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1) Introduction 
 

Superconducting nanowire single-photon detectors (SNSPDs) are very effective 
detectors compared to other detector types, in terms of speed, low dark count rate and 
photon energy range. These structures can be used to detect photons with much lower 
energies compared to the semiconductor detectors, since the bandgap there tends to be of 
the order of 1 eV. A silicon single-photon detector cannot detect photons with wavelengths 
greater than 1000 nm for example, because it has a bandgap of 1.5 eV. In most 
semiconductor single-photon detectors, Fermi-excitations are necessary in order to detect a 
photon. In superconductors, with the same photon energies, many more excitations are 
created. 

Potential applications of this technology are in the area of optical quantum 
information, like the quantum key distribution [12], where a wider spectral range is needed, 
with smaller dead time, small dark count rate, a great detection efficiency and low timing 
jitter (variation in the time interval between the absorption of a photon and the generation 
of an output electrical pulse from the detector), and the ability to resolve the photon 
number, which is difficult with SNSPDs [12] since most of them can only distinguish between 
zero or ‘one or more’ photon absorptions. 

If an absorbed photon has enough energy to make the whole cross-section of the 
SNSPD normal conducting, we will have a detection event. In general, it has to be assumed 
that visible and near-infrared photons with energies of about 1 eV do not have sufficient 
energy. In this case, there are many mechanism that have been discussed over the years that 
can lead to a detection event. One possible mechanism, and the one that will be discussed in 
this thesis, is that a photon absorbed anywhere in the strip can reduce the edge barrier so 
much that a vortex will enter without additional thermal activation energy, and this will lead 
to a photon count. 

For these vortex-assisted photon counts, the photon count rate rises for increasing 
applied current and has a plateau at higher currents near the critical current. It will be 
assumed that a magnetic field perpendicular to the strip plane does not affect the formation 
of hot spots by photons, but still increases the photon count rate. 
The goal of this work is to define the minimal applied magnetic field necessary, given a bias 
current, in order to have 100% probability of vortex crossing in the case of one photon 
absorption of a given energy. That is, to be 100% sure that each single photon will be 
detected for the vortex-assisted photon counts. 
The detection process is actually not clear and under active investigation. Different models 
have been proposed and the magnetic field dependence may help to differentiate between 
models. 
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2) Physical Background 
 
2.1. Basic Phenomena 
 

Superconductivity is the name for the phenomenon of zero electrical resistance (R = 0 
Ω) and perfect diamagnetism (χ = -1) that occurs in certain materials when cooled below a 
critical temperature Tc that is material dependent. 
It is characterized by the Meissner effect, a complete expulsion of magnetic field lines from 
the inside of the superconductor. Not only that a magnetic field cannot enter the 
superconductor, but also a field in an originally normal sample is expelled as it is cooled 
below Tc. 

The superconducting state is defined by three very important factors: critical 
temperature (𝑇𝑐), critical field (𝐻𝑐), and critical current density (𝑗𝑐). Each of these parameters 
is dependent on the other two properties present. Maintaining the superconducting state 
requires that the magnetic field,  the current density, as well as the temperature, remain 
below the critical values, all of which depend on the material. An illustration of a critical 
surface formed by these three parameters can be seen in figure 1. When electrons form 
Cooper pairs, they can share the same quantum wave-function or energy state. This results 
in a lower energy state for the superconductor. 𝑇𝑐 and 𝐻𝑐  are values where it becomes 
favorable for the electron pairs to break apart. The current density larger than the critical 
value is forced to flow through normal material. 

 
FIGURE 1: [9] Sketch of the critical surface that separates the superconducting from the normal state 

in the parameter space span by temperature, magnetic field and current. 

 

2.2. Discovery 
 

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes. Three years 
earlier he liquefied helium for the first time, and this gave him the refrigeration technique 
required to reach very low temperatures of a few Kelvin. He was studying the resistance of 
solid mercury at these temperatures, and observed that at a temperature of ~4.2 K , the 
resistance abruptly disappeared. His original experimental measurements can be seen in 
figure 2. 
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FIGURE 2: The discovery of superconductivity by Kamerlingh Onnes [8] 

 

2.3. Meissner effect  
 

When a weak external magnetic field H is applied, and the superconductor is cooled 
down below its critical temperature, the magnetic field is expelled. The Meissner effect does 
not completely force out the field, but instead it penetrates the superconductor to a very 
small distance, called the London penetration depth λ, decaying exponentially to 0 within 
the material. The typical penetration depth is on the order of 100 nm. 
A phenomenological explanation was given by Fritz and Heinz London, who, modifying the 
essential equations of electrodynamics, predicted that the magnetic field H in a 
superconductor decays exponentially from whatever value it possesses at the surface, with 
penetration depth λ. 

 
∇2H =

H

λ2
 

 
(1) 

 
with 

 
λ2 =

ε0mc2

nse2
=

m

μ0nse2
  , 

 
(2) 

 
where m is the mass of the superconducting carrier and 𝑛𝑠 the superconductor carrier 
density. 

The most important consequence is that electromagnetic fields are screened from 
the interior of a bulk superconductor in a characteristic penetration depth λ  given by (2). 
This is the characteristic length of the fall-off of a magnetic field due to surface currents. 
For example, a magnetic field H parallel to the surface would decrease exponentially into the 
interior of a bulk superconductor as 

 H(x) = H(0)e−
x

λ  ,  
(3) 

 
where x is measured from the surface.  

For the case of a flat superconducting slab of finite thickness d in an applied magnetic 

field 𝐻𝑎  , solving (1) with the boundary conditions that 𝐻 = 𝐻𝑎  at the 2 surfaces 𝑥 = ∓
𝑑

2
 , 

one obtains a superposition of exponentials penetrating from both sides, so that 
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𝐻 = 𝐻𝑎

cosh (
𝑥
λ)

cosh (
d

2λ)
    

 
(4) 

 
that is, H is reduced to a minimum value at the middle of the strip. 
 
 

2.4. Ginzburg-Landau theory 
 

In some cases, the Meissner effect is not absolute. In type II superconductors, 
magnetic flux can penetrate into the bulk of the material, but does so in discrete units of 
𝜙0 = h/2e , the magnetic flux quantum. In type I superconductors, there is some critical 
field above which the entire sample goes normal-conducting. 
There is no way to explain this using classical mechanics. So, a superconducting order 
parameter 𝛹(𝒓) was introduced by Ginzburg and Landau in 1950 to describe the 
superconducting properties, related to the density of superconducting electrons with 
|𝛹(𝒓)|2 ∝ 𝑛𝑠(𝒓) , where 𝛹(𝒓) = 0 if 𝑇 > 𝑇𝑐 (the material is not superconducting) and 
𝛹(𝒓) ≠ 0 if 𝑇 < 𝑇𝑐 (superconducting state). 
In this theory, all characteristics and properties of superconductivity follow from the 
Ginzburg-Landau free energy [2]: 
 

 
𝑓 = 𝑓𝑛 + 𝛼|𝛹|2 +

𝛽

2
|𝛹|4 +

1

2𝑚
|(−𝑖ℏ∇ − 2e𝐀)𝛹|2 +

𝜇0|𝐻|2

2
 , 

 

 
(5) 

where 𝑓𝑛 is the free energy in the normal state, 𝛼 and 𝛽 temperature dependent 
phenomenological parameters, m is the effective mass, e the electron charge, A the 
electromagnetic vector potential and H an applied magnetic field. 
By minimizing the free energy with respect to variations of the order parameter 𝛹, leads to 
the Ginzburg-Landau equation: 

 
𝛼𝛹 + 𝛽|𝛹|2𝛹 +

1

2𝑚
(−𝑖ℏ∇ − 2e𝐀)2𝛹 = 0 .   

 
(6) 

For this problem, now in connection with the magnetic field, Maxwell equations have to be 
fulfilled: 

 𝛁 × 𝑯 = 𝐉 .  (7) 
 

With boundary conditions that 𝛹 = 0 at the surface of the superconductor and that 
in the most interior part we have 𝛹𝑚𝑎𝑥  constant in the absence of a magnetic field that can 
interfere with the superconducting effects (Simplified case with 𝐀 = 0), we arrive at  
𝛼𝛹𝑚𝑎𝑥 + 𝛽|𝛹𝑚𝑎𝑥|2𝛹𝑚𝑎𝑥 = 0 , with a trivial solution of 𝛹𝑚𝑎𝑥 = 0, which corresponds to the 
normal state of the superconductor for temperatures 𝑇 > 𝑇𝑐, and 𝑛𝑠,𝑚𝑎𝑥 ≡ |𝛹𝑚𝑎𝑥|2 =

−𝛼/𝛽 = 𝛼0(𝑇 − 𝑇𝑐)/𝛽  for 𝑇 < 𝑇𝑐. 
Solving (6) for the one dimensional case leads to the coherence length ξ. The coherence 
length is a measure of the shortest distance over which superconductivity may be 
established. It is also a measure of the spatial variation of the density of superconducting 
electrons. A small coherence length 𝜉 would mean that the density can change rapidly. One 
consequence of its existence is that the boundary between a normal and superconducting 
region cannot be sharp because the density of superconducting electrons can rise from zero 
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in the normal region to its density 𝑛𝑠 only gradually over a distance equal to about the 
coherence length. An illustration of the coherence length 𝜉 and the penetration depth λ for 
a type I superconductor can be seen in figure 3.  
For a type II superconductor, the penetration depth is greater than the coherence length. 
The result is that it is thermodynamically favorable for the magnetic field to penetrate the 
specimen. 
 

 
FIGURE 3: Schematic representation (taken from [7]) of the main superconducting parameters 

coherence length ξ and penetration depth λ for type I superconductors 

 
The coherence length depends on the purity of the metal. If impurities are present, the 
coherence length is reduced. If there are so many impurities and defects that the mean free 
path 𝜎 in the normal conducting state becomes smaller than the BSC coherence length, then 
we have an effective coherence length: 

ξ = √ξ0𝜎 , 

 
where ξ0 is the coherence length in a perfectly pure superconductor, and ξ the actual 
measured coherence length in an impure metal or alloy.  
Following from (2) by replacing  𝑛𝑠 by |𝛹|2 and taking into account that the change in 
Cooper-pairs is 2e, the penetration depth λ can also be expressed as: 
 

λ(T) = √
m

4μ0e2ψ0
2    , 

 
where ψ0is the equilibrium value of the order parameter deep inside the superconductor in 
the absence of an electromagnetic field. 
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2.5. Types of superconductors 
 

As mentioned, superconductors can be divided into 2 classes according to how their 
superconducting state breaks down with an high enough applied magnetic field and can be 
classified by a single parameter, the Ginzburg-Laundau-parameter κ = λ/ξ . The H-T diagram 
for a bulk type I and II superconductor is presented in figure 4. 

 
FIGURE 4: The H-T phase diagram of a single-gap (a) type I and (b) type II superconductor. (Taken 

from [9]) 
 

For κ < 1/√2 , we have type I superconductors. In a type I superconductor, the applied 
magnetic field remains zero inside the superconductor until suddenly the superconductivity 
is destroyed when the strength of the applied field rises above a critical value  𝐻𝑐 .  

If κ > 1/√2, complete flux expulsion is no longer favorable and flux is allowed to penetrate 
the superconductor through cores known as vortices. This is a characteristic of type II 
superconductors.  

Type II superconductors get into a mixed state once the applied magnetic field is 
raised past a critical value 𝐻𝑐1 , in which an increasing amount of magnetic flux penetrates 
the material, but there remains a phase-coherence. This means that there exists a well 
defined phase-difference between the ends of a superconducting strip, for example. For 
small enough currents and sufficient “pinning” of the vortices, there is also zero resistance. 
At a second critical field 𝐻𝑐2 , the superconductivity is destroyed. 
Currents swirling around the normal cores generate magnetic fields parallel to the applied 
field. These tiny magnetic moments repel or attract each other and move to arrange 
themselves in an orderly array known as a fluxon lattice. This mixed phase helps to preserve 
superconductivity between 𝐻𝑐1 to 𝐻𝑐2. It is very important that these vortices do not move 
in response to magnetic currents if superconductors are to carry large currents. Vortex 
movement results in resistivity. If a vortex moves fast through the strip, it will leave a normal 
conducting trail behind.  
Another effect of current in superconducting strips is that wherever the vortex is, it feels a 
constant force that is pulling it to either side, depending on the current direction and its 
polarity.  

Each vortex carries a fixed unit of magnetic flux 𝜙0 = ℎ/2𝑒 and consists of a region of 
circulating supercurrent around a small normal conducting central core with radius ξ. The 
magnetic field is able to pass through the sample inside the vortex cores, and the circulating 
currents serve to screen out the magnetic field from the rest of the superconductor outside 
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the vortex. A schematic illustration of the distribution of the magnetic field and 
superconducting carriers near the vortex can be seen in figure 5. 

 

FIGURE 5: [2] Structure of an isolated Abrikosov vortex 
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3) Superconducting nanowire single-photon detectors 
(SNSPDs) 
 
3.1. Basic Principle 
 

Photon counts in a superconducting nanowire single-photon detector (SNSPD) are 
caused by the transition from a superconducting state with an applied current to the normal 
state. Even though the current detection models are not able to explain all experimental 
observations, there are a lot of indications that such a transition is triggered by vortices 
crossing the thin and narrow superconducting strip from one edge to another due to the 
Lorentz force [6]. 

According to [13], the typical SNSPD consists of a thin (~5 𝑛𝑚) and narrow 
(~100 𝑛𝑚) superconducting nanowire with the length typically of hundreds of 
micrometers, carrying a bias current I slightly below the critical current. The process is 
sketched in figure 6. The nanowire is maintained well below its critical temperature Tc (i). A 
photon is absorbed and results in a local disruption of the superconducting state that leads 
to a current redistribution(ii-iii). One way or another a complete cross-section becomes 
critical and switches into the normal state (iv-v), generating a measurable output voltage 
pulse across the strip on nanosecond time scales. One way this can happen is via the entry of 
a vortex and its movement across the strip. Measuring these voltage pulses, single photons 
can be detected and counted. 
After the normal belt of the strip cools down, the strip returns to the superconducting state 
(vi).  

 
FIGURE 6: The basic principle of a superconducting nanowire single-photon detector (taken from 

[13]) 

 
Similar voltage pulses can be recorded in the absence of photons, called dark counts, 

and this introduces an uncertainty in the counting of single photons.  
Vortex-assisted photon counts can happen here when the applied current decreases the 
potential energy barrier enough for a vortex to enter, and as a consequence of the Lorentz 
force acting on it, it crosses the belt releasing the energy 𝜙𝑜𝐼 [3]. For currents ≿ 0.6𝐼𝑐 , that 
is sufficient to create a normal belt across the entire width of the strip, extending to a few 
correlation lengths ξ along the strip. This process causes the transition from the 
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superconducting state of the strip to the normal state and induces a current redistribution 
accompanied by a measurable voltage pulse. 
It was shown in [3] that in a thin d (𝑑 ≾  𝜉 ≪  𝜆) , and narrow (𝑤 ≪  Λ) film the single-
vortex crossing has the lowest energy barrier of various processes that all lead to a resistive 
cross-section. For this case (𝑑 ≾  𝜉 ≪  𝜆)  we use the effective penetration depth Λ =
2𝜆2/𝑑  with London penetration depth 𝜆 and film thickness d. 
 
 

3.2. Numerical detection model in SNSPD 
 

The detection process in SNSPD may be divided into three steps: photon absorption, 
normal domain generation and electronic detection of the absorption event. The first and 
the last steps are well understood, but how the normal domain is generated is still not 
completely resolved. This thesis may add just a little bit towards how this domain may form 
by being able to simulate the influence of the magnetic field. In general, it is assumed that 
superconducting films are sufficiently thin so that the calculations can be restricted to two 
dimensions. 
The origin of the coordinate system is in the centre of a rectangular strip, with the x-axis 
pointing along the length of the strip and in the direction of the current flow, and the y-axis 
in the transverse direction. 

First, the photon is absorbed and the photon energy is converted into excitations of 
the superconductor. The assumption that [5] makes is that the whole photon energy is 
transferred to one single electron from the valence band. The excited electron is very 
energetic compared to the few meV of the superconducting gap. Quickly, it thermalizes, 
exciting many single electrons (by analogy to other excitations, even though they are real 
electrons, they are called quasiparticles) and phonons. Since all the phonons that are 
created are comparatively very energetic, the time-scales for them to find a new equilibrium 
at a higher temperature is much longer than the time it takes the quasiparticles to come to a 
quasi-equilibrium, so they are not considered at this stage.  
Another assumption of [5] is that the electronic system is in thermal equilibrium, so one can 
directly relate the quasiparticle density 𝑛𝑞𝑝 to the cooper pair density 𝑛𝑐𝑝 at a certain 

position. 
The number of superconducting electrons 𝑛𝑠 is two times the number of cooper pairs 

𝑛𝑐𝑝 , and normalized by the equilibrium situation 𝑛𝑠
0 where there is no quasiparticle yet and 

where thermally excited quasiparticles are neglected, we get: 
 

𝑛𝑠(𝒓)

𝑛𝑠
0 = 1 −

𝑛𝑞𝑝(𝒓. 𝑡)

𝑛𝑠
0  . 

 
How that evolves is given by diffusion. In the first picoseconds, the excited electron will be 
locally created,  and will scatter and diffuse according to: 
 

𝜕𝐶𝑒(𝒓, 𝑡)

𝜕𝑡
= 𝐷𝑒∇2𝐶𝑒(𝒓, 𝑡) 

 
with the probability density 𝐶𝑒(𝒓, 𝑡) to find it at a certain point at a certain time after the 
photon absorption. 
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And there, with a certain probability, it will create many new quasiparticles, more or less just 
above the superconducting gap. Once the quasiparticles are created, they will also diffuse, 
according to: 

𝜕𝐶𝑞𝑝(𝒓, 𝑡)

𝜕𝑡
= 𝐷𝑞𝑝∇2𝐶𝑞𝑝(𝒓, 𝑡) −

𝐶_𝑞𝑝 (𝒓, 𝑡)

𝜏𝑟
+

𝜁ℎ𝜈

𝛥𝜏𝑞𝑝
𝑒

−
𝑡

𝜏𝑞𝑝𝐶𝑒(𝒓, 𝑡) 

 
with the first term being the diffusion term, then the quasiparticle annihilation term that 
describes the recombination of quasiparticles to form Cooper-pairs , and the creation term, 
where the first electron with energy ℎ𝜈 can still create quasiparticles with the efficiency 𝜁 . 
Having the distributions of superconducting electrons , it is possible to calculate the 
inhomogeneous current distribution and the potential energy for the vortex. This allows one 
to determine what current is necessary to reduce it to zero, so that a vortex can enter with 
100% probability once a photon is absorbed, leaving a normal conducting electron trail 
behind and causing a voltage pulse. And for a vortex assisted photon count, that means 
100% detection probability. 
In this model, there are some limitations regarding the energy of the photon absorbed. The 
algorithm does not seem to work well for high energy photons that create fully normal 
conducting regions nor for situations when the current density approaches the depairing 
critical current density. 
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4) Applying a constant magnetic field 
 

So far, external parameters bias current 𝐼𝑏 and temperature T have been simulated in 
a 150 nm wide strip of different materials. Now, there is an important third external 
parameter that we are going to study: the magnetic field. 
Like the bias current, an applied magnetic field B reduces the edge barrier and additionally 
breaks the symmetry between vortices and anti-vortices. Overall, it means an increase of 
photon count rates.  
Here we simulated a strip of niobium nitride (NbN) superconductor, with an applied 
magnetic field perpendicular to it. The strip has a width of w = 150 𝑛𝑚 , thickness 𝑑 =
4 𝑛𝑚  and length 𝑙 = 1000 𝑛𝑚. Like in the previous model, the origin of the coordinate 
system is in the centre of a rectangular strip, with the x-axis pointing along the length of the 
strip and in the direction of the current flow, and the y-axis in the transverse direction.  
The first thing to do was to calculate the microscopic value of the magnetic flux density h in 
the strip.  
The inhomogeneous case, where a photon has been absorbed in the strip, cannot be solved 
analytically. The powerful software Matlab was used in this work to do all the numerical 
calculations. To simulate an infinitely long strip, in order to give us best result at the (0,y) 
positions that we want to measure, the 2 boundary conditions at the (-500,y) and (500,y) 
positions are Neumann boundary conditions , and the 2 boundary conditions at the (x,-75) 
and (x,75) positions are Dirichlet boundary conditions, setting the magnetic field to ℎ = 1 at 
the edges. Since it is better for our purposes, this h is the applied magnetic field H 
normalized by 𝐻0 = 𝜙0/2𝜇0𝑤2, with the vortex flux quantum 𝜙0 . So ℎ = 𝐻/𝐻0 = 1 
outside the strip. 
The distribution of the field inside the strip can be calculated using the equation (1), with the 
difference that now, because of the photon absorption of a given energy, the penetration 
depth (2) will be position and time dependent: 

∇2h(x, y, t) =
h(x, y, t)

λ(x, y, t)2
  , 

 

λ(x, y, t)2 =
m

μ0ns(x, y, t)e2
 . 

 
From the previous experiments from model [5], we have the position and time dependent 
areal density of superconducting electrons 𝑛𝑠,𝑎𝑟𝑒𝑎(𝑥, 𝑦, 𝑡), for the homogeneous case before 

photon absorption (time=0) and for many other instants in time up to 50 ps after photon 
absorption, when we have an inhomogeneous distribution of superconducting electrons. 
Here we will need the volume density, so 𝑛𝑠(𝑥, 𝑦, 𝑡) = 𝑛𝑠,𝑎𝑟𝑒𝑎(𝑥, 𝑦, 𝑡)/𝑑. 

Since all the length scales are in nanometers, it is convenient to also express the penetration 
depth in nanometers. So, converting from SI we get λ(x, y, t)2 in nm2: 
 

λ(x, y, t)2 =
m

400πns(x, y, t)e2
 

 
To show that this numerical method of calculating h gives us the correct results, we compare 
it with the exact results for the homogeneous case (t=0) using equation (4). 
As we can see in figure 7, there is almost perfect agreement between both methods. 
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FIGURE 7: Perpendicular magnetic field h=1 for an infinitely long and thin homogeneous 

superconducting nanowire. 

 
Next, we study the effect of the photon absorption on the penetration of the magnetic field 
inside the strip. 

 
FIGURE 8: Variation of the minimum magnetic field h in the middle of the strip, as a function of the 
(a) time after photon absorption at position y=0 and different wavelengths, and (b) time after 1500 

nm photon absorption at different positions. 

 
In Figure 8 we clearly see that when a photon that has been absorbed is more energetic, it 
creates more quasiparticles in the middle of the strip, allowing the external magnetic field to 
penetrate more. As the time passes, the quasiparticles diffuse, and tend to recombine into 
cooper pairs, returning to the homogeneous state. 
In figure 8 (b), the magnetic field in the middle of the strip was plotted. Therefore, the effect 
is strongest, when the photon is also absorbed in the center. When the photon is absorbed 
at the edge the quasiparticles have to diffuse towards the center and the opposite edge.  
Knowing the field distribution and using equation (7), we can calculate the current 
distribution coming from the applied magnetic field (Meissner current): 
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(∇ × h(x, y, t)) = j(x, y, t). 

And since we are interested in the sheet current density, we have to multiply j with the 
thickness d, 

js(x, y, t) = j(x, y, t)d . 
 

 
FIGURE 9: Sheet current density before photon absorption (homogeneous case). 

 
To get to the next step now, we need to determine what influence does the magnetic 

field have on the vortices entering or not. For that, we need to calculate the vortex potential 
energy. The Gibbs free energy or vortex potential energy is made of 3 contributions: the 
vortex self energy and the energy from the bias current, both already calculated, and the 
new energy resulting from the screening currents. Now basically the question here is: what 
influence does the magnetic field have on this vortex potential and in particular on the 
maximum (entry barrier for the vortex)?  To calculate the vortex potential energy from the 
current distributions calculated so far, we need the force density, that can be expressed as 
[2]: 

f(0, y, t) = js,x(0, y, t)𝜙0 . 

 
This gives the force, and the potential energy we calculate as the integral over the point of 
entry (0,75) to the position of a test vortex (0,y). Since 𝜙0 is constant, we obtain the result 
by simply integrating the current between the edge and the position of the test vortex. After 
that, to get the total potential energy, this just has to be added to the previously calculated 
results (vortex self energy and the energy from the bias current). 
In order to be compatible with the results format from the previous experiments from model 
[5], one still needs to multiply the results with H0/ε0 , where ε0 = 𝜙0

2𝑑/4𝜋𝜇0𝜆2 is the 
characteristic vortex energy in a thin film. 
The plots of the total vortex and anti-vortex potential energies can be seen in figures 10 and 
11. They are very consistent compared to the analytical results in [3]. 
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FIGURE 10: vortex potential energy in the homogeneous case (no photon absorbed yet), with (a) 

normalized bias current I=0.05 and varying applied magnetic field h and (b) applied magnetic field 
h=1 and varying normalized bias current I. In (c), we have the lines as plots from the analytical 

functions of [3], and we can see that our model matches almost perfectly. The line for h=0 and I/I0=0 
is the line of the vortex free energy, according to [3]. 

 
FIGURE 11: Anti-vortex potential energy in the homogeneous case (no photon absorbed yet), with (a) 

normalized bias current I=0.05 and varying applied magnetic field h and (b) applied magnetic field 
h=1 and varying normalized bias current I. 



17 
 

The results agree very well with [3] and [10], as we can see in figure 10 (c).This is the 
potential energy barrier that a vortex comming from the right would have to overcome in 
order to enter the superconducting strip. 
An anti-vortex would enter from the left and would have to overcome this potential energy 
barrier. As we can see, for the case of the anti-vortex, an increasing magnetic field would 
increase the potential barrier. 
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5) Vortex-entry barrier and threshold current 
 

For the simulations with magnetic field, the results of the experiments from model 
[5] for photons with wavelengths of 1000, 1300, 1400, 1500, 1600, 2000 and 3000 nm and 
various different bias currents at many different times are used, and the contributions of the 
magnetic fields  𝐻/𝐻0 = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 for the potential 
energy are added to it. For every magnetic field applied, the threshold current is 
determined, that is, the lowest current necessary to reduce the edge barrier to zero. 

 
FIGURE 12: Barrier height for vortex entry for the homogeneous case, as a function of (a) applied 
current I for a given applied magnetic field h and (b) applied magnetic field h for a given applied 

current I. 

 
From the plots in figure 12 we see that in the homogeneous case, where no photon has been 
absorbed yet, the energy barrier for a vortex to enter decreases with increasing applied 
current and magnetic field. As soon as this barrier becomes less than zero, vortices are 
expected to enter at a very high rate all along the strip, and that will lead ultimately to the 
destruction of the superconductivity. These points determine the experimental critical 
current. 

FIGURE 13: Barrier height for anti-vortex entry for the homogeneous case, as a function of (a) applied 
current I for a given applied magnetic field h and (b) applied magnetic field h for a given applied 

current I. 
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For the anti-vortex, we have that decreasing the magnetic field and increasing the applied 
current decreases the energy barrier. 
Exactly where the results are not reliable anymore depends on the photon energy, that is, 
how many quasiparticles are produced and how much the superconducting electron density 
is reduced. 
The more the potential energy is reduced, already at lower currents there will be situations 
where the velocity of the cooper pairs gets very close to the critical velocity at some part of 
the strip. So there will be strong non-linear effects and some parts may become normal 
conducting. 
As the current is increased, these superconducting electrons cannot carry more current. The 
way that the quasiparticle distribution is calculated in [5] cannot adequately handle this 
situation, and the level of systematic errors increases. 
For sufficiently low photon energies, things are handled very well, and we can determine the 
current where the potential is dropping below zero, that is, the threshold current for photon 
detection, with which there is a 100% probability of photon detection. 
Now we look at what happens when we do have photon absorption. No analytical formula 
exists for the non-homogeneous case. Here we have to use our numerical approach. 

 
FIGURE 14: Barrier height for vortex entry for: (a) I=0.3 and a 1000 nm photon absorbed at position 
y=70 nm, as a function of time and applied magnetic field; (b) h=1, I=0.3 and a photon absorbed at 

position y=70 nm, as a function of time and photon wavelength; (c) h=1, I=0.3 and a 1500 nm photon 
absorption, as a function of time and absorption position. 

 

In figure 14, we see the non-homogeneous case, where a photon of a given energy has been 
absorbed somewhere in the strip. Clearly, photons absorbed near the edge have much more 
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effect on decreasing the potential energy barrier. The maximal decrease of potential barrier 
is reached with a high energy photon absorbed near the edge that the vortex enters, in our 
case the positive edge. Increasing applied magnetic field or current lowers the barrier even 
more. For an anti-vortex, the maximal decrease of potential barrier is reached with a high 
energy photon being absorbed near the negative edge, decreasing applied magnetic field 
and increasing applied current. 
Because for an anti-vortex we have a higher potential barrier for a positive applied magnetic 
field, leads to a higher threshold current for the anti-vortex potential energy to drop below 
zero. 
But if for one photon absorption position the threshold current for an anti-vortex to enter is 
smaller than the threshold current for a vortex to enter,  we would have two domains, one 
where the vortex is most likely to enter, and on the other the anti-vortex.  
In figure 15 it is easy to see that the closer to the edge a photon is absorbed, the smaller is 
the current we have to apply for a vortex to enter, and consequently, to reach the highest 
photon detection efficiency.  

 
FIGURE 15: Scaled threshold current 𝐼𝑡/𝐼𝑐  , where 𝐼𝑐  is the depairing critical current , for applied 

magnetic field h=1, as a function of position of photon absorption and photon wavelength. 𝐼0 here is 
the current at which for that magnetic field of h=1, even without photon absorption, there will be 

vortices coming in (critical current of the strip for h=1). 

 
One observation is that the smaller the photon energy is, the further up the curve is shifted, 
and the bigger is the applied current needed to detect it. 
Another observation is that the curve seems to go down a lot near the edge compared to the 
center, therefore making the edges more sensitive to the detection of a photon than the 
center. This could be because in the center there is zero current from the magnetic field 
screening, and near the edges the current is strongest. 
Plotting the threshold current for one given 𝐻/𝐻0 as a function of photon energy for every 
photon absorption position gives us a very good linear relation for every position, as we can 
see in figure 16. Fitting a line through every set of points for one position, we see that all the 
interception terms seem to converge at one point. Taking an average gives us the point 𝐼0 , 
that is, the current as a function of 𝐻/𝐻0 where a vortex can enter even without photon 
absorption. The field dependent 𝐼0 can be seen in figure 17. 
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FIGURE 16: Plot of the threshold current as a function of photon energy and photon absorption 
position for (a) h=0.2, (b) h=0.6, (c) h=1, (d) h=2, (e) h=3 and (f) h=4. For clarity, only photon 

absorption positions up to y=-30 nm are plotted. The absorption positions are in nanometers and 
denote the difference to the center. 
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FIGURE 17: field dependent current 𝐼0, as a function of 𝐻/𝐻0 where a vortex can enter even without 

photon absorption. 

 
So now, we have a field dependent 𝐼0(𝐻). The points seem to be in a very good linear 
relation also, so fitting a line through them gives the 𝐼0 for which a vortex can enter without 
photon absorption and without an applied magnetic field, and that is: 𝐼0 = 0.79722. And it 
gives also the magnetic field for which a vortex can enter without photon absorption and 
without a bias current, and that is: /𝐻0  = 8.51258 . This agrees very well with [3] and [10]. 
Plotting the slopes as a function of 𝐻/𝐻0 for every position gives us figure 18. The relation 
again appears to be linear, so I fitted a line for each photon absorption position, and also 
plotted them to make it easier to read the graph.  

 
FIGURE 18: Slope of the linear relation between the threshold current and photon energy (as seen in 

figure 16), as a function of the applied magnetic field and photon absorption position. 

 
Most important to understand here is that there are two competing effects that lead to a 
change in the potential barrier: 
 
1. The reduction of 𝑛𝑆 results in an effectively larger penetration depth, thus a lower 
screening current density. This leads to an increase of the barrier for vortex entry. 
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2. We have a redistribution of screening current and bias current caused by the non-
homogeneous reduction of 𝑛𝑆, with the strongest increase near the absorption position 
(where and by how much exactly depends critically on the quasiparticle distribution). This 
leads to a decrease of the barrier for vortex entry. 
 
These two effects together mean that when the absorption happens relatively close to the 
edge, the current flowing in the narrow region between the absorption point and the edge is 
squeezed, leading to a relatively large increase of the current density.  
As we move away from the edges, this effect becomes increasingly less pronounced. But the 
overall reduction of the screening current is still there, and eventually, appears to be the 
dominant effect. 
This can be seen in figure 18. The closer to the edge a photon is absorbed, the steeper the 
slope becomes, so the stronger the threshold current will decrease as a function of applied 
magnetic field and photon energy.  
At position around 60, there seems to be no change in the slope for increasing applied 
magnetic field. This means, the two competing effects discussed are in equilibrium.  
At position 55 the linear relation changes sign, meaning that the threshold current would 
decrease for increasing photon energy and applied magnetic field.  

 
FIGURE 19: Threshold current as a function of applied magnetic field and photon wavelength, for a 

photon absorbed in (a) y=70 nm, (b) y=62 nm and (c) y=45 nm. 

 
One can also see that in figure 19 for fixed photon positions. Very close to the edge the lines 
diverge for increasing applied magnetic field. But at y=45, the lines seem to converge. 
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6) Conclusion 
 
In this thesis we numerically simulated the effect of various applied magnetic fields on the 
vortex assisted photon count of SNSPDs, for the homogeneous case, where no photon has 
been absorbed, and for the non-homogeneous case, where we have photons absorbed at 
various y positions across a 150 nm wide detector. 
As expected, an applied magnetic field reduces the potential barrier for a vortex to enter, 
leading to a detection event. We found out that the effect of the magnetic field also 
depends on the photon absorption position. We have a much greater influence of the 
magnetic field for photons absorbed near the edge of the detector strip, because of the 
current crowding effect around the position of maximum quasiparticles concentration 
created by the photon absorbed.  
This effect hasn’t been experimentally observed so far, but it could possibly be measured 
directly. There have been already measurements of the magnetic field effects for these 
detectors, but without the resolution of where particular photons have been absorbed. 
 In [18] they perform a numerical study of an idea of how to measure this position 
dependence, and in [19] they measured it successfully, using different light polarizations. It 
was done without the magnetic field. But it could be redone, in principal, with an applied 
magnetic field.  
The next step would be trying to relate these results to experimental measurements that 
have been done already. 
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