CMS TRACKER PHASE 2 UPGRADE IT SERVICES V1.4

For questions contact: stella.orfanelli@cern.ch

Version notes:
V1.4 wrt to V1.3 : fixed baseline for optomodules, fixed typo in pg 17 (\#mod for R4)

TABLE OF CONTENTS

TABLE OF CONTENTS 2
Table of figures AND tables 3
Introduction TO GEOMETRY 7
TBPX 10
TFPX/TEPX 10
Serial Powering of the modules 10
TBPX 11
TFPX- TEPX 12
High voltage distribution 13
Readout 14
E-links 14
LpGBTs 19
TBPX 20
Dees (TFPX-TEPX) 20
MultiFibre Bundles 22
MultiFibre Cables 23
Power Cables for the pixel modules 23
Power Cable PS-PP1 (CABLE 1) 25
Power Cable PP1-PP0 27
Power Cables PPO-modules 29
Summary of power losses for serial powering. 31
LPGBT powering 31
Investigating ‘PAIR' LPGBT powering SCHEME: 32
Cooling 34
PP1 - Service Channels 35
PPO - collection of photos mock-up phase 1 detector 38
SUMMARY 39
APPENDIX: INVESTIGATING MORE OPTIONS FOR THE OPTO-MODULES 44
Investigating ‘GROUPeD' LPGBT powering SCHEME: 44
Individual powering option: A pair of wires for each DC-DC-DC 45
Parallel powering option: A pair of wires for each group of four DC-DC-DCs 46
Investigating "GRANULAR" LPGBT POWERING SCHEME: 47
Individual powering option: A pair of wires for each DC-DC-DC 48
Parallel powering option A: A pair of wires for each group of four DC-DC-DCs 48
Parallel powering option B: A pair of wires for each group SP chain. Adding four conductors to the existing multi-service cables. 49
table of figures and tables
Figure 1. The IT geometry presented in the TDR7
Figure 2. Sketches showing details of the dee structures. A $1 / 2$ double-disc consists of two dees. Modules are arranged on both sides of the dees. (tdr reference fig 4.12)8
Figure 3. (Left) CAD drawings showing the split of the IT into two half cylinders per end (tdr reference fig 4.10). (Right) the two parts of the barrel split in +-z (tdr reference fig 4.11)8
Figure 4. Illustration of the TBPX ladders (rows) and modules (cells) for the short (left) and the long (right) for a quarter of the detector 10
Figure 5. Illustration of two TFPX dees, an odd (R1, R3) and an even (R2, R4), which form a double disk. 10
Figure 6. Illustration of two TEPX dees, an odd (R1, R3, R5) and an even (R2, R4), which would form half disk. 10
Figure 7. Top view of RD53A pixel array. The width is 20 mm and 400 pixels and the height is 11.8 mm and 192 pixels. The final CMS chip will be an enlarged version of this 11
Figure 8 . Sketch of the 1×2 and $2 z 2$ pixel modules (tdr reference fig. 4.3) 11
Figure 9. Serial power chains for TBPX short (top) and long (bottom) end. Every SP chain runs along two consecutive ladders: each layer needs \#ladders/2 chains to get powered. 11
Figure 10. Serial powering of TFPX dees: 8 serial power chains per half double-disk. 12
Figure 11. Serial powering of TEPX dees: 14 serial power chains per half double-disk. 12
Figure 12. High Voltage distribution options with serial powering of the chip. Left (option A) used as the basis for the cable assumption, right (option B) the scheme that is the most probable for the final system 14
Figure 13. The placement of the LpGBT modules as presented in the TDR (tdr fig 4.13) 19
Figure 14. LpGBTs needed per TBPX Serial Power chain for the short(top) and long (bottom) end of the barrel 20
Figure 15. LpGBTs needed per TFPX Serial Power chain. 20
Figure 16. LpGBTs needed per TEPX Serial Power chain. 21
Figure 17. A map of the groups of the LpGBTs needed for each part of the IT for a quarter of the detector. 21
Figure 18. Proposed distribution scheme for a SP chain using two multiservice cables till PPO and then switching single wires 24
Figure 19. Pixel Phase 1 mock-up patch panels at B187. On the left, a tracker channel PP1-PPO. On the right, a picture of PPO. 25
Figure 20. Illustration of a multiservice cable for PowerSupply-PP1 part. 26
Figure 21. Illustration of a multiservice cable for PP1-PPO part. The outer diameter decreases from 13.4 mm to 11.1 mm due to the decrease of the diameter of the SP cables. 28
Figure 22 The "PAIR" LpGBT powering scheme using 1 DC-DC-DC for each 2 LpGBTs. (Current rating for upFEAST part reduced to 35%, and to $\sim 50 \%$ for the DCDC2S part) 33
Figure 23. (Left) photo highlighting in blue one of the tracker service channels and PP1s, and in pink one of the neighbouring ECAL+HCAL service channels (taken from TDR fig 5.2). (Right) The phi distribution of the four IT 35channels per end
Figure 24 Tracker service channels are under design (last drawing presented by Axel Filenius Nicola Bacchetta Karol Rapacz https://indico.cern.ch/event/649173/) 37
Figure 25 Tracker services Axel Filenius Nicola Bacchetta Karol Rapacz https://indico.cern.ch/event/649173/ 38
Figure 26 PPO mock-up of Pixel Phase 1 detector services at B187 38
Figure 27 TBPX Cooling Loops and Power Cables for the long end (short end architecture is similar). 40
Figure 28 SP chains, cables and loops summary for the disks 41
Figure 29 The "GROUPED" LpGBT powering scheme using 1 DC-DC-DC for each 4 LpGBTs. (Current rating for upFEAST part reduced to 60\%, stayed the same for DCDC2S part) 44
Figure 30 Cables used for the individually wired 'Grouped’ LpGBT power scheme. On the left, Cable 3 for the LVPS- PP1 part, with 15.3 mm outer diameter, can power 42 DC-DC-DC converters. Right, Cable 4 for PP1-PP0 part, with 13.4 mm outer diameter can host min. 84 smaller conductors (the sketch above shows 90 wires) 45
Figure 31 Cables used for the individually wired 'Grouped' LpGBT power scheme. On the left, Cable 5 for the LVPS- PP1 part, with 15.3 mm outer diameter, can power 42 DC-DC-DC converters. Right, Cable 6 for PP1-PP0 part, with 13.4 mm outer diameter can host min. 84 smaller conductors (the sketch above shows 90 wires) 46
Figure 32. The "Grabular" LpGBT powering scheme using coils reduced to 20 nH ? (10% of that used for 4A upFEAST) and 50 nH ? (25% of that used for 3ADCDC2S) 47
Table 1. Type of modules and multiplicities of ladders and disks for a quarter of a detector 9
Table 2. Summary of SP chains needed to power the IT. 13
Table 3. Date Rates before and after on-chip data compression per chip per event. 15
Table 4. Estimated number of E-links per subdetector part and E-links bandwidth occupancy 16
Table 5. Estimated bandwidth in Mpbs per subdetector part. 17
Table 6 Summary of number of links needed per subdetector part. 18
Table 7 Summary table for \#GBTs/MFBs per sub-detector 22
Table 8. Mapping of the multifibre bundles to multifibre cables and DAQ modules. 23
Table 9. Number of multiservice cables used. 24
Table 10. Voltage drops on a SP cables for $6 \mathrm{~mm}^{2}$ wires between PS-PP1, $2.5 \mathrm{~mm}^{2}$ for PP1-PP0 and $0.8 \mathrm{~mm}^{2}$ $(4 A) / 1.6 \mathrm{~mm}^{2}(8 \mathrm{~A})$ inside the detector. 25
Table 11. Comparison of cross-sections for the serial power conductors for the PS-PP1 multi-service cable 25
Table 12. List of components of the PS-PP1 cable and dimensions 26
Table 13. Description of a wire type 1 used for SP powering in cable 1. 27
Table 14. Comparison of AI cross-sections for the serial power conductors for the PP1-PPO multi-service cable. 27
Table 15 Power dissipated in the service channels by the Serial power cables along the PP1-PP0 path 28
Table 16 List of components of the PP1-PP0 cable and dimensions 28
Table 17 Description of a wire used for SP powering in cable 2 29
Table 18. List of single wires for PPO-modules part for two 4A chains 29
Table 19. List of single wires for PPO-modules part for two 8A chains 30
Table 20 Copper Cladded Aluminium wires for the PPO-modules connection 30
Table 21. Summary of the power loss for the entire IT detector. 31
Table 22 Powering LpGBTs with the "PAIR" option. 33
Table 23 Proposed cooling architecture for a quarter of IT detector 34
Table 24. List of services arriving at PP1 channels and dimensions of the cables. 35
Table 25 Estimation of occupancy of two IT channels per quarter (one 75% cables, one 50% cooling and 25% cables) using Axel's workbook template. 36
Table 26. TDR Table of 4.3 41
Table 27 Power Summary for the Inner Tracker, used as basis for cooling calculation. 42
Table 28 Cable summary 43
Table 29 Powering LpGBTs with "GROUPED" option 44
Table 30. Voltage drops calculated for the wires used to power the upFEASTs for the ' 1 to 4 ' powering scheme 45
Table 31. Description of Cables 3 and 4 for individual powering of the DC-DC-DCs with the "Grouped" scheme 46
Table 32. Voltage drops calculated for the wires used to power four DC-DC-DCs for the 'Grouped powering scheme. 46

Table 33. Description of Cables 5 and 6 for parallel powering the DC-DC-DCs with the "Grouped" scheme 47
Table 34 LpGBT powering cables needed for the "GRANULAR" option.. 47
Table 35 Calculating voltage drop and power losses for individual conductors for the "GRANULAR" powering scheme of the LpGBTs. 48

Table 36 Calculating voltage drop and power losses for parallel powering of the DC-DC-DCs for the "GRANULAR" powering scheme.

INTRODUCTION TO GEOMETRY

The purpose of this document is to describe the services, the guidelines, the geometry constraints and suggest possible architectures of the cabling for powering and readout of the CMS Inner Tracker modules for Phase II Upgrade (the ones selected for the TDR). It is a first draft overview of the services and should not be taken as a final version.

The official Layout webpage for the CMS Phase II Tracker can be found under this link.
The geometry version of IT4025 has been selected for the TDR. The acceptance of this layout extends to $|\eta| \simeq 4$. The Inner Tracker part is shown in the picture below and will be equipped with pixel modules. It is composed of a barrel part (TBPX) with four cylindrical layers (L1, L2, L3, L4), a forward part (TFPX) with eight small disks per end and an extension part (TEPX) with four larger disks per end.

Figure 1. The IT geometry presented in the TDR.
The TBPX pixel modules are arranged in "ladders". Each ladder is split in z into two parts, one long (5 modules) and one short (4 modules). The two inner layers of the TBPX use 2×1 chip modules whereas the two outer ones use 2×2 chip modules (see Table 1).

The TFPX and the TEPX are arranged in concentric rings (4 for TFPX, 5 for TEPX). Each disk is physically made out of two disks; one that supports the odd rings and one that supports the even rings. Each of these disks are split in half into D-shaped structures known as Dees (see Figure 2).

The barrel, forward and endcap will be mounted in half cylinders that will hold their services. There will be four Inner Tracker structures to be inserted at installation time. Two of them are depicted in the Figure 3. There is no mixing of services among the four half-cylinders. Therefore, the design of the services for the IT has to always be considered per quarter of the detector (per end, per side). All the tables, plots etc shown in this document refer to a quarter of the detector unless stated otherwise.*

[^0]

Figure 2. Sketches showing details of the dee structures. A $1 / 2$ double-disc consists of two dees. Modules are arranged on both sides of the dees. (tdr reference fig 4.12)

Figure 3. (Left) CAD drawings showing the split of the IT into two half cylinders per end (tdr reference fig 4.10). (Right) the two parts of the barrel split in +-z (tdr reference fig 4.11)

Table 1. Type of modules and multiplicities of ladders and disks for a quarter of a detector.

QUARTER OF IT		Multiplicity	\#modules per	Type of	Number of	Number of
TBPX	L1	6	4/5	2x1	24/30	48/60
	L2	14	4/5	2x1	56/70	112/140
	L3	12	4/5	2x2	48/60	192/240
	L4	16	4/5	2×2	64/80	256/320
				SUM	192/240	608/760
TFPX	R1	8	10	2x1	80	160
	R2	8	16	2x1	128	256
	R3	8	12	2×2	96	384
	R4	8	16	2x2	128	512
				SUM	432	1312
TEPX	R1	4	20	2x1	80	160
	R2	4	28	2x1	112	224
	R3	4	18	2x2	72	288
	R4	4	20	2x2	80	320
	R5	4	24	2×2	96	384
				SUM	440	1376
QUARTER OF TBPX+TFPX					624/672	1920/2072
QUARTER OF TEPX					440	1376
QUARTER OF IT					1064/1112	3296/3448
ONE END OF IT					2128/2224	6592/6896
ENTIRE IT					4352	13488

The following illustrations (Figures $4,5,6$) will be used to facilitate the understanding of the routing of the services. The modules in green are 2×1 modules used in the two inner layers of TBPX and two inner rings of the disks, whereas the ones in orange are 2×2 modules used in the two outer layers of TBPX and the outer rings of the disks.

TBPX

Figure 4. Illustration of the TBPX ladders (rows) and modules (cells) for the short (left) and the long (right) for a quarter of the detector.

TFPX/TEPX

Figure 5. Illustration of two TFPX dees, an odd (R1, R3) and an even (R2, R4), which form a double disk.

Figure 6. Illustration of two TEPX dees, an odd (R1, R3, R5) and an even (R2, R4), which would form half disk.

SERIAL POWERING OF THE MODULES

Each pixel chip will consume about $\sim 2 \mathrm{~A}$ and need a supply voltage of 1.4 V . The use of DC-DC power conversion has been excluded due to radiation hardness and material budget reasons. Therefore, a serial power distribution system has been proposed. This scheme fulfils the requirements of high current power distribution with acceptable power cable losses, radiation hard and within the material limitations being based on a custom-made regulator embedded on the chip. The CMS pixel chip size will be $22 \mathrm{~mm} \times(16.4 \mathrm{~mm}+2 \mathrm{~mm})=360 \mathrm{~mm}^{2}$ pixel array area/ (the extra 2 mm are there for the periphery). Below there is a picture of the RD53A demonstrator with chip size $20 \mathrm{~mm} \times 11.8 \mathrm{~mm}$. The power consumption of the chip at max. hit/trigger rate, including any SLDO losses (meaning current shunted by the SLDO) is expected to be $<1 \mathrm{~W} / \mathrm{cm}^{2}$.

Figure 7. Top view of RD53A pixel array. The width is 20 mm and 400 pixels and the height is 11.8 mm and 192 pixels. The final CMS chip will be an enlarged version of this.

Figure 8. Sketch of the 1×2 and $2 z 2$ pixel modules (tdr reference fig. 4.3)
Serial power loops feed the required supply current to chains of 5-10 pixel modules, with the two or four pixel chips on each module connected in parallel. For the moment, the maximum number of modules in a chain is set to 10 . However, if in the future it is demonstrated that we can have more than that, this improvement might allow for reduction in the number of chains, probably better occupancy in some cases of the LpGBT input links on the expense of losing more modules when losing a chain. Future tests with the RD53A chip will show if power chains of more than 10 modules is a viable option.

TBPX

The guideline of max. 10 modules per chain is translated into TBPX by serially powering every two ladders leading to 8 -module chains for the short end (left side of Figure 9) and 10-module chains for the long end (right side of Figure 9). It is straightforward to calculate the chains in the barrel \#SPchains= \#ladders/2.

Figure 9. Serial power chains for TBPX short (top) and long (bottom) end. Every SP chain runs along two consecutive ladders: each layer needs \#ladders/2 chains to get powered.

TFPX- TEPX

There is no practical way to combine the chains between rings of a dee in the TFPX since the inner rings of dees will host 1×2 chip modules while the outer 2×2 chip modules. In the TEPX case, in the odd dee, R3 and R5 can be combined nicely in chains of 7 modules (which will later be readout by one LpGBT each) ${ }^{\dagger}$. The rest of the chains have followed the simple rationale of keeping it neat, simple and symmetric with max 10 modules per chain. For R1 of TFPX, after discussing with the TFPX engineers the number of chains was updated from 1 (of 10 modules) to 2 (of 5 modules) to avoid complications during assembly (such that a SP chain does not run from the front to the back side of the dee). A summary of the power chains in the IT per part of the detector is presented in Table 2.

Figure 10. Serial powering of TFPX dees: 8 serial power chains per half double-disk.

Figure 11. Serial powering of TEPX dees: 14 serial power chains per half double-disk.

[^1]Table 2. Summary of SP chains needed to power the IT.

QUARTER OF IT		SP Chains 1×2 modules	SP Chains 2×2 modules	SP Chains SUM
TBPX	L1	3		3
	L2	7		7
	L3		6	6
	L4		8	8
	SUM	10	14	24
TFPX	Odd Dee	2	2	4
	Even Dee	2	2	4
	Disk	4	4	8
	SUM	$8 * 4=32$	$8 * 4=32$	64
TEPX odd dee		2	6	8
TEPX even dee		4	2	6
TEPX disk		6	8	14
TEPX SUM		$4 * 6=24$	4*8 $=32$	56
QUARTER OF TBPX+TFPX		42	46	88
QUARTER OF TEPX		24	32	56
QUARTER OF IT		66	78	144
ONE END OF IT		132	156	288
ENTIRE IT		264	312	576

HIGH VOLTAGE DISTRIBUTION

There has not been a decision on the HV distribution scheme yet. The decision can only be taken after extensive tests with modules serially powered with sensors (with RD53A) for noise coupling and EMC (end of 2017). The most conservative approach regarding the high voltage distribution would be to use a HV wire per module and a separate return. This option could be supported by using coaxial cables for the HV distribution. This option would eliminate the noise coupling among modules of a serial power chain but would be more expensive in terms of material-budget (cables) and power supply channels. Below two options regarding the high voltage distribution are presented. Option A is the one that has been used for the cable description as it is more pessimistic in terms of space allocation while option B is the most favourable solution for the final system.

Option A) The approach of the cable description is based on 10 HV individual wires per SP chain plus one common return wire. Since there will be a difference of potential among the outputs of the modules, the common return wire is shown to be connected to the "AC-gnd" of the modules. This wire could be used for filtering purposes. A noise coupling problem though would still be present. This option doesn't really seem to serve the purpose of isolating the noise of a module but would only allow to compensate for the ΔV
differences of the sensors (especially in the case of the 3D sensors). In this document, option A has been chosen as baseline for the design of the cables, although the preferred so-far HV scheme for the final system is option B (to be demonstrated).

Option B) A more realistic approach is that HV will follow the serial power architecture, i.e. a HV wire would be used per SP chain (up to 10 modules). An implication of that solution would be that if there is a HV problem on any of the sensors, the whole chain will suffer. Regarding the grounding of the system; each module in a SP chain sits in a different potential and have local grounds. This "local ground" potential can reach for the first module in a chain of ten, as high as $\sim 10 * 1.4 \mathrm{~V}=14 \mathrm{~V}$ with respect to the "local ground" of the last module which will be $\sim 2-3 \mathrm{~V}$ (assume also some voltage drop on wires). If a single wire of HV is used to power a chain then the effective HV voltage seen by the modules in a chain will be varying by up to max 20V. A HV filter will be needed to avoid any noise coupling between the pixel sensor signal and the pixel chip. If the sensors are planar, the $\Delta \mathrm{V}$ difference should not cause any problems since its minor w.r.t. to the absolute value of HV. A more problematic case is the use of 3-D sensors that require much smaller bias voltage and in this case this $\Delta \mathrm{V}$ becomes significant.

Figure 12. High Voltage distribution options with serial powering of the chip. Left (option A) used as the basis for the cable assumption, right (option B) the scheme that is the most probable for the final system.

READOUT

E-LINKS

Triggered event data collected from the pixel array will be collected by the end of column of the pixel chip where pixel array data will get re-organized by on-chip data processing and are sent out after a lossless data compression algorithm has been applied. Chip data are sent over a configurable (1-4) number of differential electrical links (E-links) at 1.28 Gbps to the opto-modules that accommodate the LpGBT chip that converts the readout data to optical. Data from up to seven E-links are merged into 10 Gbps upstream optical links to the DAQ. Every module will also receive command, trigger and configuration data via a downstream 160 Mbps E-link originating from the LpGBT, which receives the data via a 2.5 Gbps downstream optical link. The number of E-links used to readout a chip depends on the location on the detector since there is a strong dependence on hit rates vs location. For outer pixel layers and rings, where the hit rates are low, the data from all the chips of the module are merged into a single E-link that comes out of the module. Notice also that for the disks, because of the $1 / r^{2}$ dependence, the rate across a module is not uniform. The rates among disks of the same part of the detector are similar (small Z dependence).

A proposed lossless data compression has been presented during a RD53 meeting by K. Androsov. This algorithm was applied in CMSSW data by Yang-Yang and was presented during Phase 2 days. The results of this study are shared in this link and present the data rates per subdetector part using the single-hit data format of $9 * 2+4$ bits per hit (pixel address $=9+9$, TOT=4 bits) and the respective results after the deltacompression. The mean values (and not the 99\%) of bits per chip per event are used to determine required number of E-links. Derandomizer buffers will smoothen out the tail of the distribution. Table 3 shows these rates (before and after compression) and the readout rate in Mbps for a trigger rate of 750 kHz per pixel chip per location, while Table 4 calculates the number of readout E-links needed per module per location such that a maximum bandwidth occupancy of 75% is achieved in the 1.28 Gbps links (keeping 25% headroom). Tables 5 and 6 summarize the total estimated bandwidth and the total number of links for every subdetector part.

Table 3. Date Rates before and after on-chip data compression per chip per event.

Rate presented as bits per chip per event, calculated for Pixel4021 using ttbar_200PU relval samples				
	Mean	Delta_byColumn Mean	Compression Factor	Chip RO rate in Mbps for 750 KHz
TBPX _L1 (PR4x1)	6286.23	3529.39	1.8	2647
TBPX_L2	1535.3	695.036	2.2	521
TBPX L3	717.343	308.774	2.3	232
TBPX L4	487.302	202.568	2.4	152
TFPX_R1_lowCol	1552.8	901.184	1.7	676
TFPX_R1_highCol	3029.77	1909.14		1432
TFPX_R2_lowCol	1000.75	543.93	1.8	408
TFPX_R2_highCol	1584.78	928.937	1.7	697
TFPX_R3_lowCol	626.029	309.292	2.0	232
TFPX_R3_highCol	814.019	428.119	1.9	321
TFPX_R4_lowCol	451.207	205.549	2.2	154
TFPX_R4_highCol	559.914	267.455	2.1	201
TEPX R1_lowCol	787.409	463.59	1.7	348
TEPX R1_highCol	1171.64	710.774	1.6	533
TEPX R2_lowCol	495.509	274.883	1.8	206
TEPX R2_highCol	630.577	359.083	1.8	269
TEPX R3_lowCol	417.228	222.738	1.9	167
TEPX R3_highCol	433.137	236.155	1.8	177
TEPX R4_lowCol	317.742	161.522	2.0	121
TEPX R4_highCol	350.807	184.045	1.9	138
TEPX R5_lowCol	274.477	136.242	2.0	102
TEPX R5_highCol	310.51	158.583	2.0	119

Table 4. Estimated number of E-links per subdetector part and E-links bandwidth occupancy.

		CHIP			MODULE			
		RO rate in Mbps for 750 KHz	$\begin{array}{r} \text { RO } \\ 1.28 \\ \text { Gbps } \\ \text { Links } \\ \text { per } \\ \text { chip } \end{array}$		\#chips per modul e	Modul e Rate Mbps	RO 1.28 Gbps Links per module	Elink Occupancy per module
TBPX	L1	2647	3	69\%	2	5294	6	69\%
	L2	521	1	41\%	2	1043	2	41\%
	L3	232	0.25	72\%	4	926	1	72\%
	L4	152	0.25	47\%	4	608	1	47\%
TFPX	R1_lowCol	676	1	53\%	1	2108	3	55\%
	R1_highCol	1432	2	56\%	1			
	R2_lowCol	408	1	32\%	1	1105	2	
	R2_highCol	697	1	54\%	1			43\%
	R3_lowCol	232	0.5	36\%	2	1106	2	
	R3_highCol	321	0.5	50\%	2			43\%
	R4_lowCol	154	0.25	48\%	2	710	1	55\%
	R4_highCol	201	0.25	63\%	2			
TEPX	R1_lowCol	348	0.5	54\%	1	881	1	69\%
	R1_highCol	533	0.5	83\%	1			
	R2_lowCol	206	0.5	32\%	1	475	1	37\%
	R2_highCol	269	0.5	42\%	1			
	R3_lowCol	167	0.25	52\%	2	688	1	54\%
	R3_highCol	177	0.25	55\%	2			
	R4_lowCol	121	0.25	38\%	2	518	1	40\%
	R4_highCol	138	0.25	43\%	2			
	R5_lowCol	102	0.25	32\%	2	442	1	35\%
	R5_highCol	119	0.25	37\%	2			

Table 5. Estimated bandwidth in Mpbs per subdetector part.

Quarter of IT		Module RO rate Mbps for 750 KHz	Mod per ladder/Dee		Rate per ladder/ring		\#phi per half cyl / \#disks	RATE for Half cyl /Dee [Mbps]		
		short	long	short	long	short		long		
TBPX	L1		5294	4	5	21176	26470	6	127058	158823
	L2	1043	4	5	4170	5213	14	58383	72979	
	L3	926	4	5	3705	4632	12	44463	55579	
	L4	608	4	5	2431	3039	16	38893	48616	
	SUM							268'797	335’997	
TFPX	R1	2108		10		21077	8		168619	
	R2	1105		16		17674	8		141395	
	R3	1106		12		13273	8		106187	
	R4	710		16		11352	8		90817	
	SUM					63377			507019	
TEPX	R1	881		20		17615	4		70462	
	R2	475		28		13313	4		53253	
	R3	688		18		12390	4		49560	
	R4	518		20		10367	4		41468	
	R5	442		24		10617	4		42467	
	SUM					64303			257210	
								READOUT RATE [Gbps]		
					Quarter of TBPX+TFPX			776	843	
					Quarter of TEPX			257		
					Quarter of IT			1033	1100	
					One end of IT			2066	2200	
					Entire IT				4267	

Table 6 Summary of number of links needed per subdetector part.

QUARTER OF IT		Multiplicity	\#modules per	\#Links	Total \#Links	Total \#Links
TBPX	L1	6	4 (short)/ 5 (long)	6	144	180
	L2	14	4 (short)/ 5 (long)	2	112	140
	L3	12	4 (short)/ 5 (long)	1	48	60
	L4	16	4 (short)/ 5 (long)	1	64	80
	SUM				368	460
					Total \#Links for ${ }^{*}$ *half disks	
TFPX	R1	8	10	3	240	
	R2	8	16	2	256	
	R3	8	12	2	192	
	R4	8	16	1	128	
	SUM				816	
TEPX	R1	4	20	1	80	
	R2	4	28	1	112	
	R3	4	18	1	72	
	R4	4	20	1	80	
	R5	4	24	1	96	
	SUM				440	
			Quarter of TBPX+TFPX		1184	1276
			Quarter of TEPX		440	
			Quarter of IT		1624	1716
			One end of IT		3248	3432
			Entire IT		6680	

LPGBTS

The conversion of the readout data to optical links at 10 Gbps by LpGBTs and the Versatile Links (VL+) is constrained to a maximum total dose 100 Mrad and to a fluence of $3 \times 10^{15} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$ (see presentation by Jan Troska https://indico.cern.ch/event/626258/). Therefore, the LpGBT modules of TBPX will arranged on the support cylinders, while for TFPX and TEPX the LpGBT modules will be located at the periphery of the dee structures.

Figure 13. The placement of the LpGBT modules as presented in the TDR (tdr fig 4.13)
E-links originating from nearby chips and modules can be arriving in the same LpGBT (up to 7 inputs). The constraints of the elinks to LpGBTs grouping are the following:

- Max inputs of LpGBT is 7
- All links of a module connects to the same LpGBT (cannot split modules in multiple LpGBTs)
- A LpGBT can be shared amongst modules that belong to the same power chain.
- No front-to-back connection is allowed for the E-links.

Below Figures 14-16 show how these rules apply for the detector parts. The number in each cell corresponds to the E-links per module. Each cell corresponds to a module. Each row corresponds to a ladder. Each rectangular frame shows a group of links readout by a LpGBT (done only for one SP as an example for barrel). Each yellow line is a SP chain. Figure 17 is an illustration of the groups of the total number of LpGBTs needed for each part of the detector for a quarter of IT.

Figure 14. LpGBTs needed per TBPX Serial Power chain for the short(top) and long (bottom) end of the barrel.
DEES (TFPX- TEPX)

Figure 15. LpGBTs needed per TFPX Serial Power chain.

Figure 16. LpGBTs needed per TEPX Serial Power chain.

Figure 17. A map of the groups of the LpGBTs needed for each part of the IT for a quarter of the detector.

MULTIFIBRE BUNDLES

At Patch Panel 0 (PPO) the fibers originating from nearby LpGBTs will be grouped together in multi-fiber bundles of 24 fibers (MFB). The grouping of the LpGBT links to multi-fiber bundles follows the constraints:

- One MFB serves 12 LpGBTs (24 fibers, 12 upstream-12 downstream).
- One MFB should serve LpGBT that are sitting close to each other (following similar routing).
- No mixing of TEPX services with the TFPX-TBPX allowed.

The following summary Table 7 uses the information presented in Table 6 and Figure 17 and presents how the LpGBT links can be grouped in bundles of 12 pairs and the percentage of fibers used in the bundles.

Table 7 Summary table for \#GBTs/MFBs per sub-detector

Quarter of IT		LpGBTs (shortlong)	Bandwidth [Gbps]		MFB (all disks)	MFB usage (short-long)	
		Short	Long				
TBPX	L1		24-30	127	158	2-3	24/24-30/36=100\%-83\%
	L2	28	58	73	3	$28 / 36=78 \%$	
	L3	12	45	55	1	$12 / 12=100 \%$	
	L4	16	39	49	2	$16 / 24=67 \%$	
	SUM	80/86	269	336	8-9		
TFPX	Odd Dee	10					
	Even Dee	10					
	8 disks	160	8* 63.4		$\begin{gathered} 16 \\ \text { (2/half disk) } \end{gathered}$	$160 / 192$ = 83\%	
TEPX	Odd Dee	10					
	Even Dee	8					
	4 disks	72	4*64.3 = 257		6	72/72 =100\%	
Quarter of TBPX+TFPX		240/246	776	843	24/25		
Quarter of TEPX		72	25		6		
Quarter of IT		312/318	1033	1100	30/31	$\begin{array}{r} 312 / 360=87 \%- \\ 318 / 372=85 \% \end{array}$	
One end of IT		624/636	2066	2200	60/62		
Entire IT		1260	4267		122		

MULTIFIBRE CABLES

At Patch Panel 1 (PP1) multi-fibre bundles will be grouped together to multi-fibre cables (MFC) (144 fibres each). Grouping the MFBs here was done keeping in mind that it would be nice to mix data from the TBPX layers and the TFPX disk such that a DTC failure would not cause complete loss a big part of the detector.

- One MFC serves 6 MFBs (72 GBTs).
- Each MFC will be serving one DAQ module with 72 inputs.
- One MFC can combine different regions.
- The services for TEPX are completely separated by the rest of the IT.

The following summary table shows the grouping of the MFBs to MFC and the respective input bandwidth for a DTC module. The 6 MFBs will be served by 1 MFCs, hence 1 DTC. The rest of the 25 MFBs for TBPX and TFPX can be served by 5 DTCs/MFCs.

Table 8. Mapping of the multifibre bundles to multifibre cables and DAQ modules.

\#MFC	Quarter of IT	MFBs	MFC usage	DTC Input
1	TBPX L1+ $1^{*} 1 / 2$ TFPX disk	$3(2)+2=5(4)$	$5 / 6(4 / 6)$	206
2	TBPX L2+ $1^{*} 1 / 2$ TFPX disk	$3+2=5$	$5 / 6$	129
3	TBPX L3+ 2* $1 / 2$ TFPX disks	$1+2 * 2=5$	$5 / 6$	177
4	TBPX L4+ 2* $1 / 2$ TFPX disks	$2+2 * 2=6$	$6 / 6$	171
5	$2^{*} \frac{1}{2}$ TFPX disks	$2 * 2=4$	$4 / 6$	127
6	$4^{*} \frac{1}{2}$ TEPX disks	6	$6 / 6$	257
	Quarter of IT	$31(30)$	$31(30) / 36=86(83) \%$	1067

POWER CABLES FOR THE PIXEL MODULES

A multi-service cable will serve two serial power chains. Figure 18 shows a proposed distribution scheme for a SP chain. In this illustration, the power supplies (PS) are located in the counting room (USC), and up to 10 modules of a chain are supplied. Each multi-service cable consists of

- $\quad 2 * 2$ thick LV conductors carrying 4A/8A for powering two serial power chain (LV SP)
- $(10+1)^{*} 2 \mathrm{HV}$ wires: 10 to provide high voltage to max 10 modules and 1 for a common return as described in option B in the Section High Voltage distribution per serial power chain
- 2 smaller LV conductors (similar to the LV wires used for OT) used for preheating the cooling lines
- 8 wires for two hardwired temperature sensors (assuming the two SP chains served by the cable belong to the same cooling loop)
- a copper braid (at least 85% shield) and a jacket compliant to safety rules.

The copper resistivity used for the calculations is $1.72 \mathrm{e}-8 \Omega \mathrm{~m}$ and the copper cladded aluminium $2.7 \mathrm{e}-8 \Omega \mathrm{~m}$.

Table 9. Number of multiservice cables used.

QUARTER OF IT	SP Chains 1×2 modules	Power Cables	SP Chains 2×2 modules	Power Cables	SP Chains TOTAL	Power Cables TOTAL
TBPX+TFPX	42	22	46	23	88	45
TEPX	24	12	32	16	56	28
QUARTER OF IT SUM	66	34	78	39	144	73
ENTIRE IT	264	136	312	156	576	292

A total of 292 multi-service cables for powering the entire IT will run from the power supply racks to the Patch Panel 1 (PP1) boards located inside the solenoid. Their length depends on the location of the power supplies (PS). If the PS sit in USC then the distance would be around 85 m while if the PS sit in the balconies of UXC it would be 30 m .

For the first 85 m (up to PP1), a multiservice cable with Cu conductors similar to the one proposed for the OT is proposed. For the next 6 m (PP1-PPO) the LV SP cables and the drain wire change to a smaller cross-section of copper because of space constraints in the services channels. This change leads unavoidably to higher power losses. The multi-services cables used up to PPO will be the same for 4A and 8A chains unless space limitations dictate otherwise. From PPO and further on towards the modules, there will be no more cables but single copper cladded aluminium wires of different AI cross-section for the $4 \mathrm{~A}\left(0.8 \mathrm{~mm}^{2}\right)$ and the $8 \mathrm{~A}\left(1.6 \mathrm{~mm}^{2}\right)$ chains will be routed to reach individual modules. More details of the cables are shown in the following sections.

Figure 18. Proposed distribution scheme for a SP chain using two multiservice cables till PPO and then switching single wires.

Table 10. Voltage drops on a SP cables for $6 \mathrm{~mm}^{2}$ wires between PS-PP1, $2.5 \mathrm{~mm}^{2}$ for PP1-PP0 and $0.8 \mathrm{~mm}^{2}(4 \mathrm{~A}) / 1.6 \mathrm{~mm}{ }^{2}$ (8A) inside the detector.

Current @PS (A)	Voltage @PS (V)	Single wire Vdrop Cable1 (V)	Voltage @PP1 (V)	Single wire Vdrop Cable2 (V)	Voltage @PPO (V)	Single wire Vdrop Cable3-4 (V)	Module Chain Vin (V)	Single wire Total Vdrop LVPS to modules (V)
4	17.09	0.97	16.11	0.17	15.95	0.41	15.54	1.54
8	5.37	1.95	3.42	0.33	3.09	0.41	2.68	2.68

Figure 19. Pixel Phase 1 mock-up patch panels at B187. On the left, a tracker channel PP1-PP0. On the right, a picture of PPO.

POWER CABLE PS-PP1 (CABLE 1)

The LV SP conductors' cross-section was optimized for carrying 4A/8A over the long 85 m distance. Below one might see a table where the use of different cross-sections (starting from $1.5 \mathrm{~mm}^{2}$ similar to the one used for OT) show the Vdrop, the current density and the cable losses. The case of $6 \mathrm{~mm}^{2}$ was chosen as baseline since it has modest current density and power losses. The voltage drop in the case of IT is not a problem as it uses serial powering.

The HV conductor cross-section is similar to the one used by OT $\left(0.6 \mathrm{~mm}^{2}\right)$. These wires will be used to provide high voltage to the sensors (up to 1 kV) and low current of up to 40 mA . One wire is used per module while one single return wire is used for a full chain (as described in option B in HV distribution section). Similarly, the LV wires for preheating the cooling pipes and the ones for the T -sensor are identical to the ones used by OT.

Table 11. Comparison of cross-sections for the serial power conductors for the PS-PP1 multi-service cable.

Cu Xsection	Length	Current per chain	Number of chains (Full detector)	Total Chip Power	20C Resist ance	Vdrop	Single wire power loss	J	Vdrop	P	Total cable loss
$\left(\mathrm{mm}^{2}\right)$	(m)	(A)		(W)	(Ω)	(V)	(W)	($\mathrm{A} / \mathrm{mm}^{2}$)	(V/m)	(W/m)	(W)
1.50	85.00	4.00	264	14784	0.97	3.90	15.59	2.67	0.05	0.18	8233.98
1.50	85.00	8.00	312	34944	0.97	7.80	62.38	5.33	0.09	0.73	38924.29
2.50	85.00	4.00	264	14784	0.58	2.34	9.36	1.60	0.03	0.11	4940.39
2.50	85.00	8.00	312	34944	0.58	4.68	37.43	3.20	0.06	0.44	23354.57
4.00	85.00	4.00	264	14784	0.37	1.46	5.85	1.00	0.02	0.07	3087.00

$\mathbf{4 . 0 0}$	85.00	8.00	312	34944	0.37	2.92	23.39	2.00	0.03	0.28	14596.00
$\mathbf{6 . 0 0}$	$\mathbf{8 5 . 0 0}$	$\mathbf{4 . 0 0}$	264	14784	$\mathbf{0 . 2 4}$	$\mathbf{0 . 9 7}$	$\mathbf{3 . 9 0}$	$\mathbf{0 . 6 7}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 5}$	$\mathbf{2 0 5 8 . 5 0}$
$\mathbf{6 . 0 0}$	$\mathbf{8 5 . 0 0}$	$\mathbf{8 . 0 0}$	312	34944	$\mathbf{0 . 2 4}$	$\mathbf{1 . 9 5}$	$\mathbf{1 5 . 5 9}$	$\mathbf{1 . 3 3}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 1 8}$	$\mathbf{9 7 3 1 . 0 7}$
$\mathbf{1 0 . 0 0}$	85.00	4.00	264	14784	0.15	0.58	2.34	0.40	0.01	0.03	1235.10
$\mathbf{1 0 . 0 0}$	85.00	8.00	312	34944	0.15	1.17	9.36	0.80	0.01	0.11	5838.64

Figure 20. Illustration of a multiservice cable for PowerSupply-PP1 part.

Table 12. List of components of the PS-PP1 cable and dimensions

	Description	Al Xsection of one wire [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	External Diameter [mm]	\#wires	Remarks
1	Tin plated copper conductor with PEinsulation (LV SP)	6	3.3	0.8	4.7	4	50x0.39 Serial powering
2	Tin plated copper conductor with PEinsulation (LV OT) Preheating pipes	1.5	1.5	0.25	2.0	2	Type 2 in OT LVPSPP1
3	T-Sensor	0.20	0.6	0.1	0.8	8	AWG 24
4	Tin plated copper conductor with PEinsulation (HV)	0.24	0.6	0.25	1.1	22	Type 3 in OT LVPSPP1
5	Al-PR-foil+Copper braid			0.5	13.8		
6	Jacket of PE			0.75	15.3		

Table 13. Description of a wire type 1 used for SP powering in cable 1.

Type 1 wire description in Cable 1	filament diameter $[\mathrm{mm}]$	filament cross section $\left[\mathrm{mm}^{2}\right]$	\#N filaments	Total cross section $\left[\mathrm{mm}^{2}\right]$	Equivalent diameter $[\mathrm{mm}]$	Diameter after taking into account bundling factor	Diameter incl. insulation [mm]
Copper	0.35	0.10	50	4.81			
Tin clad copper	0.39	0.12	50	5.98	2.76	3.3	4.7

POWER CABLE PP1-PP0

At the path PP1 to PPO, space is a concern as the service channels are limited in number and dimensions. Therefore, the conductors of LV SP should decrease in cross-section even if the power losses increase, while the rest remain the same. Table 14 below shows how the losses and Vdrop change if $4 \mathrm{~mm}^{2}$ or $2.5 \mathrm{~mm}^{2} \mathrm{Cu}$ conductors are used for the LV SP cable for the PP1 -PP0 part. We decided to use the $\mathrm{Cu} 2.5 \mathrm{~mm}^{2}$ as baseline unless there are objections due to the high heat dissipation in the service channels. Mechanics FEA simulation with the copper plates and water pipes have to confirm or not if these numbers are acceptable. Table 15 shows the power dissipated in two channels where the services will be routed for a quarter of IT. Especially in the case of an "only-cable" channel the W / m can reach 60 w / m.

Table 14. Comparison of Al cross-sections for the serial power conductors for the PP1-PPO multi-service cable.

Mate rial	Cond. Xsecti on	$\begin{aligned} & \text { Lengt } \\ & \text { h } \end{aligned}$	Current per chain	$\begin{gathered} \text { \# } \\ \text { chai } \\ \text { ns } \end{gathered}$	Total Chip Power	$20^{\circ} \mathrm{C}$ Resista nce	Vdro p	Single wire power loss	J	Vdrop	P	Total cable loss
	$\underset{\left(\mathrm{mm}^{2}\right.}{ }$	(m)	(A)		(W)	(Ω)	(V)	(W)	$\begin{gathered} (A / m \\ \left.m^{2}\right) \end{gathered}$	(V/m)	(W/m)	(W)
Al	2.50	6.00	4	264	14784	0.06	0.26	1.04	1.60	0.04	0.17	547.43
	2.50	6.00	8	312	34944	0.06	0.52	4.15	3.20	0.09	0.69	2587.85
AI	4.00	6.00	4	264	14784	0.04	0.16	0.65	1.00	0.03	0.11	342.14
	4.00	6.00	8	312	34944	0.04	0.32	2.59	2.00	0.05	0.43	1617.41
Cu	2.50	6.00	4	264	14784	0.04	0.17	0.66	1.60	0.03	0.11	348.73
	2.50	6.00	8	312	34944	0.04	0.33	2.64	3.20	0.06	0.44	1648.56

Table 15 Power dissipated in the service channels by the Serial power cables along the PP1-PPO path.

		QUARTER OF THE DETECTOR (one end half cyl - 180deg)				
	Cu Xsection (mm^{2})	SPCHAINS	SP chains in a channel of 75% cables	SP chains in a channel of 25% cables	W / m in a channel of 75% cables	W / m in a channel of 25% cables
4A chains	2.50	66	50 (26 cables)	16 (8 cables)	11.01	3.52
8A chains	2.50	78	58 (29 cables)	20 (10 cables)	51.08	17.61
SUM		144	108	36	62.09	21.14

Figure 21. Illustration of a multiservice cable for PP1-PP0 part. The outer diameter decreases from 13.4 mm to 11.1 mm due to the decrease of the diameter of the SP cables.

Table 16 List of components of the PP1-PPO cable and dimensions

$\begin{aligned} & \mathrm{P} \\ & \text { os } \end{aligned}$	Description	Cu Xsection of conductor [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	External Diameter [mm]	\#wire s	Remarks
1	Tin plated copper conductor with PE-insulation (LV SP)	2.5	2.1	0.6	3.3	4	21×0.39 Serial powering
2	Tin plated copper with PEinsulation (LV OT) Preheating pipes	0.5	0.9	0.275	1.45	2	Type 2 in OT PP1-PPO but with copper
3	T-Sensor	0.080	0.4	0.1	0.6	8	AWG 28
4	Tin plated copper with PEinsulation (HV)	0.24	0.6	0.3	1.2	22	Type 3 in OT PP1=PPO but with copper

Table 17 Description of a wire used for SP powering in cable 2

Type 1 wire description in cable 2	filament diameter [mm]	filament cross section [mm^{2}]	\#N filaments	Total cross section [mm^{2}]	Equivalent diameter [mm]	Diameter after taking into account bundling factor [mm]	Diameter incl. insulation [mm]
Copper	0.35	0.0962	21	2.03			
Tin plated copper	0.39	0.1195	21	2.51	1.8	2.1	3.3

POWER CABLES PPO-MODULES

The 13.4 mm diameter cables at PP1 will be converted to single Al wires at PPO. Only the SP LV cables will switch to smaller diameter Al cables ($0.8 \mathrm{~mm}^{2}$ for 4 A chains and $1.6 \mathrm{~mm}^{2}$ for 8 A chains) at the expense of higher current density and losses for material budget reasons. The space allocated for TBPX+TFPX should be calculated separately from the TEPX space. The cables for pre-heating of the pipes will not be needed further than PPO. The length of these wires is estimated around 3 m for the TFPX/TBPX case and 1 m for the TEPX. The transition from cables to wire bundles might require the presence of an intermediate step a fanout pcb as done currently in the pixel detector.

Table 18. List of single wires for PPO-modules part for two 4A chains

Description	AI Xsection of one conductor [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	Diameter with insulation [mm]	External Xsection [mm^{2}]	\#wires	Total Xsection $\left[\mathrm{mm}^{2}\right]$
Copper cladded AI conductor with PE-insulation (LV SP)	0.8	1.3	0.2	1.7	2.89	4	11.56
Copper cladded Al conductor with PE-insulation (LV OT) Preheating pipes	0.13	0.5	0.2	0.9	0.81	2	1.62
Two T-Sensors AWG 30	0.05	0.3	0.1	0.5	0.25	4	1
Copper cladded AI conductor with PE-insulation (HV)	0.09	0.4	0.35	1.1	1.21	22	26.62
TOTAL							~ 41

Table 19. List of single wires for PPO-modules part for two 8A chains

Description	Al Xsection of one conductor [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	Diameter with insulation [mm]	External Xsection [mm^{2}]	\#wir es	Total Xsection [mm^{2}]
Copper cladded AI conductor with PE-insulation (LV SP)	1.6	1.8	0.2	2.2	4.84	4	19.36
Copper cladded AI conductor with PE-insulation (LV OT) Preheating pipes	0.13	0.5	0.2	0.9	0.81	2	1.62
Two T-Sensors AWG 30	0.05	0.3	0.1	0.5	0.25	4	1
Copper cladded AI conductor with PE-insulation (HV)	0.09	0.4	0.35	1.1	1.21	22	26.62
TOTAL							~ 49

Table $\mathbf{2 0}$ Copper Cladded Aluminium wires for the PPO-modules connection

PP0-module 4 A	filament diameter [mm]	filament cross section [mm^{2}]	\#N filaments	Total cross section [mm²]	Equivalent diameter [mm]	Diameter after taking into account bundling factor [mm]	Diameter incl. insulation [mm] (1.5 the diameter of the conductor)
Aluminum	0.3	0.07	10	0.71			
Copper clad alu	0.32	0.08	10	0.81	0.9	1.3	1.7
PP0-module 8A	filament diameter [mm]	filament cross section [mm^{2}]	\#N filaments	Total cross section [mm²]	Equivalent diameter [mm]	Diameter after taking into account bundling factor [mm]	Diameter incl. insulation [mm] (1.5 the diameter of the conductor)
Aluminum	0.49	0.19	8	1.51			
Copper clad alu	0.5	0.20	8	1.58	1.26	1.8	2.2

SUMMARY OF POWER LOSSES FOR SERIAL POWERING

Table 21. Summary of the power loss for the entire IT detector.

Xsection	Length	Current per chain	Number of chains (Full detector)	$\begin{aligned} & \text { Total } \\ & \text { Chip } \\ & \text { Power } \end{aligned}$	$\begin{gathered} \text { 20C } \\ \text { Resista } \\ \text { nce } \end{gathered}$	Vdrop	Single Wire Power loss	J	Vdrop	P	Total cable losses (Full detector)	Pow er Loss perc enta ge wrt to chip pow er
$\left(\mathrm{mm}^{2}\right)$	(m)	(A)		(W)	(Ω)	(V)	(W)	($\mathrm{A} / \mathrm{mm}^{\mathbf{2}}$)	(V/m)	$\begin{gathered} \text { (W/ } \\ \mathrm{m}) \end{gathered}$	(W)	\%
LVPS- PP1: Cu												
6	85	4	264	14784	0.24	0.97	3.90	0.67	0.01	0.05	2058.50	14 $\%$
6	85	8	312	34944	0.24	1.95	15.59	1.33	0.02	0.18	9731.07	28 $\%$
PP1- PPO: Cu												
2.5	6	4	264	14784	0.04	0.17	0.66	1.60	0.03	0.11	348.73	2\%
2.5	6	8	312	34944	0.04	0.33	2.64	3.20	0.06	0.44	1648.56	5\%
PPO-Mods (TBPX,TFPX): AI												
0.8	3	4	168	9408	0.10	0.41	1.62	5.00	0.14	0.54	544.32	6\%
1.6	3	8	184	20608	0.05	0.41	3.24	5.00	0.14	1.08	1192.32	6\%
PPO-Mods (TEPX): AI												
0.8	1	4	96	5376	0.03	0.14	0.54	5.00	0.14	0.54	103.68	2\%
1.6	1	8	128	14336	0.02	0.14	1.08	5.00	0.14	1.08	276.48	2\%
ENTIRE IT POWER LOSSES SUM 4A chains 3055.23												
ENTIRE IT POWER LOSSES SUM 8A chains											$\begin{aligned} & 12848.4 \\ & 3 \end{aligned}$	
TOTAL POWER LOSSES ENTIRE IT											$\begin{array}{r} 15903.6 \\ 6 \end{array}$	

LPGBT POWERING

There has not been an official solution suggested for the power of the LpGBTs. Each opto-module will host a LpGBT chip (1.25V, 0.6A) and a VTRx ($2.55 \mathrm{~V}, 0.12 \mathrm{~A}$). A cascaded DC-DC conversion scheme similar to the one used to power the OT is being considered. This scheme is based on two step-down DC-DC buck converters, where the power is supplied at a higher voltage, Vin, and smaller feed current for the same consumed power. In the first conversion stage, upFEAST DC-DC converter receives 11 V and converts this
voltage to 2.55 V which can directly power the VTRx. The second stage is based on the DCDC2S converters which are used to convert 2.55 V into 1.25 V to power the LpGBT chips.
A scheme of combining 2 LpGBTs in on opto-module is proposed in this document (scheme i) called the 'Pair' option, although many other combinations might be also possible. Another one (scheme ii) goes towards the direction of grouping LpGBTs served by one upFEAST and DCDC2S converters in between them with the current ratings of the OT case. The other one (scheme iii) uses the same converters but with smaller coils for smaller current ratings such that one pair of upFEAST and DCDC2S would power one LpGBT. From now on, the pair of upFEAST and DCDC2S will be called DC-DC-DC. A few more words on the two schemes can be found below.

i) The 'Pair' option:

A version of the DC-DC converters should be able to power TWO LpGBT+VTRx. This option seems to serve well the balance between adding too many opto-modules as in the granular solution (see iii) and still have gained in reliability in case of loss of an opto-module. Plus, the number of installed LpGBTs that would be installed but not be used is significantly less than in the more "grouped" option (see ii) without the need of mixing ${ }^{\ddagger}$ the powering of the optomodules and the serial power chains. (Installing 2*692= 1384 LpGBTs when 1260 wil be used). More details can be found in the following section and Figure 22 and Table 22.
ii) The 'Grouped' option

A version of the DC-DC converters should be able to power FOUR LpGBT+VTRx. This scheme means that a failure of an upFEAST converter will result on a loss of data by 4 LpGBTs. In addition, having a board with that will serve 4 means that the granularity of the LpGBTs will now be constrained to a multiple of 4 which will result in an increase on the numbers of LpGBTs, since many of them will not be used (or could be used but then more elinks and fibers will be needed!) (see Appendix for more details). (Installing 4*592= 2368!!!!! LpGBTs when half of them (1260) will be used if not mixing the powering chains and $4 * 358=1472$ if mixing the LpGBTs serving different chains is allowed. This means that not only something significantly bulkier than the other options should be installed but also the number of these optomodules would be significantly increased wrt to (i) and (ii)).
iii) The 'Granular' option:

A very small version of the DC-DC converters should be able to power a SINGLE LpGBT+VTRx. This option has the advantages of losing less data in case of a DC-DC failure and also having a granularity of one LpGBT so no-used LpGBTs will be installed. This scheme will result to a higher number of cables installed to serve the 1260 opto-modules but in case of a failure only the data of one LpGBT will be lost (see Appendix for more details).

INVESTIGATING 'PAIR' LPGBT POWERING SCHEME:

[^2]

Figure 22 The "PAIR" LpGBT powering scheme using 1 DC-DC-DC for each 2 LpGBTs. (Current rating for upFEAST part reduced to 35\%, and to ~50\% for the DCDC2S part).

Table 22 Powering LpGBTs with the "PAIR" option.

Quarter of IT		LpGBTs (short/ long)	DC-DC-DC		' 1 wire to 1 optomodule to 2 LpGBTs' Cables with 48 single wire pairs serving 48 DC-DC-DC (0.28A)	' 1 wire to 6 optomodules to 24 LpGBTs' Cables with wires able to power 16 groups of 4 DC-DC-DC	
		Not mixing SP chains (short/ long)	Mixing SP chains (short/ long)				
TBPX	L1		24/30	12/15	12/15		
	L2	28	14	14			
	L3	12	6	6			
	L4	16	8	8			
	SUM All Layers	80/86	40/43	40/43	1	1	
	Respective number \#LpGBTS	80/86	80/86	80/86			
TFPX	Odd dee	10	6	5			
	Even dee	10	6	5			
	SUM 8 disks	160	96	80	2	1	
	Respective number \#LpGBTS	160	192	160			
TEPX	Odd dee	10	5	5			
	Even dee	8	4	4			
	SUM 4 disks	72	36	36	1	1	
	Respective number \#LpGBTS	72	72	72			
SUMMARY OF LpGBTS							
Quarte	of TBPX+TFPX	240/246	272/278	240/246			
Quarter of TEPX		72	72	72			

Quarter of IT	312/318	344/350	312/318		
Entire IT	1260	1388	1260		
SUMMARY OF DCDCs and cables					
Quarter of TBPX+TFPX		136/139	120/123	6	2
Quarter of TEPX		36	36	2	1
Quarter of IT		172/175	156/159	8	3
Entire IT		692	630	32	12

COOLING

The table below shows a proposed cooling architecture for the IT. A maximum limit of $330 \mathrm{~W} /$ cooling loop (CL) has been set (close to the OT one). The distribution of power per cooling loop has the following characteristics: maximum $327 \mathrm{~W} / \mathrm{CL}$, average $264 \mathrm{~W} / \mathrm{CL}$, minimum $193 \mathrm{~W} / \mathrm{CL}$. Three transfer lines out of five per quarter of the detector are used for TBPX/TFPX. These 3 transfer lines serve the following: $1 \mathrm{CL} /$ L1, 2 CL / L2, 3 CL/ L3, 4 CL/ L4, 1 CL per TFPX Dee, meaning $1+2+3+4+8 * 2 * 1=26$ cooling loops. For a quarter of TEPX, 2 transfer lines are needed serving 16 cooling loops (2 CL per TEPX Dee). It has to be investigated/confirmed that the LpGBTs do not require separate cooling loops as the LpGBTs do not need to operate @ $-20^{\circ} \mathrm{C}$. In addition, the presence of the carbon fiber support and cold air around them should be sufficient to keep them at a normal operating temperature. For the moment, the presence of preheaters for the cooling pipes is foreseen, to be investigated whether the power of the LpGBT and the cable losses could be used to replace them.

Table 23 Proposed cooling architecture for a quarter of IT detector.

| QUARTER OF IT | | Estimated Power
 [W] (chip, sensor,
 cables, LpGBT) | Cooling
 Loops | Power per
 Cooling Loop [W] | Transfer lines | Power per transfer line
 [W] |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TBPX | Short | L1 | 218 | 1 | 218 | |

	Even Dee 4 half disks		408	2	215	
		4136	16			

PP1 - SERVICE CHANNELS

There will be four service channels per end allocated for IT services. To further facilitate access, the IT services will be routed to the service channels closest to the horizontal plane (contrary to previous experience where they were close to the vertical plane) such that they are reachable from the IT installation platforms. The phi-distribution of the tracker channels can be seen in Figure 23 below. Note also that the maximum allowed occupancy of the channels is 75% and that out of the two channels per quarter, one will be filled 75% with cables (eg IT1 channel) and the other one 25% cables and 50% all the cooling of that part of the detector (eg IT4 channel). Therefore, $3 / 4$ of cables are allocated in one service channel and $1 / 4$ of cables in the one with the cooling. Assumed channel size $262.3 \mathrm{~cm}^{2}$. A maximum of 8 cables per quarter of the IT needed to power the LpGBTS is assumed.

Figure 23. (Left) photo highlighting in blue one of the tracker service channels and PP1s, and in pink one of the neighbouring ECAL+HCAL service channels (taken from TDR fig 5.2). (Right) The phi distribution of the four IT channels per end.

From Axel's workbook the services in a IT channel at PP1 will be :
Table 24. List of services arriving at PP1 channels and dimensions of the cables.

Service type	IT	IT+	IT+, HALF	IT CHANNEL $\mathbf{1}$	IT CHANNEL $\mathbf{4}$	Diameter of a cable $(\mathbf{m m})$	Area of one cable $\left(\mathbf{c m}^{2}\right)$
Power cables IT 2 chips	136	68	34	26	8	13.4	1.8

Power cables IT 4 chips	156	78	39	29	10	13.4	1.8
Power cable LpGBTs	40	20	10	6	2	13.4	1.8
MFB	124	62	31	15	16	3.6	0.1
Inlet cooling pipes	20	10	5	0	5	8	0.6
Outlet cooling pipes	20	10	5	0	5	14	2.0
Dry gas injection pipes	24	12	6	3	3	6	0.4
Sniffing pipes	10	5	2.5^{\S}	1	1	6	0.4
Environment sensors	72	36	18	9	9	3	0.1
Channel water pipe	16	8	4	2	2	10	1.0

Table 25 Estimation of occupancy of two IT channels per quarter (one 75% cables, one 50% cooling and 25% cables) using Axel's workbook template.

	Service channel \#	2	18
POWER CABLES	Name	IT1	IT4
	Power cables IT 2 chips	26	8
	PC IT2 area (cm^{2})	46.7	14.4
	Power cables IT 4 chips	29	10
	PC IT4 area (cm^{2})	52.1	18.0
	Power cables LpGBTs	6	2
	PC LpGBT area (cm^{2})	10.8	3.6
OPTICAL FIBERS	MFB	16	15
	MFB area (cm^{2})	2.1	1.9
COOLING BUNDLES	Inlet cooling pipes	0	5
	Outlet cooling pipes	0	5
	BUNDLE area (cm^{2})	0.0	82.5
SENSORS AND DETECTOR ENVIRONMENT	Dry gas injection pipes	3	3
	Remaining DGIP area (cm^{2})	1.1	0.7
	Sniffing pipes	1	1
	SP area (cm^{2})	0.4	0.4
	Environment sensors	9	9
	ES area (cm^{2})	0.8	0.8
	Channel water pipes	2	2
	CWP area (cm^{2})	2.0	2.0

[^3]| RESULTS | Total area of services $\left(\mathrm{cm}^{2}\right)$ | $\mathbf{1 1 5 . 8}$ | $\mathbf{1 2 4 . 2}$ |
| :---: | :---: | :---: | :---: |
| | Channel fill | 44.1% | 47.4% |

The service channels will be redesigned according to the need of Pixel Phase 2. The current preliminary design for Phase 2 Tracker channels foresees each side of PP1 hosting 6 stacks of 8 parallel power connections. So 48 connections per side of PP1, equal to 96 connections per PP1, equal to a maximum of 96 power cables per channel for a "only cable" channel and 48 power cables for a "cables+cooling" type of channel. IT and OT service channels will be kept as similar as possible. Some preliminary drawings of the PP1 are shown in Figures 24 and 25. Based on this design, the constraint on the bending radius of the power cables is min. 70 mm .

As far as the cooling of the cable bundles are concerned, before there was one water cooling loop per channel with copper pipes used to warm the pipes/ cool the cables. For the moment, it is desired that two cooling loopes per channel (one per side) in order to lower the impedance of the circuit and increase also the cooling capacity of it.

Figure $\mathbf{2 4}$ Tracker service channels are under design (last drawing presented by Axel Filenius Nicola Bacchetta Karol Rapacz https://indico.cern.ch/event/649173/)

Figure 25 Tracker services Axel Filenius Nicola Bacchetta Karol Rapacz https://indico.cern.ch/event/649173/

PPO - COLLECTION OF PHOTOS MOCK-UP PHASE 1 DETECTOR

For a quarter of TBPX/TFPX the space needed for the services is around $26 \mathrm{~cm}^{2}$, while for the TEPX around $15 \mathrm{~cm}^{2}$. No appropriate arrangement has been done in a C-shape way. This is just an estimation for the engineers to consider when designing the laying of the services on the support tubes. Some picture of the C-shapes used to distribute in phi the services for Pixel phase 1 are shown as an example in Figure 26.

Figure $\mathbf{2 6}$ PPO mock-up of Pixel Phase 1 detector services at B187.

At PPO to the PP1 side the cross-section of the power wires for serial powering and LpGBT powering will be for a quarter of IT:
for TBPX+TFPX : $\quad(45$ for SP +6 for LpGBT $) *(13.4 \mathrm{~mm})^{2}=92 \mathrm{~cm}^{2}$
for TEPX: $\quad(28 \text { for } S P+2 \text { for LpGBT })^{*}(13.4 \mathrm{~mm})^{2}=54 \mathrm{~cm}^{2}$
These numbers do not include cooling cross section.
At PPO to the detector side the cross-section of the power wires will be for a quarter of IT:
for TBPX+TFPX : Cross Section for 4A chains+ Cross Section for 8A chains+ LpGBT powering=

$$
22 * 41 \mathrm{~mm}^{2}+23 * 49 \mathrm{~mm}^{2}+6 * 80 * 1.0 * 1.0 \mathrm{~mm}^{2} \sim 26 \mathrm{~cm}^{2}
$$

for TEPX:
Cross Section for 4A chains+ Cross Section for 8 A chains+ LpGBT powering=

$$
12 * 41 \mathrm{~mm}^{2}+16 * 49 \mathrm{~mm}^{2}+2 * 80 * 1.0 * 1.0 \mathrm{~mm}^{2} \sim 15 \mathrm{~cm}^{2}
$$

These numbers do not include cooling cross section.
In case the space in the service cylinder is not sufficient to host all the above-mentioned cables, one could consider to drop the multiple HV wires and keep only one for each serial power chain.

SUMMARY

Figure 27 TBPX Cooling Loops and Power Cables for the long end (short end architecture is similar).

TFPX even dee
FRRONT SIDE

TFPX Odd Dee:
4 SP chains
2 Power Cables
1 Cooling Loop

TFPX Even Dee: 4 SP chains 2 Power Cables 1 Cooling Loop

Figure 28 SP chains, cables and loops summary for the disks

Keeping the sum numbers from Tables from previous sections (referring to a quarter of the IT), we can now extract the numbers shown in the TDR table 4.3.

Table 26. TDR Table of 4.3

TDR table 4.3 (full detector)	TBPX	TFPX	TEPX	Total
E-links (readout)	1656	3264	1760	6680
E-links (control)	864	1728	1760	4352
Optical links	332	640	288	1260
Power chains	96	256	224	576
Front-end power [kW]	8	16	16	40

Table 27 Power Summary for the Inner Tracker, used as basis for cooling calculation.

QUART ER OF IT		Number of chips		Chip Power [W]		SP chains		Serial Power Cable Losses at the PPO- modul es part [W]	Number of LpGBTs		LpGBT power [W]		Sensor losses (tk layout)		TOTAL POWER	
		short	long	short	long	4A chai n	8A chai n		$\begin{aligned} & \text { shor } \\ & t \end{aligned}$	long	$\begin{aligned} & \text { shor } \\ & \mathrm{t} \end{aligned}$	long	short	long	short	long
TBPX	L1	48.0	60.0	142.6	178.2	3.0	0.0	9.7	24.0	30.0	25.2	31.5	41.0	56.0	218.5	275.4
	L2	112.0	140.0	332.6	415.8	7.0	0.0	22.7	28.0	28.0	29.4	29.4	23.0	30.0	407.7	497.9
	L3	192.0	240.0	570.2	712.8	0.0	6.0	38.9	12.0	12.0	12.6	12.6	18.0	23.0	639.7	787.3
	L4	256.0	320.0	760.3	950.4	0.0	8.0	51.8	16.0	16.0	16.8	16.8	16.0	20.0	845.0	1039.0
	$\begin{aligned} & \text { SU } \\ & \text { M } \end{aligned}$	608.0	760.0	1805.8	2257.2	10.0	14.0	123.1	80.0	86.0	84.0	90.3	98.0	129.0	2110.9	2599.6
TFPX	Odd dee	68.0		202.0		2.0	2.0	19.4	10.0		10.5		27.0		258.9	
	Eve n dee	96.0		285.1		2.0	2.0	19.4	10.0		10.5		19.0		334.1	
	Disk	164.0		487.1		4.0	4.0	38.9	20.0		21.0		46.0		593.0	
	$\begin{aligned} & \text { SU } \\ & \text { M } \end{aligned}$	1312.0		3896.6		32.0	32.0	311.0	160.0		168.0		368.0		4743.7	
TEPX	Odd dee	208.0		617.8		2.0	6.0	15.1	10.0		10.5		18.0		661.4	
	Eve n dee	136.0		403.9		4.0	2.0	8.6	8.0		8.4		10.0		431.0	
	Disk	344.0		1021.7		6.0	8.0	23.8	18.0		18.9		28.0		1092.3	
	$\begin{aligned} & \text { SU } \\ & \text { M } \end{aligned}$	1376.0		4086.7		24.0	32.0	95.0	72.0		75.6		112.0		4369.4	
QUARTER OF TBPX+TFPX		$\begin{aligned} & 1920 . \\ & 0 \end{aligned}$	$\begin{aligned} & 2072 . \\ & 0 \end{aligned}$	5702.4	6153.8	42.0	46.0	434.2	$\begin{aligned} & 240 . \\ & 0 \end{aligned}$	$\begin{aligned} & 246 . \\ & 0 \end{aligned}$	$\begin{aligned} & 252 . \\ & 0 \end{aligned}$	$\begin{aligned} & 258 . \\ & 3 \end{aligned}$	466.0	497.0	6854.6	7343.3
QUARTER OF TEPX		1376.0		4086.7		24.0	32.0	95.0	72.0		75.6		112.0		4369.4	
QUARTER OF IT		$\begin{aligned} & 3296 . \\ & 0 \end{aligned}$	$\begin{aligned} & 3448 . \\ & 0 \end{aligned}$	9789.1	$\begin{aligned} & 10240 . \\ & 6 \end{aligned}$	66.0	78.0	529.2	$\begin{aligned} & 312 . \\ & 0 \end{aligned}$	$\begin{aligned} & 318 . \\ & 0 \end{aligned}$	$\begin{aligned} & 327 . \\ & 6 \end{aligned}$	$\begin{aligned} & 333 . \\ & 9 \end{aligned}$	578.0	609.0	$\begin{aligned} & 11223 . \\ & 9 \end{aligned}$	$\begin{aligned} & 11712 . \\ & 7 \end{aligned}$
ONE END OFIT		$\begin{aligned} & 6592 . \\ & 0 \end{aligned}$	$\begin{aligned} & 6896 . \\ & 0 \end{aligned}$	$\begin{aligned} & 19578 . \\ & 2 \end{aligned}$	$\begin{aligned} & 20481 . \\ & 1 \end{aligned}$	$\begin{aligned} & 132 . \\ & 0 \end{aligned}$	$\begin{aligned} & 156 . \\ & 0 \end{aligned}$	1058.4	$\begin{aligned} & 624 . \\ & 0 \end{aligned}$	$\begin{aligned} & 636 . \\ & 0 \end{aligned}$	$\begin{aligned} & 655 . \\ & 2 \end{aligned}$	$\begin{aligned} & 667 . \\ & 8 \end{aligned}$	$\begin{aligned} & 1156 . \\ & 0 \end{aligned}$	$\begin{aligned} & 1218 . \\ & 0 \end{aligned}$	$\begin{aligned} & 22447 . \\ & 8 \end{aligned}$	$\begin{aligned} & 23425 . \\ & 3 \end{aligned}$
ENTIRE IT		13488.0		40059.4		264	312	2117	1260		1323.0		2374.0		45873.2	

Table 28 Cable summary

Cable 1	Voltage at the source [V]	Current $[A]$		Constraint	\#wires

APPENDIX: INVESTIGATING MORE OPTIONS FOR THE OPTO-MODULES

INVESTIGATING ‘GROUPED' LPGBT POWERING SCHEME

Below in Figure 29 shows the distribution of the power in this case. Assuming one cable could power one upFEAST converter which could power 2 DC-DC2S converters and each DC-DC2S converter a group of 4 LpGBTs. The number of opto-modules needed are calculated in Table 29.

Figure 29 The "GROUPED" LpGBT powering scheme using 1 DC-DC-DC for each 4 LpGBTs. (Current rating for upFEAST part reduced to 60\%, stayed the same for DCDC2S part).

Table 29 Powering LpGBTs with "GROUPED" option.

	Quarter of IT	LpGBTs (short/ long)	DC-DC-DC		'1 to 1 to 4' Cables with single wires serving 42 optomodul es (0.56A) (mixing SP chains)	Groups of 4 DC-DC-DC (2.24A) (only with mixing)	
			Not mixing SP chains (short/ long)	Mixing SP chains (short/ long)			Cables with 32 wires able to power 16 groups of 4 optomo dules
TBPX	L1	24/30	6/9	6/8		2	
	L2	28	7	7		1	
	L3	12	6	3		1	
	L4	16	8	4		1	
	SUM All Layers	80/86	27/30	20/22	1	5	1
	Respective number \#LpGBTS	80/86	108/120	80/88			
TFPX	Odd dee	10	4	3		1	
	Even dee	10	4	3		1	
	SUM 8 disks	160	64	48	2	16	1
	Respective number \#LpGBTS	160	256	192			
TEPX	Odd dee	10	8	3		1	

Even dee	8	6	2		1	
SUM 4 disks	72	56	20	1	8	1
Respective number \#LpGBTS	72	224	80			
SUMMARY OF LpGBTS						
Quarter of TBPX+TFPX	240/246	364/376	272/280			
Quarter of TEPX	72	224	80			
Quarter of IT	312/318	588/600	352/360			
Entire IT	1260	2376	1414			
SUMMARY OF DCDCs and cables						
Quarter of TBPX+TFPX		91/93	68/71	3	21	2
Quarter of TEPX		56	20	1	8	1
Quarter of IT		147/149	88/91	4	29	3
Entire IT		592	358	16	116	12

Individual powering option: A pair of wires for each DC-DC-DC
To power every DC-DC-DC independently, a conductor with total Vdrop < 3 V should be chosen to carry 0.56 A . Up to 84 wires can fit in one cable of similar dimension with the mult-service cables.

Table 30. Voltage drops calculated for the wires used to power the upFEASTs for the ' 1 to 4 ' powering scheme.

Materia I	Cond. Xsection	Length	Current	Numb er of DC-DC-DC (max) min)	$20^{\circ} \mathrm{C}$ Resistan ce	Vdrop	Singl e wire pow er loss	J	Vdrop	P	Total power loss on wires (max) min)
	$\left(\mathrm{mm}^{2}\right)$	(m)	(A)		(Ω)	(V)	(W)	($\mathrm{A} / \mathrm{mm}^{2}$)	(V/m)	(W/m)	(kW)
Copper	0.41	85	0.56	$\begin{aligned} & 592 / \\ & 358 \end{aligned}$	3.566	2.00	1.12	1.37	0.02	1.3E-02	$\begin{aligned} & 1.32 / \\ & 0.80 \end{aligned}$
Copper	0.102	6	0.56	$\begin{aligned} & 592 / \\ & 358 \end{aligned}$	1.012	0.57	0.32	5.49	0.09	5.3E-02	$\begin{aligned} & 0.38 / \\ & 0.23 \end{aligned}$

[^4]Table 31. Description of Cables 3 and 4 for individual powering of the DC-DC-DCs with the "Grouped" scheme

Description Cable 3	Cu X-section [mm ${ }^{2}$]	Diameter of conductor [mm]	Thickness of insulation [mm]	External Diameter [mm]	\#wires
Tin plated copper conductor with PEinsulation (LV SP)	0.41	0.9	0.2	1.3	84
Al-PR-foil+Copper braid			0.5	13.8	
Jacket of PE			0.75	15.3	
Description Cable 4	Cu X-section [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	External Diameter [mm]	\#wires
Tin plated copper conductor with PEinsulation (LV SP)	0.102	0.5	0.2	0.9	90
Al-PR-foil+Copper braid			0.5	12.1	
Jacket of PE			0.65	13.4	

Parallel powering option: A pair of wires for each group of four DC-DC-DCs

To power groups of four DC-DC-DCs, a pair of conductors with total Vdrop< 3 V should be chosen to carry 2.24A. Up to 32 conductors of $1.3 \mathrm{~mm}^{2}$ can fit in one cable of similar dimension with the mult-service cables.

Table 32. Voltage drops calculated for the wires used to power four DC-DC-DCs for the 'Grouped powering scheme.

Material	Cond. Xsection	Length	Current	Groups of 4 DC-DC-DCs	$20^{\circ} \mathrm{C}$ Resista nce	Vdrop	Single wire power loss	J	Vdrop	P	Max Total power loss on wires
	$\left(\mathrm{mm}^{2}\right)$	(m)	(A)		(Ω)	(V)	(W)	($\mathrm{A} / \mathrm{mm}^{2}$)	(V/m)	(W/m)	(kW)
Copper	1.3	85	2.24	116	1.125	2.52	5.64	1.72	0.030	0.0664	1.3
Copper	0.7	6	2.24	116	0.147	0.33	0.74	3.20	0.055	0.1233	0.17

Figure 31 Cables used for the individually wired 'Grouped' LPGBT power scheme. On the left, Cable 5 for the LVPS-PP1 part, with 15.3 mm outer diameter, can power 42 DC-DC-DC converters. Right, Cable 6 for PP1-PPO part, with 13.4 mm outer diameter can host min. 84 smaller conductors (the sketch above shows 90 wires).

Table 33. Description of Cables 5 and 6 for parallel powering the DC-DC-DCs with the "Grouped" scheme

Description Cable 5	Cu X -section of one wire [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	External Diameter [mm]	\#wires
Tin plated copper conductor with PE-insulation (LV SP)	1.3	1.5	0.2	1.9	32
Al-PR-foil+Copper braid			0.5	13.8	
Jacket of PE			0.75	15.3	
Description Cable 6	Cu X -section of one wire [mm^{2}]	Diameter of conductor [mm]	Thickness of insulation [mm]	External Diameter [mm]	\#wires
Tin plated copper conductor with PE-insulation (LV SP)	0.7	1.2	0.2	1.6	32
Al-PR-foil+Copper braid			0.5	12.1	
Jacket of PE			0.65	13.4	

INVESTIGATING "GRANULAR" LPGBT POWERING SCHEME:

Figure 32. The "Grabular" LPGBT powering scheme using coils reduced to 20 nH ? (10% of that used for 4A upFEAST) and 50 nH ? (25% of that used for 3ADCDC2S)

A voltage supply per LpGBT would be needed in the second case where smaller DC-DC converter would be used. The cross-section of such a cable would be much smaller than the one in the case described above. Assuming a max allowed voltage drop of 3 V (as in OT) and a current of 0.5 A needed the cross-section could be minimized to $0.3 \mathrm{~mm}^{2}$ (diameter 0.8/1.2 mm with PE insulation). Up to 90 conductors could fit in a 13.4 mm cable like the one presented earlier meaning they could serve up to 45 LpGBTs. In this scenario, 8 cables of 15.3 mm per quarter of IT would be needed (instead of 5 or 4 from ' 1 to 4 ' scheme).

Table 34 LpGBT powering cables needed for the "GRANULAR" option.

Quarter of IT		LpGBTs (short/long)	Cables with 90 wires serving 45 DC-DC-DCs	$\begin{array}{r} \text { Groups of } 20 \text { DC- } \\ \text { DC-DCs } \\ \text { (mixing chains) } \end{array}$	Cables with 32 wires serving 16 groups of 20 DC-DC-DCs
TBPX	L1	24/30		2	
	L2	28		2	

Individual powering option: A pair of wires for each DC-DC-DC
To power every DC-DC-DC independently, a conductor with total Vdrop< 3 V should be chosen to carry 0.102A. Up to 90 wires can fit in a cable of similar dimensions with the multi-service cables. The cable would be similar to Cable 4 presented previously.

Table 35 Calculating voltage drop and power losses for individual conductors for the "GRANULAR" powering scheme of the LpGBTs.

Materi al	Cond. Xsection	Lengt h	Current	Num ber of DC- DC- DC	$\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { Resistanc } \\ & \mathrm{e} \end{aligned}$	Vdrop	Single wire power loss	J	$\begin{aligned} & \text { Vdro } \\ & \text { p } \end{aligned}$	P	Total power loss on wires
	$\left(\mathrm{mm}^{2}\right)$	(m)	(A)		(Ω)	(V)	(W)	($\mathrm{A} / \mathrm{mm}^{2}$)	(V/m)	(W/m)	(kW)
Copper	0.102	85	0.104	1260	14.333	1.49	0.16	1.02	0.02	$1.8 \mathrm{E}-03$	0.39
Copper	0.102	6	0.104	1260	1.012	0.11	0.01	1.02	0.02	$1.8 \mathrm{E}-03$	0.03

Parallel powering option A: A pair of wires for each group of four DC-DC-DCs

To power groups of up to twenty DC-DC-DCs, a pair of conductors with total Vdrop<3V should be chosen to carry 2.08 A. Up to 32 conductors of $1.3 \mathrm{~mm}^{2}$ and $0.7 \mathrm{~mm}^{2}$ can fit in a cable of similar dimension with the multi-service cables. The cables used would look similar to cables 5 and 6 presented previously.

Table 36 Calculating voltage drop and power losses for parallel powering of the DC-DC-DCs for the "GRANULAR" powering scheme.

Materi al	Cond. Xsection	Lengt h	Current	Grou ps of 20 DC-DCDC	$20^{\circ} \mathrm{C}$ Resistanc e	Vdrop	Single wire power loss	J	Vdro p	P	Total power loss on wires
	$\left(\mathrm{mm}^{2}\right)$	(m)	(A)		(Ω)	(V)	(W)	($\mathrm{A} / \mathrm{mm}^{2}$)	(V/m)	(W/m)	(kW)
Copper	1.3	85	2.08	72	1.125	2.34	4.87	1.60	0.028	0.0572	0.70
Copper	0.70	6	2.08	72	0.147	0.31	0.64	2.97	0.051	0.1063	0.09

Parallel powering option B: A pair of wires for each group SP chain. Adding four conductors to the existing multi-service cables.

Similarly, groups of up to 10 DC-DC-DCs, but this time powering groups of DC-DC-DCs serving LpGBTs that readout modules belonging to the same SP chain. In this case, 4 conductors able to carry up to 1 A have to fit in the multiservice cables that will serve 2 SP chains. If the HV conductors are reduced to 4 (option C and most probable), there should be sufficient space to add the LPGBT powering conductors. In this case, no extra cables would be needed to power the LpGBTs. There would be no mixing of the SP chains and the readout powering BUT there should be some kind of fan-out at PPO where the thick conductors will be converted to single wires able to power in parallel from 1 up to 10 DC-DC-DCs depending on the location. This option could also be used in the "Grouped" case.

[^0]: * Side note: At CMS, "per end" is used for the two $+Z,-Z$ and "per side" is used for the far, near side (split in phi). There has not been any decision on which end will be the long (5 modules in each barrel ladder) or the short (4 modules per ladder). It does not make any difference. The two sides (far, near) are identical so there is no reason to distinguish among them. From now on, the document will describe the services for a quarter of the detector.

[^1]: ${ }^{\dagger}$ Alternative powering scheme for R3-R5 TEPX (separate chains per ring) results to same number of chains (2 for r3, 4 for $r 5$) but would need 8 LpGBTs instead of 6 for the readout.

[^2]: ${ }^{\ddagger}$ Mixing the chains here means that a optomodule with a DC-DC-DC powers N LpGBTs serving different power chains. The rule of a LpGBT serving modules of the same chain is never broken. This is taking a step further the separation of the two powering schemes used in the IT.

[^3]: ${ }^{\S} 5$ sniffing pipes per end are distributed as 1 sn.p. per channel for 3 channels and 2 sn.p. for one channel eg. channel 2.

[^4]: Figure 30 Cables used for the individually wired 'Grouped' LpGBT power scheme. On the left, Cable 3 for the LVPS-PP1 part, with 15.3 mm outer diameter, can power 42 DC-DC-DC converters. Right, Cable 4 for PP1-PPO part, with 13.4 mm outer diameter can host min. 84 smaller conductors (the sketch above shows 90 wires).

