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1) Introduction

Superconducting nanowire single-photon detectors (SNSPDs) are very effective
detectors compared to other detector types, in terms of speed, low dark count rate and
photon energy range. These structures can be used to detect photons with much lower
energies compared to the semiconductor detectors, since the bandgap there tends to be of
the order of 1 eV. Assilicon single-photon detector cannot detect photons with wavelengths
greater than 1000 nm for example, because it has a bandgap of 1.5 eV. In most
semiconductor single-photon detectors, Fermi-excitations are necessary in order to detect a
photon. In superconductors, with the same photon energies, many more excitations are
created.

Potential applications of this technology are in the area of optical quantum
information, like the quantum key distribution [12], where a wider spectral range is needed,
with smaller dead time, small dark count rate, a great detection efficiency and low timing
jitter (variation in the time interval between the absorption of a photon and the generation
of an output electrical pulse from the detector), and the ability to resolve the photon
number, which is difficult with SNSPDs [12] since most of them can only distinguish between
zero or ‘one or more’ photon absorptions.

If an absorbed photon has enough energy to make the whole cross-section of the
SNSPD normal conducting, we will have a detection event. In general, it has to be assumed
that visible and near-infrared photons with energies of about 1 eV do not have sufficient
energy. In this case, there are many mechanism that have been discussed over the years that
can lead to a detection event. One possible mechanism, and the one that will be discussed in
this thesis, is that a photon absorbed anywhere in the strip can reduce the edge barrier so
much that a vortex will enter without additional thermal activation energy, and this will lead
to a photon count.

For these vortex-assisted photon counts, the photon count rate rises for increasing
applied current and has a plateau at higher currents near the critical current. It will be
assumed that a magnetic field perpendicular to the strip plane does not affect the formation
of hot spots by photons, but still increases the photon count rate.

The goal of this work is to define the minimal applied magnetic field necessary, given a bias
current, in order to have 100% probability of vortex crossing in the case of one photon
absorption of a given energy. That is, to be 100% sure that each single photon will be
detected for the vortex-assisted photon counts.

The detection process is actually not clear and under active investigation. Different models
have been proposed and the magnetic field dependence may help to differentiate between
models.



2) Physical Background

2.1. Basic Phenomena

Superconductivity is the name for the phenomenon of zero electrical resistance (R=0
Q) and perfect diamagnetism (x = -1) that occurs in certain materials when cooled below a
critical temperature T, that is material dependent.

It is characterized by the Meissner effect, a complete expulsion of magnetic field lines from
the inside of the superconductor. Not only that a magnetic field cannot enter the
superconductor, but also a field in an originally normal sample is expelled as it is cooled
below T,.

The superconducting state is defined by three very important factors: critical
temperature (T,), critical field (H.), and critical current density (j.). Each of these parameters
is dependent on the other two properties present. Maintaining the superconducting state
requires that the magnetic field, the current density, as well as the temperature, remain
below the critical values, all of which depend on the material. An illustration of a critical
surface formed by these three parameters can be seen in figure 1. When electrons form
Cooper pairs, they can share the same quantum wave-function or energy state. This results
in a lower energy state for the superconductor. T, and H, are values where it becomes
favorable for the electron pairs to break apart. The current density larger than the critical
value is forced to flow through normal material.

Magney:
dnet
A Fielg ©

sup&rconducting N 3
= —state ¢

Temperatu',e

Curreny

FIGURE 1: [9] Sketch of the critical surface that separates the superconducting from the normal state
in the parameter space span by temperature, magnetic field and current.

2.2. Discovery

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes. Three years
earlier he liquefied helium for the first time, and this gave him the refrigeration technique
required to reach very low temperatures of a few Kelvin. He was studying the resistance of
solid mercury at these temperatures, and observed that at a temperature of ~4.2 K, the
resistance abruptly disappeared. His original experimental measurements can be seenin
figure 2.



015 2

0.125 o

0.10

0.075

0.05 : |

0025 | : S '

1075 Q|
\

\
0.00 | \ ‘
4°00 410 420  4°30  4°40

FIGURE 2: The discovery of superconductivity by Kamerlingh Onnes [8]

2.3. Meissner effect

When a weak external magnetic field H is applied, and the superconductor is cooled
down below its critical temperature, the magnetic field is expelled. The Meissner effect does
not completely force out the field, but instead it penetrates the superconductor to a very
small distance, called the London penetration depth A, decaying exponentially to 0 within
the material. The typical penetration depth is on the order of 100 nm.

A phenomenological explanation was given by Fritz and Heinz London, who, modifying the
essential equations of electrodynamics, predicted that the magnetic field Hin a
superconductor decays exponentially from whatever value it possesses at the surface, with
penetration depth A.

V2H = i
e (1)
with
2 - gomc? __m
nee?  ponge? ’ (2)

where m is the mass of the superconducting carrier and ng the superconductor carrier
density.

The most important consequence is that electromagnetic fields are screened from
the interior of a bulk superconductor in a characteristic penetration depth A given by (2).
This is the characteristic length of the fall-off of a magnetic field due to surface currents.
For example, a magnetic field H parallel to the surface would decrease exponentially into the
interior of a bulk superconductor as

H(x) = H(0)e %
(3)

where x is measured from the surface.
For the case of a flat superconducting slab of finite thickness d in an applied magnetic

field H, , solving (1) with the boundary conditions that H = H,, at the 2 surfaces x = + % ,
one obtains a superposition of exponentials penetrating from both sides, so that



cosh(%)
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that is, H is reduced to a minimum value at the middle of the strip.

2.4. Ginzburg-Landau theory

In some cases, the Meissner effect is not absolute. In type Il superconductors,
magnetic flux can penetrate into the bulk of the material, but does so in discrete units of
¢o = h/2e, the magnetic flux quantum. In type | superconductors, there is some critical
field above which the entire sample goes normal-conducting.

There is no way to explain this using classical mechanics. So, a superconducting order
parameter ¥ (1) was introduced by Ginzburg and Landau in 1950 to describe the
superconducting properties, related to the density of superconducting electrons with
[P (1)|? < ng(r), where ¥(r) = 0if T > T, (the material is not superconducting) and
Y(r) + 0if T < T, (superconducting state).

In this theory, all characteristics and properties of superconductivity follow from the
Ginzburg-Landau free energy [2]:

'E 1 .uO“i IZ
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(5)
where f,, is the free energy in the normal state, @ and § temperature dependent
phenomenological parameters, m is the effective mass, e the electron charge, A the
electromagnetic vector potential and H an applied magnetic field.
By minimizing the free energy with respect to variations of the order parameter ¥, leads to
the Ginzburg-Landau equation:
2 1 ; 2w —

a¥ + B|¥| l}'+ﬁ(—th—2eA) Y=0. (6)
For this problem, now in connection with the magnetic field, Maxwell equations have to be
fulfilled:

VXH=]J. (7)

With boundary conditions that ¥ = 0 at the surface of the superconductor and that
in the most interior part we have ¥,,,, constant in the absence of a magnetic field that can
interfere with the superconducting effects (Simplified case with A = 0), we arrive at
A% nax + Bl¥max|*¥max = 0, with a trivial solution of ¥,,,,, = 0, which corresponds to the
normal state of the superconductor for temperatures T > T, and Ng oy = |Pnax|® =
—a/f =ay(T—-T.)/B forT <T.,.

Solving (6) for the one dimensional case leads to the coherence length €. The coherence
length is a measure of the shortest distance over which superconductivity may be
established. It is also a measure of the spatial variation of the density of superconducting
electrons. A small coherence length £ would mean that the density can change rapidly. One
consequence of its existence is that the boundary between a normal and superconducting
region cannot be sharp because the density of superconducting electrons can rise from zero
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in the normal region to its density ng only gradually over a distance equal to about the
coherence length. An illustration of the coherence length £ and the penetration depth A for
a type | superconductor can be seen in figure 3.

For a type Il superconductor, the penetration depth is greater than the coherence length.
The result is that it is thermodynamically favorable for the magnetic field to penetrate the
specimen.
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FIGURE 3: Schematic representation (taken from [7]) of the main superconducting parameters
coherence length € and penetration depth A for type | superconductors

The coherence length depends on the purity of the metal. If impurities are present, the
coherence length is reduced. If there are so many impurities and defects that the mean free
path o in the normal conducting state becomes smaller than the BSC coherence length, then
we have an effective coherence length:

E = vV EOO— )

where &, is the coherence length in a perfectly pure superconductor, and & the actual
measured coherence length in an impure metal or alloy.

Following from (2) by replacing ng by |¥|? and taking into account that the change in
Cooper-pairs is 2e, the penetration depth A can also be expressed as:

M = 4ue g

where yis the equilibrium value of the order parameter deep inside the superconductor in
the absence of an electromagnetic field.



2.5. Types of superconductors

As mentioned, superconductors can be divided into 2 classes according to how their
superconducting state breaks down with an high enough applied magnetic field and can be
classified by a single parameter, the Ginzburg-Laundau-parameter k = A/§ . The H-T diagram
for a bulk type | and Il superconductor is presented in figure 4.

normal
state mixed state
Meissner

state

Meissner
state

. ——
0 To T 0 To T

(a) type-1 (b) type-2

FIGURE 4: The H-T phase diagram of a single-gap (a) type | and (b) type Il superconductor. (Taken
from [9])

For k < 1/4/2, we have type | superconductors. In a type | superconductor, the applied
magnetic field remains zero inside the superconductor until suddenly the superconductivity
is destroyed when the strength of the applied field rises above a critical value H..

Ifk > 1/\/?, complete flux expulsion is no longer favorable and flux is allowed to penetrate
the superconductor through cores known as vortices. This is a characteristic of type Il
superconductors.

Type Il superconductors get into a mixed state once the applied magnetic field is
raised past a critical value H.; , in which an increasing amount of magnetic flux penetrates
the material, but there remains a phase-coherence. This means that there exists a well
defined phase-difference between the ends of a superconducting strip, for example. For
small enough currents and sufficient “pinning” of the vortices, there is also zero resistance.
At a second critical field H,, , the superconductivity is destroyed.

Currents swirling around the normal cores generate magnetic fields parallel to the applied
field. These tiny magnetic moments repel or attract each other and move to arrange
themselves in an orderly array known as a fluxon lattice. This mixed phase helps to preserve
superconductivity between H.; to H.,. It is very important that these vortices do not move
in response to magnetic currents if superconductors are to carry large currents. Vortex
movement results in resistivity. If a vortex moves fast through the strip, it will leave a normal
conducting trail behind.

Another effect of current in superconducting strips is that wherever the vortex is, it feels a
constant force that is pulling it to either side, depending on the current direction and its
polarity.

Each vortex carries a fixed unit of magnetic flux ¢, = h/2e and consists of a region of
circulating supercurrent around a small normal conducting central core with radius §. The
magnetic field is able to pass through the sample inside the vortex cores, and the circulating
currents serve to screen out the magnetic field from the rest of the superconductor outside
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the vortex. A schematic illustration of the distribution of the magnetic field and
superconducting carriers near the vortex can be seen in figure 5.

FIGURE 5: [2] Structure of an isolated Abrikosov vortex



3) Superconducting nanowire single-photon detectors
(SNSPDs)

3.1. Basic Principle

Photon counts in a superconducting nanowire single-photon detector (SNSPD) are
caused by the transition from a superconducting state with an applied current to the normal
state. Even though the current detection models are not able to explain all experimental
observations, there are a lot of indications that such a transition is triggered by vortices
crossing the thin and narrow superconducting strip from one edge to another due to the
Lorentz force [6].

According to [13], the typical SNSPD consists of a thin (~5 nm) and narrow
(~100 nm) superconducting nanowire with the length typically of hundreds of
micrometers, carrying a bias current / slightly below the critical current. The process is
sketched in figure 6. The nanowire is maintained well below its critical temperature T; (i). A
photon is absorbed and results in a local disruption of the superconducting state that leads
critical and switches into the normal state (iv-v), generating a measurable output voltage
pulse across the strip on nanosecond time scales. One way this can happen is via the entry of
a vortex and its movement across the strip. Measuring these voltage pulses, single photons
can be detected and counted.

After the normal belt of the strip cools down, the strip returns to the superconducting state

(vi).
(a)

-

/ - i) VA

| T, 1|f ¥
l {ii)

R

FIGURE 6: The basic principle of a superconducting nanowire single-photon detector (taken from
[13])
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Similar voltage pulses can be recorded in the absence of photons, called dark counts,
and this introduces an uncertainty in the counting of single photons.
Vortex-assisted photon counts can happen here when the applied current decreases the
potential energy barrier enough for a vortex to enter, and as a consequence of the Lorentz
force acting on it, it crosses the belt releasing the energy ¢, 1 [3]. For currents = 0.6/, , that
is sufficient to create a normal belt across the entire width of the strip, extending to a few
correlation lengths  along the strip. This process causes the transition from the
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superconducting state of the strip to the normal state and induces a current redistribution
accompanied by a measurable voltage pulse.

It was shown in [3] thatinathind (d S ¢ K A1), and narrow (w < A) film the single-
vortex crossing has the lowest energy barrier of various processes that all lead to a resistive
cross-section. For this case (d = & « A) we use the effective penetration depth A =
22?/d with London penetration depth A and film thickness d.

3.2. Numerical detection model in SNSPD

The detection process in SNSPD may be divided into three steps: photon absorption,
normal domain generation and electronic detection of the absorption event. The first and
the last steps are well understood, but how the normal domain is generated is still not
completely resolved. This thesis may add just a little bit towards how this domain may form
by being able to simulate the influence of the magnetic field. In general, it is assumed that
superconducting films are sufficiently thin so that the calculations can be restricted to two
dimensions.

The origin of the coordinate system is in the centre of a rectangular strip, with the x-axis
pointing along the length of the strip and in the direction of the current flow, and the y-axis
in the transverse direction.

First, the photon is absorbed and the photon energy is converted into excitations of
the superconductor. The assumption that [5] makes is that the whole photon energy is
transferred to one single electron from the valence band. The excited electron is very
energetic compared to the few meV of the superconducting gap. Quickly, it thermalizes,
exciting many single electrons (by analogy to other excitations, even though they are real
electrons, they are called quasiparticles) and phonons. Since all the phonons that are
created are comparatively very energetic, the time-scales for them to find a new equilibrium
at a higher temperature is much longer than the time it takes the quasiparticles to come to a
quasi-equilibrium, so they are not considered at this stage.

Another assumption of [5] is that the electronic system is in thermal equilibrium, so one can
directly relate the quasiparticle density n,, to the cooper pair density n., at a certain
position.

The number of superconducting electrons ng is two times the number of cooper pairs
N¢p , and normalized by the equilibrium situation n? where there is no quasiparticle yet and
where thermally excited quasiparticles are neglected, we get:

ng(r) . Ngp(r.t)
ng ng

How that evolves is given by diffusion. In the first picoseconds, the excited electron will be
locally created, and will scatter and diffuse according to:

aC,(r,t)

= DV?C.(r,0)

with the probability density C, (7, t) to find it at a certain point at a certain time after the
photon absorption.
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And there, with a certain probability, it will create many new quasiparticles, more or less just
above the superconducting gap. Once the quasiparticles are created, they will also diffuse,
according to:

aC,,(r,t C Tt hv -t
W) _ V2Cyp (1, t) — P ( )+( e TarC,(r,t)

ot T, AT

qap

with the first term being the diffusion term, then the quasiparticle annihilation term that
describes the recombination of quasiparticles to form Cooper-pairs , and the creation term,
where the first electron with energy hv can still create quasiparticles with the efficiency ¢ .
Having the distributions of superconducting electrons, it is possible to calculate the
inhomogeneous current distribution and the potential energy for the vortex. This allows one
to determine what current is necessary to reduce it to zero, so that a vortex can enter with
100% probability once a photon is absorbed, leaving a normal conducting electron trail
behind and causing a voltage pulse. And for a vortex assisted photon count, that means
100% detection probability.

In this model, there are some limitations regarding the energy of the photon absorbed. The
algorithm does not seem to work well for high energy photons that create fully normal
conducting regions nor for situations when the current density approaches the depairing
critical current density.

12



4) Applying a constant magnetic field

So far, external parameters bias current I, and temperature T have been simulated in
a 150 nm wide strip of different materials. Now, there is an important third external
parameter that we are going to study: the magnetic field.
Like the bias current, an applied magnetic field B reduces the edge barrier and additionally
breaks the symmetry between vortices and anti-vortices. Overall, it means an increase of
photon count rates.
Here we simulated a strip of niobium nitride (NbN) superconductor, with an applied
magnetic field perpendicular to it. The strip has a width of w = 150 nm, thickness d =
4 nm and length [ = 1000 nm. Like in the previous model, the origin of the coordinate
system is in the centre of a rectangular strip, with the x-axis pointing along the length of the
strip and in the direction of the current flow, and the y-axis in the transverse direction.
The first thing to do was to calculate the microscopic value of the magnetic flux density h in
the strip.
The inhomogeneous case, where a photon has been absorbed in the strip, cannot be solved
analytically. The powerful software Matlab was used in this work to do all the numerical
calculations. To simulate an infinitely long strip, in order to give us best result at the (0,y)
positions that we want to measure, the 2 boundary conditions at the (-500,y) and (500,y)
positions are Neumann boundary conditions , and the 2 boundary conditions at the (x,-75)
and (x,75) positions are Dirichlet boundary conditions, setting the magnetic fieldto h = 1 at
the edges. Since it is better for our purposes, this h is the applied magnetic field H
normalized by Hy = ¢o/2uow?, with the vortex flux quantum ¢, .Soh = H/H, = 1
outside the strip.
The distribution of the field inside the strip can be calculated using the equation (1), with the
difference that now, because of the photon absorption of a given energy, the penetration
depth (2) will be position and time dependent:

h(x,y,t)
2 =
V h(X, y, t) }\(X, y: t)z ’
m
Axy,0)? =

Mons(x,y, )e?

From the previous experiments from model [5], we have the position and time dependent
areal density of superconducting electrons ng 4,4 (x, y, t), for the homogeneous case before
photon absorption (time=0) and for many other instants in time up to 50 ps after photon
absorption, when we have an inhomogeneous distribution of superconducting electrons.
Here we will need the volume density, so ng(x, y,t) = ng greq (%, ¥, t)/d.

Since all the length scales are in nanometers, it is convenient to also express the penetration
depth in nanometers. So, converting from Sl we get A(x,y,t)? in nm?:

m
Axy,t)? =
400mng(X,y, t)e?

To show that this numerical method of calculating h gives us the correct results, we compare
it with the exact results for the homogeneous case (t=0) using equation (4).
As we can see in figure 7, there is almost perfect agreement between both methods.
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FIGURE 7: Perpendicular magnetic field h=1 for an infinitely long and thin homogeneous

superconducting nanowire.

Next, we study the effect of the photon absorption on the penetration of the magnetic field

inside the strip.
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FIGURE 8: Variation of the minimum magnetic field h in the middle of the strip, as a function of the
(a) time after photon absorption at position y=0 and different wavelengths, and (b) time after 1500
nm photon absorption at different positions.

In Figure 8 we clearly see that when a photon that has been absorbed is more energetic, it
creates more quasiparticles in the middle of the strip, allowing the external magnetic field to
penetrate more. As the time passes, the quasiparticles diffuse, and tend to recombine into

cooper pairs, returning to the homogeneous state.
In figure 8 (b), the magnetic field in the middle of the strip was plotted. Therefore, the effect

is strongest, when the photon is also absorbed in the center. When the photon is absorbed
at the edge the quasiparticles have to diffuse towards the center and the opposite edge.

Knowing the field distribution and using equation (7), we can calculate the current

distribution coming from the applied magnetic field (Meissner current):
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(V x h(x,y, t)) =j(xy,b).
And since we are interested in the sheet current density, we have to multiply j with the
thickness d,
jsxy ) =jkxyd.
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FIGURE 9: Sheet current density before photon absorption (homogeneous case).

To get to the next step now, we need to determine what influence does the magnetic
field have on the vortices entering or not. For that, we need to calculate the vortex potential
energy. The Gibbs free energy or vortex potential energy is made of 3 contributions: the
vortex self energy and the energy from the bias current, both already calculated, and the
new energy resulting from the screening currents. Now basically the question here is: what
influence does the magnetic field have on this vortex potential and in particular on the
maximum (entry barrier for the vortex)? To calculate the vortex potential energy from the
current distributions calculated so far, we need the force density, that can be expressed as
[2]:

f(O, y, t) = jS,X(OJ Yy, t)¢0 '

This gives the force, and the potential energy we calculate as the integral over the point of
entry (0,75) to the position of a test vortex (0,y). Since ¢, is constant, we obtain the result
by simply integrating the current between the edge and the position of the test vortex. After
that, to get the total potential energy, this just has to be added to the previously calculated
results (vortex self energy and the energy from the bias current).

In order to be compatible with the results format from the previous experiments from model
[5], one still needs to multiply the results with Hy /¢, , where g, = ¢p3d /41,2 is the
characteristic vortex energy in a thin film.

The plots of the total vortex and anti-vortex potential energies can be seen in figures 10 and
11. They are very consistent compared to the analytical results in [3].
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FIGURE 10: vortex potential energy in the homogeneous case (no photon absorbed yet), with (a)
normalized bias current 1=0.05 and varying applied magnetic field h and (b) applied magnetic field
h=1 and varying normalized bias current I. In (c), we have the lines as plots from the analytical
functions of [3], and we can see that our model matches almost perfectly. The line for h=0 and 1/1,=0
is the line of the vortex free energy, according to [3].
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The results agree very well with [3] and [10], as we can see in figure 10 (c).This is the
potential energy barrier that a vortex comming from the right would have to overcome in
order to enter the superconducting strip.

An anti-vortex would enter from the left and would have to overcome this potential energy

barrier. As we can see, for the case of the anti-vortex, an increasing magnetic field would
increase the potential barrier.
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5) Vortex-entry barrier and threshold current

For the simulations with magnetic field, the results of the experiments from model
[5] for photons with wavelengths of 1000, 1300, 1400, 1500, 1600, 2000 and 3000 nm and
various different bias currents at many different times are used, and the contributions of the
magnetic fields H/H, = 0.2,0.4,0.6,0.8,1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 for the potential
energy are added to it. For every magnetic field applied, the threshold current is
determined, that is, the lowest current necessary to reduce the edge barrier to zero.
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FIGURE 12: Barrier height for vortex entry for the homogeneous case, as a function of (a) applied
current | for a given applied magnetic field h and (b) applied magnetic field h for a given applied

current .

From the plots in figure 12 we see that in the homogeneous case, where no photon has been

absorbed yet, the energy barrier for a vortex to enter decreases with increasing applied
current and magnetic field. As soon as this barrier becomes less than zero, vortices are
expected to enter at a very high rate all along the strip, and that will lead ultimately to the
destruction of the superconductivity. These points determine the experimental critical

current.
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current l.
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For the anti-vortex, we have that decreasing the magnetic field and increasing the applied
current decreases the energy barrier.

Exactly where the results are not reliable anymore depends on the photon energy, that is,
how many quasiparticles are produced and how much the superconducting electron density
is reduced.

The more the potential energy is reduced, already at lower currents there will be situations
where the velocity of the cooper pairs gets very close to the critical velocity at some part of
the strip. So there will be strong non-linear effects and some parts may become normal
conducting.

As the current is increased, these superconducting electrons cannot carry more current. The
way that the quasiparticle distribution is calculated in [5] cannot adequately handle this
situation, and the level of systematic errors increases.

For sufficiently low photon energies, things are handled very well, and we can determine the
current where the potential is dropping below zero, that is, the threshold current for photon
detection, with which there is a 100% probability of photon detection.

Now we look at what happens when we do have photon absorption. No analytical formula
exists for the non-homogeneous case. Here we have to use our numerical approach.
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position y=70 nm, as a function of time and photon wavelength; (c) h=1, I=0.3 and a 1500 nm photon

absorption, as a function of time and absorption position.

In figure 14, we see the non-homogeneous case, where a photon of a given energy has been
absorbed somewhere in the strip. Clearly, photons absorbed near the edge have much more
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effect on decreasing the potential energy barrier. The maximal decrease of potential barrier
is reached with a high energy photon absorbed near the edge that the vortex enters, in our
case the positive edge. Increasing applied magnetic field or current lowers the barrier even
more. For an anti-vortex, the maximal decrease of potential barrier is reached with a high
energy photon being absorbed near the negative edge, decreasing applied magnetic field
and increasing applied current.

Because for an anti-vortex we have a higher potential barrier for a positive applied magnetic
field, leads to a higher threshold current for the anti-vortex potential energy to drop below
zero.

But if for one photon absorption position the threshold current for an anti-vortex to enter is
smaller than the threshold current for a vortex to enter, we would have two domains, one
where the vortex is most likely to enter, and on the other the anti-vortex.

In figure 15 it is easy to see that the closer to the edge a photon is absorbed, the smaller is
the current we have to apply for a vortex to enter, and consequently, to reach the highest
photon detection efficiency.
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FIGURE 15: Scaled threshold current I /I. , where I, is the depairing critical current , for applied
magnetic field h=1, as a function of position of photon absorption and photon wavelength. I here is
the current at which for that magnetic field of h=1, even without photon absorption, there will be
vortices coming in (critical current of the strip for h=1).

One observation is that the smaller the photon energy is, the further up the curve is shifted,
and the bigger is the applied current needed to detect it.

Another observation is that the curve seems to go down a lot near the edge compared to the
center, therefore making the edges more sensitive to the detection of a photon than the
center. This could be because in the center there is zero current from the magnetic field
screening, and near the edges the current is strongest.

Plotting the threshold current for one given H/H, as a function of photon energy for every
photon absorption position gives us a very good linear relation for every position, as we can
see in figure 16. Fitting a line through every set of points for one position, we see that all the
interception terms seem to converge at one point. Taking an average gives us the point [,
that is, the current as a function of H/H, where a vortex can enter even without photon
absorption. The field dependent I, can be seen in figure 17.
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So now, we have a field dependent [,(H). The points seem to be in a very good linear
relation also, so fitting a line through them gives the [, for which a vortex can enter without
photon absorption and without an applied magnetic field, and that is: [, = 0.79722. And it
gives also the magnetic field for which a vortex can enter without photon absorption and
without a bias current, and that is: /H, = 8.51258. This agrees very well with [3] and [10].
Plotting the slopes as a function of H/H,, for every position gives us figure 18. The relation
again appears to be linear, so | fitted a line for each photon absorption position, and also
plotted them to make it easier to read the graph.
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FIGURE 18: Slope of the linear relation between the threshold current and photon energy (as seen in
figure 16), as a function of the applied magnetic field and photon absorption position.

Most important to understand here is that there are two competing effects that lead to a
change in the potential barrier:

1. The reduction of ng results in an effectively larger penetration depth, thus a lower
screening current density. This leads to an increase of the barrier for vortex entry.
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2. We have a redistribution of screening current and bias current caused by the non-
homogeneous reduction of ng, with the strongest increase near the absorption position
(where and by how much exactly depends critically on the quasiparticle distribution). This
leads to a decrease of the barrier for vortex entry.

These two effects together mean that when the absorption happens relatively close to the
edge, the current flowing in the narrow region between the absorption point and the edge is
squeezed, leading to a relatively large increase of the current density.

As we move away from the edges, this effect becomes increasingly less pronounced. But the
overall reduction of the screening current is still there, and eventually, appears to be the
dominant effect.

This can be seen in figure 18. The closer to the edge a photon is absorbed, the steeper the
slope becomes, so the stronger the threshold current will decrease as a function of applied
magnetic field and photon energy.

At position around 60, there seems to be no change in the slope for increasing applied
magnetic field. This means, the two competing effects discussed are in equilibrium.

At position 55 the linear relation changes sign, meaning that the threshold current would
decrease for increasing photon energy and applied magnetic field.
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FIGURE 19: Threshold current as a function of applied magnetic field and photon wavelength, for a
photon absorbed in (a) y=70 nm, (b) y=62 nm and (c) y=45 nm.

+

One can also see that in figure 19 for fixed photon positions. Very close to the edge the lines
diverge for increasing applied magnetic field. But at y=45, the lines seem to converge.
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6) Conclusion

In this thesis we numerically simulated the effect of various applied magnetic fields on the
vortex assisted photon count of SNSPDs, for the homogeneous case, where no photon has
been absorbed, and for the non-homogeneous case, where we have photons absorbed at
various y positions across a 150 nm wide detector.

As expected, an applied magnetic field reduces the potential barrier for a vortex to enter,
leading to a detection event. We found out that the effect of the magnetic field also
depends on the photon absorption position. We have a much greater influence of the
magnetic field for photons absorbed near the edge of the detector strip, because of the
current crowding effect around the position of maximum quasiparticles concentration
created by the photon absorbed.

This effect hasn’t been experimentally observed so far, but it could possibly be measured
directly. There have been already measurements of the magnetic field effects for these
detectors, but without the resolution of where particular photons have been absorbed.

In [18] they perform a numerical study of an idea of how to measure this position
dependence, and in [19] they measured it successfully, using different light polarizations. It
was done without the magnetic field. But it could be redone, in principal, with an applied
magnetic field.

The next step would be trying to relate these results to experimental measurements that
have been done already.
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