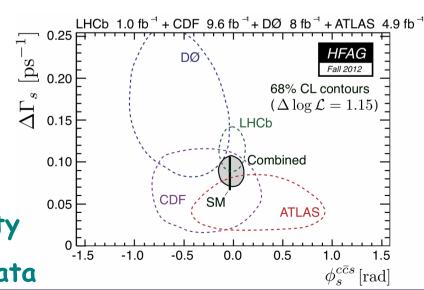

- ~ 21'000 signal events
 - 2 x CDF (!)
- only few % background
- angular fit cleanly separates
 CP even/odd components
- different B_H, B_L lifetimes
 clearly visible in fit projection

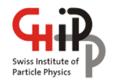


φ_s: LHCb

$\underline{B^0}_s \to J/\psi \, \pi^+ \, \pi^-$: another channel to measure ϕ_s

- lower branching fraction than $B^0_{\ s} \to J/\psi \, \varphi$
 - 7400 candidates from 1.0 fb⁻¹
- · but no angular analysis requried
 - dominated by $f_0(980) \rightarrow \pi^+ \pi^-$ resonance
 - almost pure CP odd (>99.7 % @ 95% CL)


$$\phi_s = -0.019^{+0.173}_{-0.174}^{+0.004}_{-0.003}$$
 rad


[PLB 713 (2012) 378] [PRD 86 (2012) 052006]

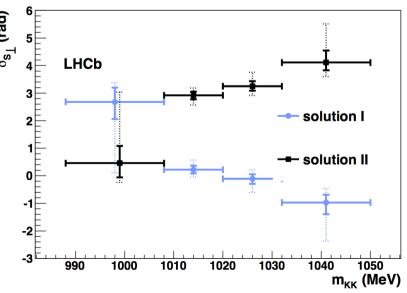
Simultaneous LHCb fit of B0 $_{s} \rightarrow J/\psi ~\phi ~and ~B^{0}_{~s} \rightarrow J/\psi ~\pi^{\scriptscriptstyle +} ~\pi^{\scriptscriptstyle -}$

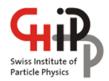
$$\phi_s = -0.002 \pm 0.083 \pm 0.027 \text{ rad}$$
[LHCb-CONF-2012-002] preliminary

- most precise measurement to date
- excellent agreement with Standard Model
- precision dominated by statistical uncertainty
- expect significant improvement with more data

LHCb: Sign of $\Delta\Gamma_s$

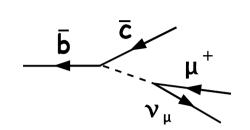

Resolve two-fold ambiguity in fit solution


 $\begin{array}{cccc} (\phi_{\text{s}}, \Delta\Gamma_{\text{s}}, \delta_{\parallel}, \delta_{\perp}) & \longleftrightarrow & (\pi - \phi_{\text{s}}, -\Delta\Gamma_{\text{s}}, 2\pi - \delta_{\parallel}, -\delta_{\perp}) \\ & \text{("solution I")} & \text{("solution II")} \end{array}$


- look at strong phase difference $\delta_{s\perp} = \delta_s \delta_{\perp}$ between K^+K^- P-wave and S-wave amplitudes as a function of $m(K^+K^-)$ around the $\phi(1020)$
 - P-wave: going through ϕ (1020) resonance \rightarrow expect rapid positive phase shift
 - S-wave: non-resonant + tail from $f_0(980)$
 - → expect no significant variation of phase
- LHCb analysis based on 0.37 fb⁻¹
 - determine $\delta_{\text{s}\perp}$ in four $\text{K}^{\scriptscriptstyle +}\text{K}^{\scriptscriptstyle -}$ mass bins

solution corresponding to $\Delta\Gamma_s > 0$ selected with 4.7 σ significance

[PRL 108 (2012) 241801]



Like-Sign Dimuon Asymmetry

Compare numbers of $\mu^+\mu^+$ and $\mu^-\mu^-$ events from semileptonic B decays

- in collision produce $b\overline{b}$ pairs; $b\to\,\mu^{\scriptscriptstyle -}\,\overline{\nu}_{_{\! \!\! \mu}}$ and $\overline{b}\to\mu^{\scriptscriptstyle +}\,\nu_{_{\! \!\! \mu}}$
 - observe $\mu^{\scriptscriptstyle \text{-}}\mu^{\scriptscriptstyle \text{-}}$ event \to $B^0_{_{\text{(s)}}}$ must have mixed
 - observe $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle +}$ event $\to \, \overline{B}{}^{\scriptscriptstyle 0}{}_{\!\scriptscriptstyle (s)}$ must have mixed

observe different numbers of $\mu^{\scriptscriptstyle -}\mu^{\scriptscriptstyle -}$ and $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle +}$ events \to CP violation in mixing

$$A_{sl}^b \equiv \frac{N_b^{++} - N_b^{--}}{N_b^{++} - N_b^{--}} \approx 0.6 \cdot a_{sl}^d + 0.4 \cdot a_{sl}^s \qquad \begin{array}{c} \text{hadronization fractions,} \\ \text{mixing probabilities} \end{array}$$

mixing probabilities

with the semileptonic asymmetries:

$$a_{sl}^{d} = \frac{\Delta \Gamma_{d}}{\Delta m_{d}} \cdot \tan \phi_{d}$$
; $a_{sl}^{s} = \frac{\Delta \Gamma_{s}}{\Delta m_{s}} \cdot \tan \phi_{s}$

- CP violation in mixing expected to be very small
- Standard Model predictions:

$$a_{\rm sl}^{\rm d} = (-4.1 \pm 0.6 \) \times 10^{-4}$$
 ; $a_{\rm sl}^{\rm s} = (-1.9 \pm 0.3) \times 10^{-5}$ A. Lenz, [arXiv:1205.1444]

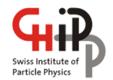
A^b_{sl}: **D**0

Challenge: large backgrounds and μ^{\pm} asymmetries from other sources

- · largest source of background asymmetry: muons from kaon decays
 - K⁺ (us) have smaller interaction cross section with matter than K⁻ (us)
 - K⁺ have more time to decay in the detector volume \rightarrow more μ^+ than μ^-
- other sources of backgrounds: pion decays, hadron punchthrough
- · other sources of asymmetries: muon detection and identification efficiency

DO analysis using 9.0 fb⁻¹ (full data sample)

[PRD 84 (2011) 052007]

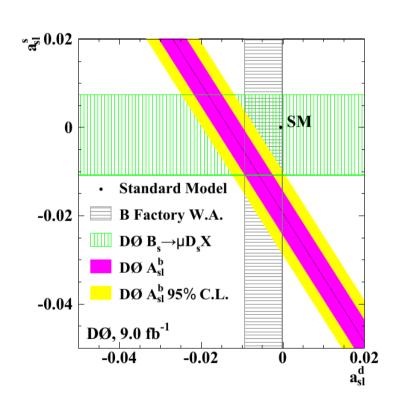

• basic idea: estimate and correct for background asymmetries from data using the measured charge asymmetry in large samples of inclusive muons

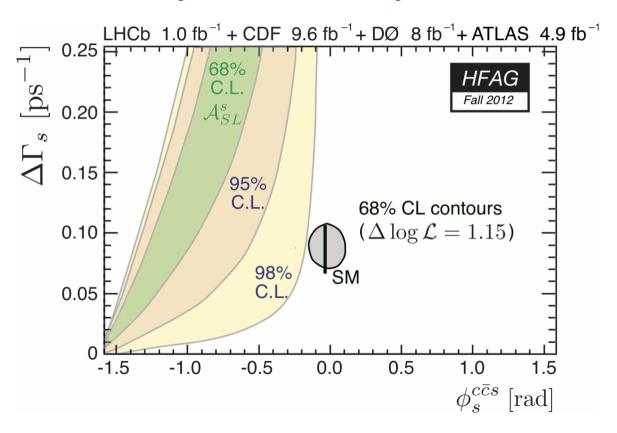
$$a \equiv \frac{\mathbf{n}^{+} - \mathbf{n}^{-}}{\mathbf{n}^{+} - \mathbf{n}^{-}}$$

 very intricate analysis, large corrections, but also many cross checks

$$A_{raw} = (+0.126 \pm 0.041) \%$$

 $a = (+0.688 \pm 0.002) \%$

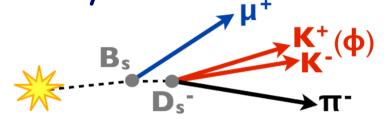

$$A_{sl}^{b} = (-0.787 \pm 0.172 \pm 0.093) \%$$



Abls: D0 result

Measured asymmetry 34 times larger than Standard Model prediction

- 3.9 σ discrepancy
- tension also with value of φ_s measured in $B^0_{\ s} \to J/\psi \ \varphi \ \ and \ B^0_{\ s} \to J/\psi \ \pi^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle -}$



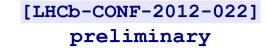
Semileptonic Asymmetry

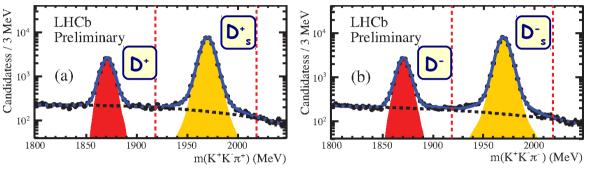
LHC experiments cannot measure like-sign dimuon asymmetry

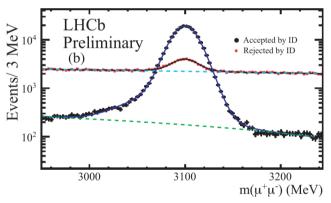
- large intrinsic charge asymmetry from pp collisions
- but LHCb can directly measure semileptonic asymmetry

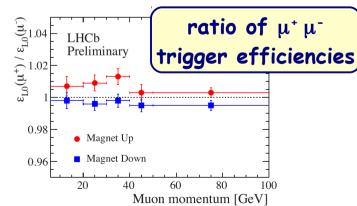
$$\alpha_{sl}^{s} \ = \ \frac{\Gamma \left(B_{s}^{0} \rightarrow D_{s}^{-} \, \mu^{+} X \right) \ - \ \Gamma \left(\overline{B}_{s}^{0} \rightarrow D_{s}^{+} \, \mu^{-} X \right)}{\Gamma \left(B_{s}^{0} \rightarrow D_{s}^{-} \, \mu^{+} X \right) \ + \ \Gamma \left(\overline{B}_{s}^{0} \rightarrow D_{s}^{+} \, \mu^{-} X \right)}$$

- pp collisions give rise to $B^0_s \overline{B}^0_s$ production asymmetry $a_n \sim 1 \%$
- but: a_n strongly diluted by very rapid $B_s^0 \overline{B}_s^0$ oscillations

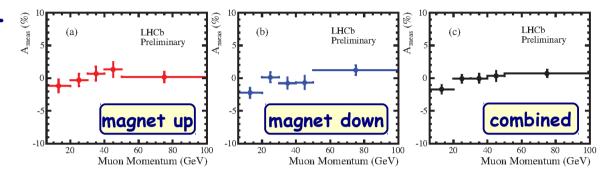

$$A_{raw} = \frac{N \left(D_{s}^{-}\mu^{+}\right) - N \left(D_{s}^{+}\mu^{-}\right)}{N \left(D_{s}^{-}\mu^{+}\right) + N \left(D_{s}^{+}\mu^{-}\right)} = \frac{a_{sl}^{s}}{2} + \left[a_{p} - \frac{a_{sl}^{s}}{2}\right] \times \frac{\int e^{-\Gamma_{s}t} \cos(\Delta m_{s}t) \, \epsilon(t) dt}{\int e^{-\Gamma_{s}t} \cosh(\Delta \Gamma_{s}t/2) \, \epsilon(t) dt}$$
($\epsilon(t)$ = decay time acceptance)
$$= 2 \times 10^{-3} \text{ for LHCb}$$




as : LHCb


Analysis of 1.0 fb⁻¹ (2011 data set)

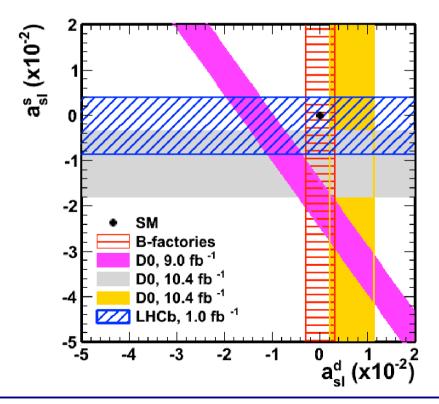
- clean signals, 193k events,
 very low backgrounds
- detection efficiencies
 determined from data
 using various control channels
- most critical: possible charge asymmetry in muon trigger and muon identification
- studied using large samples of $J/\psi \to \mu^{\scriptscriptstyle +}\,\mu^{\scriptscriptstyle -}$
 - kinematically reconstructed without applying muon identification criteria
 - from events selected by hadron trigger



as : LHCb

Valuable cross check (for many LHCb analyses)

- polarity of LHCb dipole magnet reversed every few weeks
- look at results separately for the two data samples taken with opposite magnet polarity



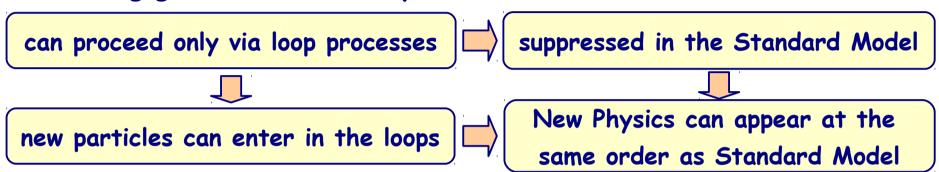
Result

$$a_{sl}^{s} = (-0.24 \pm 0.54 \pm 0.33) \%$$

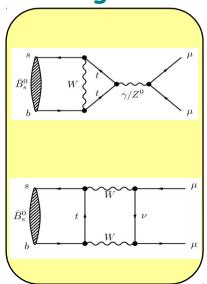
[LHCb-CONF-2012-022] preliminary

- most precise measurement to date
- consistent with Standard Model
- all measurements of a_{sl}^s , a_{sl}^d compatible with each other at < 2 σ level

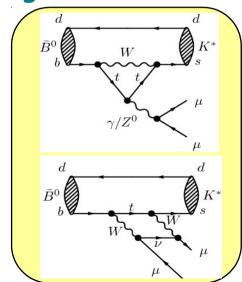
Outline


- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a little bit of phenomenology (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \, \mu^+ \, \mu^-$

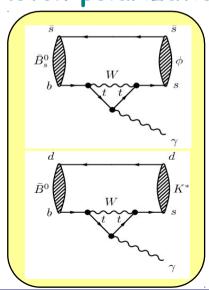
Rare Decays


$b \rightarrow s(d)$ transitions, mediated by Flavour Changing Neutral Currents

ideal hunting ground for New Physics



Most prominent examples

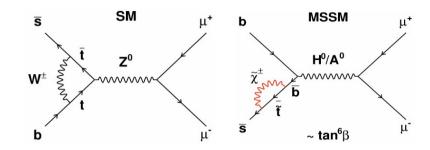

$$B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$$
 branching fraction

$$B^0 \to K^{0^\star} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$$
 angular distributions

 $B^0 \to K^{0^\star} \, \gamma$ and $B^0_{\ s} \to \varphi \, \gamma$ photon polarization

Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a little bit of phenomenology (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \, \mu^-$, angular observables in $B^0 \to K^{*0} \, \mu^+ \, \mu^-$


Rare Decays: $B_{(s)}^0 \rightarrow \mu^+ \mu^-$

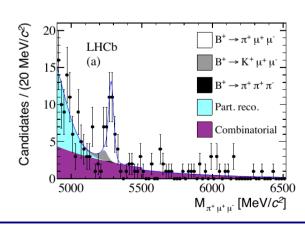
$\underline{B^0}_s \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ very rare in the Standard Model

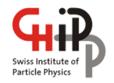
- GIM suppression and helicity suppression
- predicted branching fractions:

BF
$$(B_s^0 \to \mu^+ \mu^-) = (3.23 \pm 0.27) \times 10^{-9}$$

BF
$$(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$$

A. Buras et al., [EPJ C72 (2012) 2172]


- sensitive to contributions from scalar and pseudo-scalar sector
 - interesting probe for New Physics with extended Higgs sector

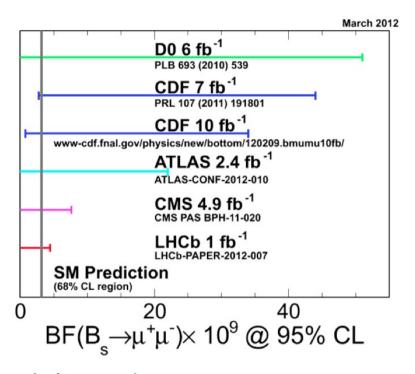


BF
$$(B^+ \to \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6 \pm 0.1) \times 10^{-8}$$

LHCb, [JHEP 1212 (2012) 125]

Rare Decays: $B_s^0 \rightarrow \mu^+ \mu^-$

Searches at Tevatron and LHC


key features: statistics, mass resolution

	ATLAS	CMS	LHCb	
Luminosity	2.4 fb ⁻¹	4.9 fb ⁻¹	1.0 fb ⁻¹	
P ^µ _{T,min}	4 GeV	4 GeV	1.5 <i>G</i> eV	
Mass window	± 130 MeV	± 75 MeV	± 60 MeV	

• LHC combination, June 2012:

BF
$$(B_s^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-9}$$
 @ 95% C.L.

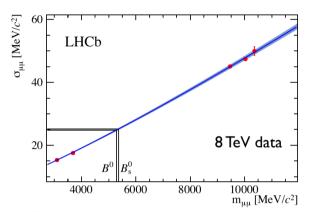
[LHCb-CONF-2012-017]

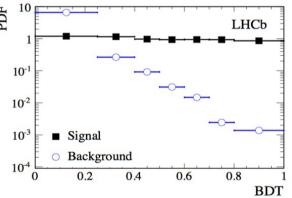
Subtlety when comparing with Standard Model prediction

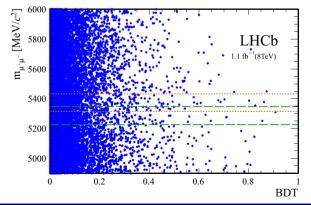
- measure time-integrated BF but theoretical prediction evaluated for t = 0
 - the two are not equal since $\Delta\Gamma_{_{s}}\neq0$
- "corrected" Standard Model prediction:

BF
$$(B_s^0 \to \mu^+ \mu^-) = (3.54 \pm 0.30) \times 10^{-9}$$

K. De Bruyn et al., [PRD 86 (2012) 014027]


e.g. BF (
$$K^0 \rightarrow \pi^+ \pi^-$$
):
 ~ 100 % for t = 0
 ~ 50 % time-integrated




$B_s^0 \rightarrow \mu^+ \mu^-$: LHCb

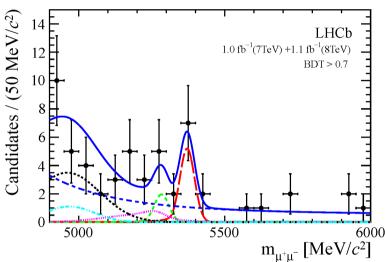
LHCb analysis of 2.1 fb⁻¹ (2011 + 50% of 2012 sample) [PRL 110 (2013) 021801]

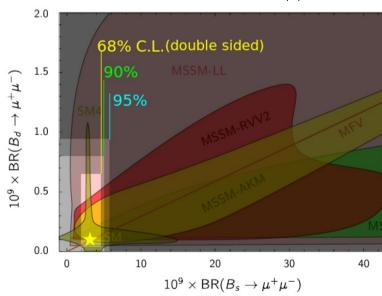
- signal/background discrimination based on:
- μ⁺μ⁻ invariant mass
 - peak positions calibrated using samples of $B^0 \to \pi^+\pi^-$, $B^0_{(s)} \to K\pi$, $B^0_{(s)} \to K^+K^-$
 - resolution from interpolation between $J/\psi(ns) \rightarrow \mu^+ \mu^-$ and $\Upsilon(ns) \rightarrow \mu^+ \mu^-$
- BDT classifier, combining 9 topological variables
 - B decay vertex, impact parameters, ...
 - selected to avoid correlation with mass
 - trained on simulated event samples
 - calibrated an data using of $B \rightarrow h^+ h^{'-}$ (signal) and invariant mass side bands (background)

$B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$: LHCb

First evidence for $B^0_s \rightarrow \mu^+ \mu^-$

[PRL 110 (2013) 021801]

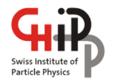

- observe 3.5 σ excess over background-only hypothesis (p-value = 5.3 \times 10⁻⁴)
- branching fraction normalized to
 - $B^{\pm} \rightarrow J/\psi \ K^{\pm}$ (similar trigger but extra track)
 - $B^0 \to K^+ \pi^-$ (different trigger, same # tracks)
 - normalisation factors agree


BF
$$(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.4+0.5}_{-1.2-0.3}) \times 10^{-9}$$

• also improved upper limit on $B^0 \to \mu^+ \, \mu^-$

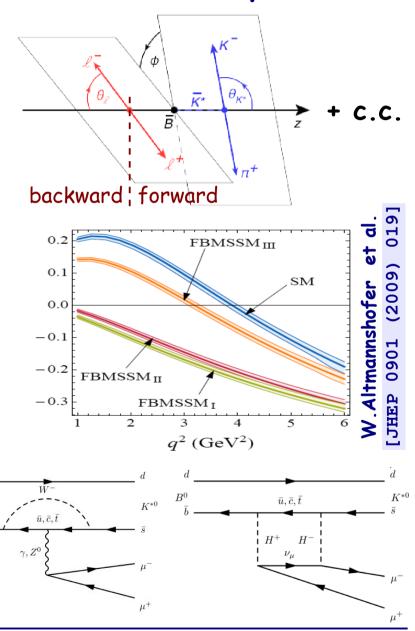
BF
$$(B^0 \to \mu^+ \mu^-)$$
 < 9.4 × 10⁻¹⁰ @ 95% C.L.

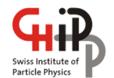
 results compatible with Standard Model, put stringent constraints on New Physics scenarios



using M. Straub, [arXiv:1205.6094]

Outline

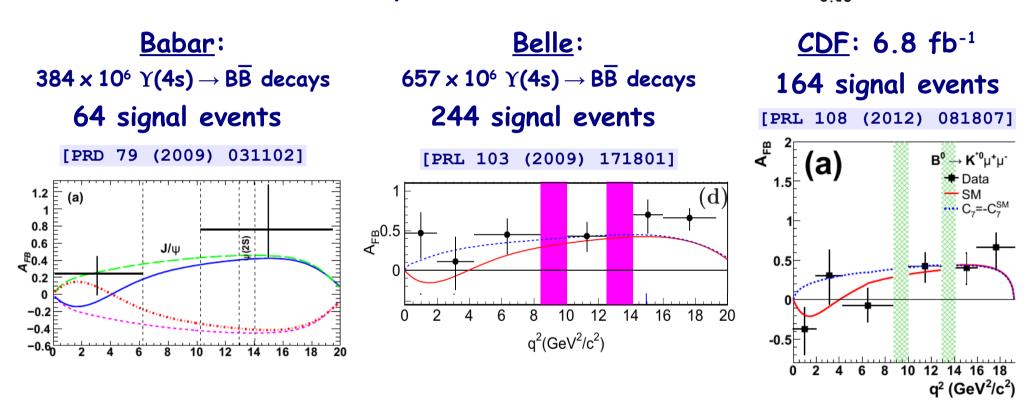

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a little bit of phenomenology (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B_s^0 \overline{B}_s^0$ mixing phase ϕ_s
 - rare decays: search for $B^0_{(s)} \to \mu^+ \, \mu^-$, angular observables in $B^0 \to K^{\star 0} \, \mu^+ \, \mu^-$

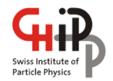


Rare Decays: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Angular distributions sensitive to contributions from New Physics

- decay can be fully described by three angles $(\theta_{\ell}, \theta_{\kappa}, \phi)$ and $q^2 = m^2(\mu^+\mu^-)$
- differential cross section as a function of these angles gives rise to eight independent observables for which precise predictions can be made as a function of q²
- prominent example: A_{FB} = forward-backward asymmetry of the muon in the B^0 rest frame
 - Standard Model predicts zero-crossing of A_{FB} at a well defined point in q^2
- sensitive to New Physics contributions $\frac{B^0}{\delta}$ that affect the helicity structure of the decay (e.g. new scalars, pseudo-scalars)

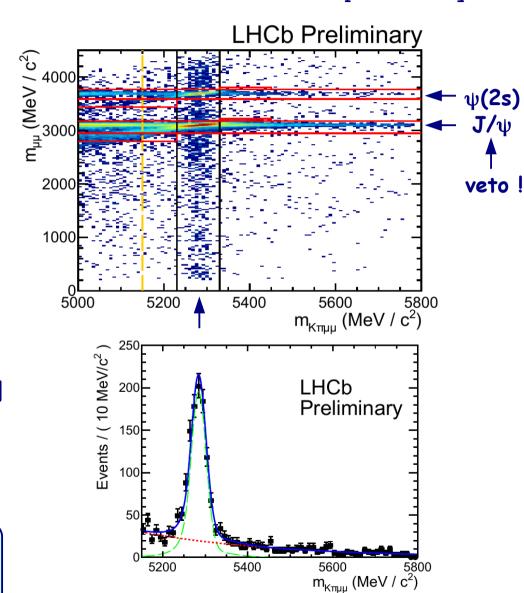



$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: A_{FB}

First measurements at B factories and CDF

• $B^0 \rightarrow K^{*0} \, \mu^+ \, \mu^-$ is a rare decay, but not too rare: $BF = (1.05^{+0.16}_{-0.13}) \times 10^{-6}$ [PDG]

- hint for deviation from Standard Model prediction (solid lines) at low q^2 ?
 - Belle: A_{FR} exceeds Standard Model expectation by 2.7 σ
- but statistics limited, measurement uncertainties still large


$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: LHCb

900 signal events from 1 fb⁻¹ (2011 data set)

[LHCb-CONF-2012-008] preliminary

- event selection: BDT using track quality criteria, kinematic and topological event properties,
- have to veto $\mu^+\mu^-$ mass windows around J/ψ and $\psi(2s)$ to suppress irreducible backgrounds from $B^0 \to K^{*0} J/\psi$ and $B^0 \to K^{*0} \psi(2s)$
- large sample of $B^0 \to K^{*0} J/\psi (\mu^+ \mu^-)$ used to train BTD, also ideal control sample to study acceptance effects on the angular distributions

"every disadvantage has its advantage" (Johan Cruijff, footballing philosopher)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: LHCb

"Folding technique"

• differential cross section as a function of $(\theta_{\ell}, \theta_{K}, \phi, q^{2})$

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi\,\mathrm{d}q^{2}} \propto I_{1}^{s}\sin^{2}\theta_{K} + I_{1}^{c}\cos^{2}\theta_{K} + \left(I_{2}^{s}\sin^{2}\theta_{K} + I_{2}^{c}\cos^{2}\theta_{K}\right)\cos2\theta_{\ell}$$

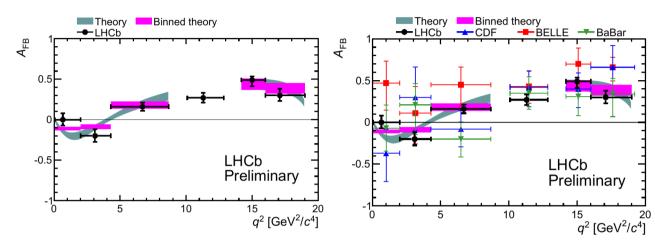
$$+I_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + I_{4}\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi$$

$$+I_{5}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi$$

$$+\left(I_{6}^{s}\sin^{2}\theta_{K} + I_{6}^{c}\cos^{2}\theta_{K}\right)\cos\theta_{\ell} + I_{7}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi$$

$$+I_{8}\sin2\theta_{K}\sin2\theta_{\ell}\sin\phi + I_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\phi$$

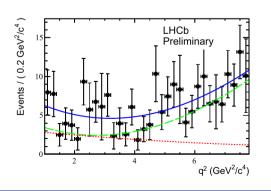
- $I_i = I_i$ (q^2); the observables we want to extract are combinations of these I_i
- · event sample not (yet) large enough to fit all observables simultaneously
 - reduce number of fit parameters by integrating over some of the angles
 - · better: apply "folding technique" exploiting symmetry of sin/cos functions
 - e.g. replacing ϕ by ϕ + π for ϕ < 0 cancels all terms with I_4 , I_5 , I_7 , I_8
 - four observables remain (one of them A_{FB}) \rightarrow fit these simultaneously

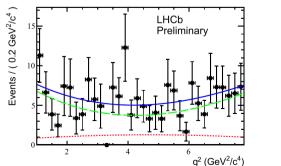


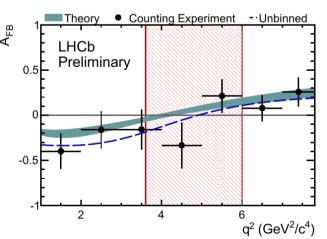
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: LHCb

LHCb: results (from 1 fb-1)

[LHCb-CONF-2012-008] preliminary

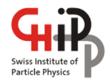

- all observables in good agreement with Standard Model prediction
- also compatible with previous experiments




Also: first extraction of the zero crossing point of $A_{FB}(q^2)$

• separately fit event yields for forward-going and backward-going events as a function of q^2 , then calculate the asymmetry

again, result agrees with Standard Model


Outline

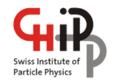
- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing

• a little bit of phene Short Appendix: Outlook

imentalist ...)

- introduce experimental tacilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: $\sin 2\beta$, CKM angle γ , $B^0_{\alpha} \overline{B}{}^0_{\alpha}$ mixing phase ϕ_{α}
 - rare decays: search for $B^0_{(s)} \to \mu^+ \mu^-$, angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$

Outlook: LHCb Upgrade


- LHC and LHCb are a spectacular success
- and so is the Standard Model
 - ... at least so far
- current precision of measurements still leaves lots of room for sub-dominant contributions from New Physics
- almost all LHCb results are completely dominated by statistical uncertainties
- leading systematic uncertainties will also decrease with increasing statistics

NEED MORE STATISTICS

 \Rightarrow

THE LHCb UPGRADE!

2010	0.037 fb ⁻¹ @ 7 TeV				
2011	1 fb ⁻¹ @ 7 TeV				
2012	2 fb ⁻¹ @ 8 TeV				
2013	LHC LS1				
2014					
2015					
2016	5 fb ⁻¹ @ 13 TeV				
2017					
2018	LHC LS2,				
2019	LHCb upgrade				
2020					
2021	5 fb ⁻¹ per year				
2022					

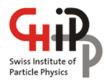
LHCb Upgrade

• goal: reach measurement precision that matches theory uncertainties

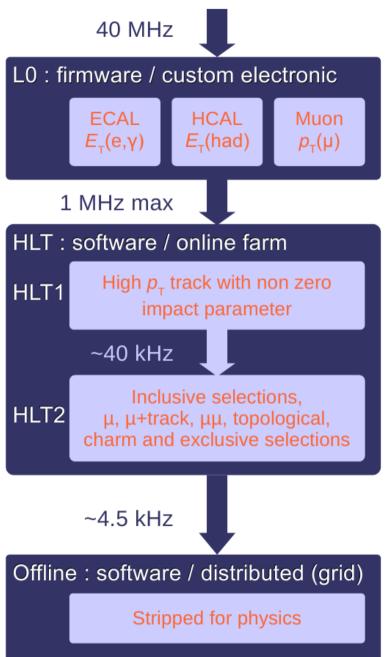
[CERN-LHCC-2012-007]

Type	Observable	Current	LHCb	$\mathbf{U}\mathbf{p}\mathbf{g}\mathbf{r}\mathbf{a}\mathbf{d}\mathbf{e}$	Theory
		precision	2018	(50fb^{-1})	uncertainty
B_s^0 mixing	$2\beta_s \ (B_s^0 \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{\mathrm{fs}}(B^0_s)$	$6.4 \times 10^{-3} [18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{ m eff}(B_s^0 o \phi\phi)$	_	0.17	0.03	0.02
penguin	$2eta_s^{ ext{eff}}(B_s^0 o K^{*0}ar K^{*0})$	_	0.13	0.02	< 0.02
	$2eta^{ m eff}(B^0 o\phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o \phi \gamma)/ au_{B^0_s}$	_	5%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/}c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 % [16]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B_s^0 o \mu^+\mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B_s^0 o \mu^+\mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 10-12^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	$0.8^{\circ} [18]$	0.6°	0.2°	$_{ m negligible}$
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	_
<i>CP</i> violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_


Upgrade


- two lines of attack
 - increase trigger efficiencies for hadronic final states
 - read out the full detector at the LHC bunch-crossing frequency
 - operate the detector at up to x 5 higher luminosity
 - new main tracker to cope with increase in particle densities

expected increase in rate (compared to 2011):


- x 10 for channels involving final-state muons
- x 20 for channels to fully hadronic final states
- · details are described in
 - Letter of Intent [CERN-LHCC-2011-001]
 - Framework TDR [CERN-LHCC-2012-007]
- endorsed by the LHCC

Reminder: Current LHCb Trigger

Hardware level (L0):

maximum output rate 1 MHz

typical thresholds 2012:

$$E_{\tau}(e/\gamma) > 2.7 \text{ GeV}$$

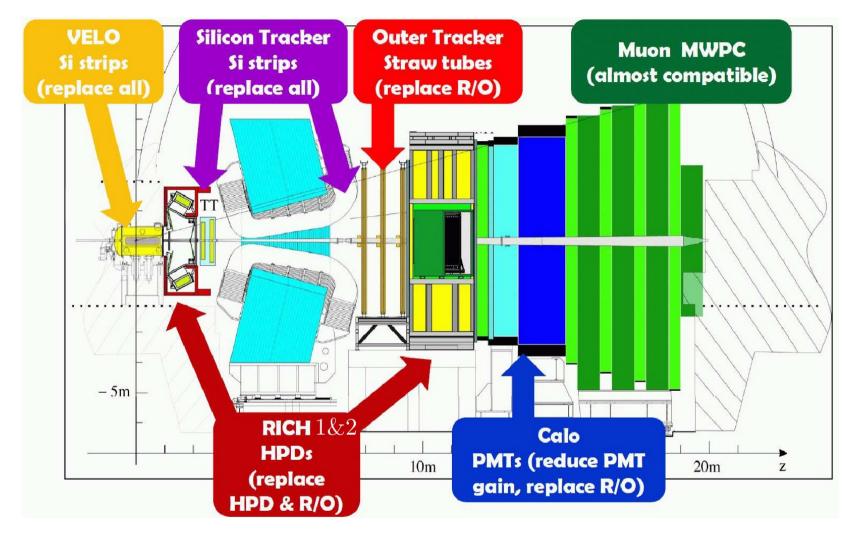
$$E_{\tau}(h) > 3.6 \text{ GeV}$$

$$p_{\tau}(\mu) > 1.4 \text{ GeV}$$

Software level (HLT):

~ 30000 tasks in parallel on ~ 1500 nodes

Combined efficiency (LO+HLT):


- ~ 90 % for di-muon channels
- ~ 30 % for multi-body hadronic final states

Offline processing:

~ 1010 events, 700 TB recorded per year

Upgrade

- 2012/2013: R&D, technology choices, preparation of sub-system TDRs
- 2014: funding, procurements
- 2015-2019: construction and installation