
Electrostatic Field Simulations and
Low-Temperature Measurements for a
Xenon-based Dual-Phase Noble Gas

Dark Matter Detector

Elektrostatische Feldsimulationen und
Niedrig-Temperatur Messungen für

einen auf Xenon-basierenden
zwei-phasigen Dunkle Materie

Detektor
Master Thesis of

Julien Wulf

At the Department of Physics
Institute of Experimental Nuclear Physics (IEKP)

Reviewer: Prof. Dr. Guido Drexlin
Second reviewer: Prof. Dr. Wim de Boer
Advisors: Prof. Dr. Laura Baudis

Dr. Ferenc Glück
Dipl.-Phys. Daniel Hilk

Duration: 15. April 2013 – 14. April 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu





Declaration

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 14.04.2014

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Julien Wulf)





Summary

This work has been carried out within the DARWIN (dark matter WIMP search in noble
liquids) and XENON1T project. Before building up DARWIN, the XENON collaboration
constructs their first ton-scale dual phase detector XENON1T at the Gran Sasso National
Laboratory (LNGS) in Italy. Both projects aim to detect dark matter particles via nuclear
recoils in liquid noble gases.
A dark matter particle colliding with the liquid target material produces a light and a
charge signal. The prompt light signal (S1) is detected with photomultipliers, the ioniza-
tion electrons drift within the liquid volume from the interaction point to the liquid-gas
interface, guided by an electric field of order O(1 kV/m). At the liquid-gas interface they
get extracted into the gaseous phase via an electric field of order O(10 kV/m), where they
generate secondary scintillation light (S2), which is proportional to the charge signal. The
design of the time projection chamber (TPC) allows the precise three-dimensional recon-
struction of the interaction vertex. The ratio S2/S1 has a different value for electron recoils
(background) and nuclear recoils (signal) and can be used for background discrimination.
The electric fields in this kind of detectors are created by several electrodes. To ensure a
maximal homogeneous electrical field, the geometrical properties have to be investigated
in advance with detailed electric field simulations.

This work is subdivided into an experimental and theoretical part. The theoretical part
has been performed at the Karlsruhe Tritium Neutrino Experiment (KATRIN) of the
Karlruhe Institute of Technology. For this experiment, a global analysis and simulation
package called Kasper has been developed. It has been written primarily in C++, and
comprises of a number of semi-independent modules. One module is called KEMField,
which is a toolkit for solving electrostatic and magnetostatic fields from user-defined elec-
trode and magnet configurations. KEMField takes advantage of the boundary element
method (BEM), which is used to compute electrostatic fields and potentials from dis-
cretized charge densities.
The main goal of the first part of this thesis was to develop a new module for Kasper to be
able to perform electrostatic field simulations for different kinds of dual-phase detectors.
With this module the electrostatic design of the upcoming dark matter experiments, like
DARWIN, will be optimized. A first electrostatic simulation with this module was per-
formed with a realistic CAD-based XENON1T model. Within this simulation new field
routines had to be implemented into KEMField as well.

The experimental part has been performed at the XENON group of the University of
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vi 0. Summary

Zürich. The XENON group in Zürich works at the front line for the XENON1T project.
The group operates a 2 kg high-purity germanium (HPGe) spectrometer at the Gran Sasso
National Laboratory. It is used to screen the XENON1T detector and the shielding com-
ponents. Besides their activity at LNGS, they have several low temperature experiments
in their local laboratories at Zürich. One experiment is called MarmotXL. It is used espe-
cially for low temperature measurements of photomultipliers.
The main goal of the second part of this thesis was to make a detail study about a newly
developed amplifier in connection with the XENON1T photomultipliers. Therefore these
measurements have been performed at low temperature to guarantee the same condition
as in the XENON1T experiment. Using an additional amplifier for the PMT signal of
XENON1T will result in higher gains at lower voltages, which would allow for higher lin-
earity and lower power consumption. Also a new technique to stabilize the liquid-gaseous
xenon interface of a dual-phase detectors has been developed and tested. For both low
temperature measurements a special setup has been developed and installed inside the
MarmotXL setup.

The present thesis is organized as follows:

1. Introduction to Dark Matter Physics This first chapter will give a short intro-
duction into dark matter physics. Common techniques to detect dark matter will
be discussed as well. Also the best motivated dark matter particle candidate will be
explained.

2. Direct Detection of Dark Matter with a Dual-Phase Noble Gas Detector
In this chapter the function principle of dual-phase noble gas detectors are explained
on the basis of XENON1T. The excellent background reduction factor as well as the
role of the electric fields inside this kind of detectors will be emphasized.

3. Numerics and Algorithms of Electrostatic Field Simulations The tools and
algorithms, which have been used in context of this thesis, will be presented in this
chapter. Especially the boundary element method (BEM) and the Robin Hood solver
will be discussed in detail.

4. Validation of the Numerical Field Computation Program In this chapter a
simple plate capacitor and wire capacitor will be discussed. One of the goals of this
test is to show that the boundary element method has been successfully extended
for dielectrics. Another goal is to show that the BEM is more advantageous than
the finite element method (FEM) for large-scale geometries containing small-scale
structures. This chapter also shows the successful implementation of a parallelized
BEM solver into KEMField, which allows us now to calculate on modern parallelized
computing platforms.

5. Realization of a Electrostatic Field Computations for the XENON1T De-
tector This chapter will first introduce the new DARWIN module and its imple-
mentation into Kasper. With this new software component, simulations of large
dual phase detectors can be performed fast and precisely. To test the module, a
complex exact CAD-based model of the XENON1T detector has been implemented
and successfully simulated. The computation results will be discussed and the soft-
ware implementation of the new modules for dual phase TPCs into the KATRIN
software Kasper will be explained.

6. Low-Temperature Hardware Tests for the XENON1T Experiment This
chapter will show the performed hardware tests for XENON1T in Zürich. Especially
a low-temperature amplifier PMT test and a bell test will be discussed. The amplifier
PMT test has the goal to study the behaviour of the 3” Hamamatsu model R11410
PMT in connection with an newly developed amplifier. With the bell test a new
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technique to stabilize the liquid-gaseous interface of dual phase detectors will be
investigated. For these tests new experimental setups have been developed at the
MarmotXL detector. The setups and the results will be presented in this chapter.

7. Conclusion The last chapter gives a summary of the thesis and a short outlook.
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Zusammenfassung

Diese Arbeit wurde innerhalb des DARWIN (Dark Matter WIMP Search in Noble liquids)
und dem XENON1T Experiment durchgeführt. Das XENON1T Experiment befindet sich
zurzeit in der Aufbauphase am Gran Sasso National Laboratory (LNGS) in Italien und
wird nach seiner Fertigstellung der erste zwei-Phasen Dunkle Materie Detektor mit einem
sensitiven Volumen von über einer Tonne sein. Das DARWIN- Projekt hingegen befindet
sich zurzeit noch in der Planungs- und Entwicklungsphase, geleitet von einem Konsortium,
bestehend aus führenden Wissenschaftlern auf dem Gebiet der Dunklen Materie. Beide
Experimente haben das Ziel, Dunkle Materie direkt über eine Streuung an flüssigen Edel-
gasatomen zu detektieren.
Bei einer Streuung von der Dunklen Materie mit flüssigen Edelgasatomen werden dabei
Szintillationslicht und frei werdende Elektronen erzeugt. Das prompt erzeugte Szintil-
lationslicht (S1) wird mithilfe von Photomultipliern detektiert, die Elektronen hingegen
driften innerhalb des flüssigen Volumens, durch ein angelegtes elektrisches Feld von der
Größenordnung O(1 kV/m), vom Wechselwirkungspunkt zur flüssig-gasförmigen Gren-
zschicht. An der flüssig-gasförmigen Grenzschicht werden die Elektronen über ein elek-
trisches Feld von der Ordnung O(12 kV/m ) in die Gasphase extrahiert, wo sie ein zweites
Szintillationslichtsignal (S2) erzeugen. Dieses Szintillationslicht (S2) ist proportional zu
dem Ladungssignal. Das Design dieser Zeitprojektionskammer (TPC) erlaubt die präzise
dreidimensionale Rekonstruktion des Wechselwirkungspunktes. Das Verhältnis S2/S1 hat
einen unterschiedlichen Wert für eine Elektronen-Streuung (Hintergrund) und eine Kern-
Streuung (Signal) und kann aus diesem Grund für die Hintergrunddiskriminierung verwen-
det werden. Die elektrischen Felder in dieser Art von Detektoren werden durch mehrere
Elektroden erzeugt. Um ein maximal homogenes elektrische Feld im TPC sicherzustellen,
müssen die geometrischen Eigenschaften im Voraus mit detaillierten elektrostatischen Sim-
ulationen untersucht werden.

Diese Arbeit ist in einen experimentellen und theoretischen Teil untergliedert. Der the-
oretische Teil wurde dabei in der Gruppe des Karlsruher Tritium Neutrino Experiment
(KATRIN) am Karlsruhe Institute of Technology durchgeführt. Für das KATRIN Ex-
periment wurde ein globales Analyse und Simulations Paket namens Kasper entwickelt.
Es ist in der Programmiersprache C++ geschrieben und besteht aus einer Reihe von un-
abhängigen Modulen. Eines dieser Module heißt KEMField und ist ein leistungsfähiges
Programm zum Berechnen von elektrischen und magnetischen Feldern von beliebigen Ge-
ometrien. KEMField benutzt für diese Simulationen die Randelement Methode (BEM).
Dabei werden die elektrische Felder und Potentiale über diskretisierte Ladungsdichten
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x 0. Zusammenfassung

berechnet.
Das Ziel im ersten Teil dieser Arbeit war es ein neues Modul für Kasper zu entwickeln,
welches es ermöglicht, elektrostatische Simulationen für verschiedene zwei-Phasen Detek-
toren durchzuführen. Mit diesem neuem Modul kann die nächste Generation von Dunkle
Materie Detektoren hinsichtlich des elektromagnetischen Designs optimiert und analysiert
werden. Eine erste Simulation mit dem neu entwickelten Modul wurde für das XENON1T
Experiment erfolgreich durchgeführt.

Der experimentelle Teil dieser Arbeit wurde in der XENON Gruppe an der Universität
Zürich durchgeführt. Die XENON Gruppe in Zürich arbeitet an vorderster Front für das
XENON1T Projekt. Die Gruppe betreibt am Gran Sasso National Laboratory ein Halblei-
terdetektor bestehend aus 2 kg hochreinem Germanium (HPGe). Dieses wird verwendet,
um genau die Untergrundrate der verschiedenen Teile vom XENON1T Detektor zu bes-
timmen. Neben ihrer Tätigkeit am LNGS, hat die XENON Gruppe mehrere Experimente
in ihrem lokalen Labor in Zürich. Hier werden fundamentale Fragen für das XENON1T
Experiment nachgegangen. Dafür haben sie mehrere Tieftemperatur Teststände. Ein Test-
stand wird MarmotXL genannt und wird hauptsächlich für Tieftemperatur-Messungen von
Photomultipliern verwendet.
Das Ziel im zweiten Teil dieser Arbeit war es, einen neu entwickelten Verstärker für das
PMT Signal im XENON1T Experiment zu untersuchen. Diese Messungen wurden bei
tiefen Temperaturen am MarmotXL Detektor durchgeführt, um die Experimente bei gle-
ichen Bedingungen wie im XENON1T Experiment durchzuführen. Des Weiteren wurde
eine neue Technik entwickelt und getestet, um die flüssig-gas Grenzschicht in zwei-phasigen
Zeitprojektionskammern zu stabilisieren. Für beide niedrig-Temperaturmessungen wurde
ein eigens dafür entwickelt Messapparatur entwickelt und am MarmotXL in Betrieb genom-
men.
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1. Introduction to Dark Matter Physics

In the 20th century, several astronomical observations, such as studies of the rotational
velocity of spiral galaxies, the gravitational lensing effect and redshift measurements of
galaxy clusters, have discovered anomalies which can only been explained by assuming
a large amount of non-luminous matter or a modified theory of gravitation. This non-
luminous matter is called dark matter. The first pioneers in the research of dark matter
were Vera Rubin and Fritz Zwicky.
In our current understanding of the universe only ∼ 6% of the matter is baryonic, the other
94% matter is dark-energy (72%) and dark matter (∼ 24%) [BHS05]. The evidence that
dark matter is non-baryonic results from the nucleosynthesis and the cosmic microwave
background (CMB) [Oli03]. It also has to be weakly interacting supported by upper-limits
on the self-interaction from astrophysical observations.
This chapter will give a short overview of today’s questions of dark matter. Evidences and
predictions for dark matter will be discussed, followed by a presentation of possible dark
matter candidates. The chapter will be closed by an overview of the possibilities to detect
dark matter.

1.1. Observational Evidences for Dark Matter

The first observation of dark matter in our universe made Fritz Zwicky 1933 during his
study of galaxy clusters, in particular during redshift measurements of the Coma cluster
[Zwi33]. He used two different techniques to calculate the mass of the cluster. He took
advantage of the virial theorem to calculate the mass of the Coma cluster. The viral
theorem is the relation between the average total kinetic energy and the average total
gravitational potential for a stable, self-gravitating, spherical distribution of equal mass
objects [H.14]:

Mtot · v2

2
=
G ·M2

tot

4 ·Rtot
, (1.1)

where Mtot is the mass of the system consisting of N individual objects, Rtot the radius of
the system, v the average velocity and G the gravitational constant. By measuring the true
overall extent of the system Rtot and the mean square of the velocities of the individual
objects that comprise the system v, the virial mass of the system can be calculated as
follows:

1



2 1. Introduction to Dark Matter Physics

Mtot =
2 ·Rtot · v2

G
. (1.2)

The second technique to calculate the mass of the Coma cluster measures the luminosity
of the galaxies. In this case, the mass is defined by the mass–luminosity relation:

L ∝M3.33. (1.3)

The calculated mass from the virial theorem showed that there is more mass in the cluster
than seen by the mass–luminosity relation, which indicates the presence of large quantities
(>90%) of invisible mass. These measurements were also performed for 89 other galaxy
clusters. They all showed an average mass-to-light ratio of 230-250 [GBG+00].
Another evidence for dark matter has been found during the analysis of rotational curves
of stars and gas in disk galaxies by Vera Rubin [RF70]. For this analysis the redshift has
been measured as a function of the distance to the galactic center. The relation between
the circular velocity and mass is given by:

v(r) =

√
G ·M(r)

r
. (1.4)

The majority of luminous mass of the galaxy is located in the center. Hence it is ex-
pected that circular velocities of stars should scale as r−1/2. Nevertheless this is for the
most galaxies not the case. Figure 1.1 shows the circular velocity over the distance to
the galactic center of galaxy NGC 6503. It was observed that the rotational curves of the
most spiral galaxies are flat. But the stellar density falls of exponentially at large radii.
Therefore this indicates the existence of non-luminous matter, which is superimposed to
the luminous matter. To explain the behaviour of the rotational curves, a dark matter
halo with a mass density proportional to r2 was assumed [BBS91]. The sum of the visible

Figure 1.1.: The measured rotation curve of the galaxy NGC 6503. The rotational velocity
profiles for the individual components of gas, stars, and the dark matter halo
are shown, too. Figure taken from [BBS91].
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1.1. Observational Evidences for Dark Matter 3

(a) The gravitational lensing effect (b) The Bullet cluster

Figure 1.2.: (a) The gravitational lensing. The galaxy cluster acts as a lens for the light
coming from the galaxy behind it. (b) The Bullet cluster with two colliding
galaxy clusters. The dominant cluster mass is shown in blue. The hot gas
clouds of the clusters is shown in pink. This effect is explained by dark matter.
Figures modified from [NAS13].

matter in the disk, the hydrogen gas and the dark matter in the halo reproduces the ob-
served rotation curve.
An additional evidence for dark matter is the effect of gravitational lensing. A huge mass
collection like a galaxy or a galaxy cluster acts as a lens for the light emitted from a more
distant galaxy [Bar10]. Thereby multiple images of the background galaxy are visible.
Figure 1.2 illustrates this effect.
By observing collisions of galaxy clusters and using the gravitational lensing effect, dark
matter were observed. The gas clouds of the two clusters is heating up during the collision
and interacts electromagnetically, the hot gas clouds slow down and emit X-rays. The
stars and galaxies pass one by another without influences on each other and have different
dynamics during the collision compared to the hot interstellar gas. An example of this
type of collision is a collision inside the Bullet cluster (1E0657-558) shown in Figure 1.2.
The clouds of hot gas are far away from the parent clusters and are indicated in pink color.
The remaining clusters show a discrepancy in the gravitational lensing, indicated in blue,
which is explained with dark matter [CBG+06]. The Bullet cluster shows that most of the
mass in the cluster pair is in the form of collisionless dark matter.
Another popular evidence for dark matter is the cosmic microwave background (CMB).
The CMB is the radiation left over from an early stage in the development of the universe.
Approximatively 300.000 years after the Big Bang the universe cooled down so that pro-
tons and electrons have been able to combine to form neutral atoms. These atoms could no
longer absorb the thermal radiation and so the universe became transparent. The today’s
temperature spectrum of the CMB gives us information on the energy density at the time
of decoupling. The experiments COBE [Smo99], WMAP [B+13] and PLANCK [A+13a]
measured the CMB. With the data from WMAP it is possible to calculate the matter com-
position in our universe. The total matter density was measured to Λm = 0.266 ± 0.029
and the baryonic matter density was measured to Λb = 0.0449± 0.0028 [B+13].
By measuring astrophysical systems at sizes ranging from galactic to universal scales, the
standard cosmological model (ΛCDM) has been developed. In this model 4.6% of the
universe consists of baryonic matter, 23% consists of dark matter, which does not emits or
absorb light and the remaining 72% is the dark energy, which is responsible for the present
acceleration of the expansion of the universe [Dur11].

3



4 1. Introduction to Dark Matter Physics

1.2. Dark Matter Particle Candidates

A candidate for non-baryonic matter as dark matter is the neutrino [Ber00]. There is also
a relic neutrino background in the universe, similar to the CMB. Measurements of β-decay
showed an upper limit on neutrino mass to < 2.05 eV (95% C.L.) [F+98] [OW08].
The KATRIN experiment has the goal to determine the mass of the electron anti-neutrino
by examining the shape of the tritium-β-spectrum close to its endpoint. The experiment
will be able to to set an upper limit of the neutrino mass of 0.2 eV/c2 [Col04].
With this upper mass the relic Neutrinos from the Big Bang have a total density of
Λν < 0.07 [B+13]. This density is too small to be the dominate component of the dark
matter. On the other hand with Neutrinos as the main component of dark matter, the
large structure in the universe could not been explained. The neutrino component of dark
matter is also called hot dark matter, because these particles travelled with a relativistic
speed at the time of decoupling.
Another favoured candidate for dark matter is the weakly interacting particle (WIMP). It
is a thermal relic of the big bang and weakly interacting. Shortly after the Big Bang the
WIMPs were in thermal equilibrium with the rest of the universe. The Boltzmann equation
describes the time evolution of the density nχ of the WIMPs after the Big Bang [JKG96]:

dnχ
dt

+ 3Hnχ = −〈σAv〉 [(nχ)2 − (neqχ )2], (1.5)

where nχ is the density of χ particles, 〈σA · v〉 is the thermally averaged total cross section
for annihilation times the relative velocity and H = ȧ

a is the Hubble expansion rate. The
left side describes the density in an expanding universe. The first term in the brackets
describes the WIMP annihilation and the second term the WIMP creation. We see from
figure 1.3, if the rate of the annihilation drops below the expansion rate Γ = H, the WIMPs
stop to annihilate, fall out of equilibrium and the relic WIMPs remain. The present mass
density of the WIMPs in units of the critical density is given by [JKG96]

Figure 1.3.: The numerical solutions of the Boltzmann equaion. The equilibrium (solid
line) and actual (dashed lines) abundances per comoving volume are plotted
as a function of x = m

T . Figure taken from [JKG96]
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1.3. Detection Methods for Dark Matter 5

Λχh
2 =

mχnχ
ρc

=
3 · 10−27cm3s−1

〈σAv〉
, (1.6)

where ρc is the critical density and mχ the mass of the WIMP. The cross section for anni-
hilation σA becomes very small on the level of weak interaction. With the today’s observed
total density for Λχ, the mass for this hypothetical particle has a range from 1 GeV to 1
TeV.
The standard model of particle physics (SM) doesn’t consist of a possible WIMP candidate.
One of the best motivated particle is the Neutralino, which comes from the supersymmetry
theory (SUSY). SUSY is an extension of the standard model and unifies the three funda-
mental forces of nature (electromagnetic, weak, and strong nuclear interactions) [Bil01].
The Neutralino is the lightest supersymmetric particle (LSP), stable and weak interact-
ing. It is stable because of a new conserved quantum number, called R-parity in the SUSY
theory [JKG96]:

R = (−1)3B+L+2S , (1.7)

where B is the Baryon number, L is the Lepton number and S is the particle spin. Because
of the conserved R-parity, the supersymmetric particle is produced in pairs. Also a mixture
between SUSY particles and SM particles is not possible and heavy SUSY particles can
only decay in other SUSY particles [Lah07].

1.3. Detection Methods for Dark Matter

To confirm the theory of dark matter it is a major goal of experimental astro physicists to
detect possible dark matter candidates, like weakly interacting massive particles. Therefore
different kinds of techniques were developed to detect dark matter indirectly and directly.
The aim is also to study the properties of dark matter such as their mass, lifetime, and
coupling, in experiments at high energy particle colliders.

1.3.1. Indirect Detection

Dark matter can be detected indirectly by measuring the secondary particles produced by a
WIMP annihilation reaction. The particles of interest are γ-rays, Neutrinos, Positrons and
Antiprotons [BCP+13]. The annihilation rate is given by the following equation [JKG96]:

NAnn ∝ 〈σA · v〉
ρχ
mχ

. (1.8)

WIMP annihilation reactions are expected mainly in regions with a high dark matter
density, like the galatic center, the sun or in the dwarf galaxies.
To the detect the low energy γ-rays (<1TeV), space telescopes are used. The γ-rays will
interact with the matter via production of electron-positron pairs. After a conversion,
the trajectories of the resulting electron and positron are measured by particle tracking
detectors, and their energies are measured afterwards by a calorimeter [BUB98]. Such a
space telescope is the Fermi Large Area Telescope (LAT) [A+12b], which has been launched
into the orbit and is currently taking data.
To detect the high energy γ-rays (>100GeV), on-ground installed Cherenkov telescopes
are used. These telescopes observe the night sky for Cherenkov light emitted from charged
particles. The Cherenkov light is produced in the upper atmosphere (∝ 10km). Where an
high-energy (TeV) γ-ray may produce an electron-positron pair with an enormous velocity.
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6 1. Introduction to Dark Matter Physics

The Cherenkov radiation from these charged particles is used to determine the source and
intensity of the cosmic γ-ray. Examples of experiments are HESS [Bar13], MAGIC [A+11a]
and CTA [A+13d].
Further, Muon Neutrinos from a WIMP annihilation can be produced in the core of the
sun, which can escape and produce ultra relativistic Muons in terrestrial targets. These
Muons can be detected in large water- or ice-based neutrino telescopes, which detect
the produced Cherenkov light via photomultipliers. Examples of experiments are Super-
Kamiokande [KW11] and ICECube [A+12a].
To detect the positrons and antiprotons, particle detectors in the orbit are used. The
main components of such particle detector are a magnet with a silicon microstrip tracker
that provides momentum and the sign charge of the particle, a calorimeter for the energy
and lepton-hadron separation and a time of flight module (ToF) to measure the velocity
and charge of the particle. Examples of this kind experiments are AMS-02 [ILS14] and
PAMELA [A+13b].

1.3.2. Direct Detection

It is evident that our galaxy contains of another form of matter: The dark matter. We
should be able to detect these particles directly via their interactions with nuclei in ter-
restrial targets. A WIMP elastically scatters off a nucleus in the target material, causing
it to recoil [GW85]. The energy deposition can be transformed into a measurable signal,
such as scintillation light, charge or heat [JKG96].
There are several experiments which try to detect such an event. Figure 1.4 shows the
different experiments and their detection technique. The most experiments try to detect
two different signals to get a better background discrimination. This is necessary because
the expected event is very low and the background is very high. Qualitatively the expected
event Rate R can be calculated simply with the following formula [PRSZ09]:

R = nχNt 〈v〉σ, (1.9)

where R ist the event rate, Nt the number of target nuclei, nχ the local WIMP density, 〈v〉
is the average speed of the WIMP relative to the target and σ is the cross section for the
WIMP scattering averaged. More accurately, one should take into account the facts that
the WIMPs move within the halo with velocities determined by f(v), that the differential

Figure 1.4.: Measurable signals from particle interactions and a chart of experiments for
direct dark matter detection categorized by different measurement technique.
Figure taken from [Kis11].
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1.3. Detection Methods for Dark Matter 7

Figure 1.5.: The LUX 90% confidence limit on the spin-independent elastic WIMP-nucleon
cross section (blue). Also the results of Edelweiss II (dark yellow line),
CDMS-II (green line), ZEPLIN-III (magenta line), CDMSlite (dark green
line), XENON10 (brown line), SIMPLE (light blue line), XENON100 100 live-
day (orange line) and XENON100 225 live-day (red line) are shown. The inset
(same axis units) also shows the regions measured from annual modulation in
CoGeNT (light red, shaded), along with exclusion limits from low threshold
re-analysis of CDMS II data (upper green line), allowed region from CRESST-
II (yellow shaded) and DAMA/LIBRA allowed region. [D+13] Figure taken
from [D+13].

cross section depends through a form factor F and that detectors have a threshold energy
Et [JKG96].
The different experiments make a common assumption for the galactic dark matter profile
to make their results more comparable. They assume for the galactic dark matter pro-
file an isothermal profile with a flat rotation curve, a local density of 3 GeV/cm2 and a
Maxwell-Boltzmann velocity distribution.
In this context we have to shortly discuss the results of the DAMA/LIBRA experiment
who claims for the discovery of dark matter particles. They saw a modulation of the dif-
ferential event rate over the year. The earth’s motion around the sun results in an annual
modulation of the WIMP flux (φ = nχ · v) over the year because the earth’s speed relative
to the galactic rest is largest in summer and lowest in the winter. But this result is in
conflict with the null-results of other experiments. [BBC+13]
There are two different WIMP-nucleon interactions. For the studies of spin-independent
(scalar) interactions, heavy atoms are preferred as target material (σ ∝ A2). For spin-
dependent (axial-vector) interactions, where the WIMP is expected to couple to unpaired
nuclear spins J, the cross section is proportional to (σ ∝ J · (J + 1)) [Kis11].
The best spin-independent cross section in the world delivers experiments based on noble
elements. Using noble elements such as xenon and argon have several advantages. The el-
ements are not very expensive, have a relative high density and have high scintillation and
charge yields [Hit05]. XENON100 [E+12], WARP [B+05], LUX [A+13c] and ArDM [M+11]
are such experiments. These detectors are double phase detectors, which detect scintil-
lation and ionization signals. Figure 1.5 shows the current exclusion plot from different
experiments. The best exclusion limit in the world delivers LUX. The XENON1T [Apr12]
and DARWIN [Bau12] dark matter detector is the next generation of such a double phase
detector and have the aim to improve the exclusion limit. The detailed explanation of
XENON1T is covered in chapter 2.
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8 1. Introduction to Dark Matter Physics

1.3.3. Production of Dark Matter Particles in Collider Experiments

WIMPs can be produced in high energy particle accelerators. High energy colliders are
for example the Large Hadron Colider (LHC) and Tevatron [BFH10]. The advantage to
use such a collider is that they do not suffer from astrophysical uncertainties and they
are sensitive to small dark matter masses [Kis11]. In such a collider, supersymmetric
particles can be produced by either of two protons (LHC) or of a proton and anti-proton
(TEVATRON). Because of the conserved R-parity, the supersymmetric particle is produced
in pairs. The lightest supersymmetric particle is stable and can not decay in the detector
volume. Due to the very low cross section, the dark matter candidates appear as missing
energy [FHKT12]. But dark matter searches at high energy particle colliders must be
complemented by direct and indirect detection experiments. Even if a WIMP is discovered
in a collider, the existence of the galactic dark matter halo will still have to be proven by
other experiments.
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2. Direct Detection of Dark Matter with
a Dual-Phase Noble Gas Detector

The XENON1T experiment, which will be installed in the Laboratori Nazionali del Gran
Sasso (LNGS) is the third generation experiment within the XENON program. It follows
the XENON100 [E+12] experiment and it is designed to detect directly the dark matter via
nucleon-WIMP scattering. The latest results of the XENON100 experiment has provided a
limit of exclusion of the spin-independent WIMP-nucleon cross-section with the minimum
of 2 · 10−45 cm2 for a 55 GeV WIMP mass [A+12c]. The LUX experiment confirmed this
measurement and pushed this limit down to a minimum of 7.6·10−46 cm2 for 55 GeV WIMP
mass [D+13]. The aim of the XENON1T experiment is to reach a sensitivity of down to
2 · 10−47 cm2 in 2 years of operation. This sensitivity will be achieved by using a target
mass of 3 tons, a significant reduction of the background of one magnitude to XENON100
(10−4 events ·kg−1 ·day−1 ·keV −1) in the target volume and by using an innovative design
with a careful selection of the construction materials [Apr12] [Kis11] [A+11b]. XENON1T
is based on a dual phase time-projection chamber (TPC), providing information on the
3D vertex of particle interactions. This chapter gives an introduction into the XENON1T
experiment. The detection principle and the detector design will be explained more in
detail. The DARWIN project aims to build such a xenon detector on a multi-ton basis.

2.1. Function Principle of Dual-Phase Noble Gas Detectors

The XENON1T detector has the aim to measure the scintillation signal and the ionisation
signal of a nucleon-WIMP scattering. The target material is liquid xenon. The noble gas
xenon has many advantages for particle detection. It is an efficient and fast scintillator.
The high density of liquid xenon (3 g/cm3) provides a good self-shielding and a compact
detector geometry. The absence of long-lived radioactive isotopes ensures that an ultra-low
background level can be achieved [Kis11].
When a WIMP interacts with a xenon atom, the energy transfer is split between ionization,
excitation and heat. The scintillation light can be produced on two different ways. The
recoiled xenon atom gets excited, combines with another atom and produces an excited
diatomic molecule [JKG96]. In the subsequent de-excitation it releases a photon with a
wavelength of 178 nm, in the vacuum ultra-violet (VUV) region. Described by the following
equations:
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10 2. Direct Detection of Dark Matter with a Dual-Phase Noble Gas Detector

Figure 2.1.: Particle detection principle with the XENON1T detector. The WIMP scatters
at the xenon atom and creates a prompt scintillation light (S1). The ionization
electrons are removed from the interaction side with a drift field Ed, extracted
into the gas phase with an electric field Eg and there detected as scintillation
light (S2). Figure modified from [col14].

Xe∗ +Xe→ Xe∗2 (2.1)

Xe∗2 → 2Xe+ hν (2.2)

Also some of electron-ion pairs produced by ionization recombine and VUV photons are
also emitted through an excimer (excited dimer) when it decays back to the ground state.
Described by the following equations:

Xe+ +Xe→ Xe+2 (2.3)

Xe+2 + e− → Xe∗∗ +Xe (2.4)

Xe∗∗ → Xe∗ + heat (2.5)

Xe∗ +Xe→ Xe∗2 (2.6)

Xe∗2 → 2Xe+ hν (2.7)

The scintillation light has two components with different decay time constants. A fast
component with a decay time of 2.2 ns corresponding to the decay of the singlet state of
the excited dimer and a slow component with a decay time of 27 ns of the triplet state of
the excited dimer [DHK+02] [HTF+83]. Xenon atoms do not absorb their own scintillation
light, because the scintillation light comes from the decay of the excimer state.
Figure 2.1 shows a schematic description of a particle detection in the double phase xenon
detector XENON1T. The nucleon-WIMP scattering produces a prompt scintillation light
(S1) and gets detected by photomultiplier tubes (PMTs) on the top and bottom of the
target volume. With an applied electric field Ed across the liquid xenon target, some of the
ionization electrons are removed from the interaction site, do not recombine and can be
detected independently from the S1 light signal. These electrons are drifted and extracted
into the gas phase above the liquid xenon target, and accelerated with a high electric field
Eg, producing an electro-luminescence signal (S2) via collisions with xenon atoms, which
is detected by PMT arrays above and below the target volume.
WIMPs are expected to elastically scatter of xenon nuclei resulting in low energy nuclear
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2.2. Design of the Time Projection Chamber of the XENON1T Detector 11

recoils (NR). Neutrons with energies in MeV range passing through the detector also pro-
duce low energy nuclear recoils, whereas γ-rays and electrons produce electronic recoils
(ER). Because of the different dE

dx , the energy deposition of NR and ER results in different
probabilities of electron-ion pairs recombination, and thus different ratios of the yield of
scintillation light and ionization charge. The ratio of the primary (S1) and secondary
(S2) scintillation signals provides a possibility to distinguish electronic interactions (back-
ground) from nuclear recoils (signal), and to reject the electromagnetic background [A+14].
Also the time difference between the S1 and S2 signals provides information about on the
z-coordinate of the interaction. If a particle has deposited energy at multiple places in the
target, then two or more S2 pulses are recorded. Such an event is a multiple scatter event
and is rejected due to its very low scattering cross-section of the WIMPs. [Kis11]

2.2. Design of the Time Projection Chamber of the XENON1T
Detector

This section shows the design of the XENON1T detector. All informations are taken
from [Col10]. Other sources are marked.

2.2.1. Geometric Design of XENON1T

The XENON1T detector is projected to contain a total amount of three tons of liquid
xenon with a fiducial volume after cuts of 1 ton. This liquid xenon is inside the vac-
uum insulated cryostat made of low activity stainless steel [Col10]. Figure 2.2 shows the
current CAD-Drawing of the XENON1T detector. The TPC is defined by a structure
made of polytetrauoroethylene (PTFE, Teflon) and copper and is viewed by two arrays

Figure 2.2.: The CAD-Drawing of the XENON1T detector. The TPC is enclosed in a
vacuum insulated cryostat. The signal and high voltage cables for the PMTs
are installed through a main feed through at the top of the detector. For the
high voltage supply of the cathode a separate feed through is available. Figure
taken from [Jam14]
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12 2. Direct Detection of Dark Matter with a Dual-Phase Noble Gas Detector

of photomultiplier tubes (PMT). Teflon is used because of its low intrinsic radioactivity
and it is a good VUV light reflector [YDK+04]. Furthermore Teflon can be handled very
well in low-temperature experiments. One PMT array is installed in the liquid phase at
the bottom and the other is installed at the top in the gaseous phase. The bottom PMT
array should detect the S1 signal and the top PMT array should detect the S2 signal. In
order to increase the light collection efficiency, the active volume is limited by a PTFE
wall [Apr12]. All holders and walls are made of low radioactive PTFE.
The electrons which are created by the WIMP-nucleon scattering, drift upwards by an
electric field. This is created by a cathode and 76 field shaping rings made of cooper
(A. James, 2013, pers. comm.). At the cathode a voltage of −100 kV is applied and an
homogeneous electric field is generated by applying a potential difference across the field
shaping rings. The cathode consists of several parallel wires. In order to shield the bottom
PMT array from this electric field, an additional grounded parallel wire electrode is in-
stalled below the cathode. The gaseous phase for creation of the proportional scintillation
signal is maintained by using a ’diving bell’ system. The bell has a slight overpressure to
create a constant liquid-gaseous xenon interface. The liquid level can always been adjusted
by changing the pressure inside the bell. The height of the liquid level is measured via
several capacitive level meters. To extract the electrons across the liquid-gaseous interface
an extraction field is created by applying high voltage (4.5 kV ) on the anode. The anode
consists also of several parallel wires and is installed inside the diving bell. Two additional
parallel wire electrodes are installed below and above the anode and are kept at ground
potential in order to close the field cage (Gate) and shield the top PMT array from the high
electric field. The gap between the grounded electrode and the anode is 5 mm. The liquid
level is adjusted between these two electrodes, which gives us an extraction field of O( 12
keV
cm ). This field is high enough to obtain an extraction efficiency close to 100% [AGM+04].

The scintillation light S1 and S2 is detected by 250 (3”Hamamatsu model R11410) PMTs.
The top PMT array is inside the diving bell above the anode. The bottom PMT array
is installed below the cathode. Both PMTs arrays are installed with a support structure
made of PTFE. This support structure holds the PMTs and also increases the collection
efficiency of the scintillation light (A. James, 2013, pers. comm.).

2.2.2. Light Signal Readout with Photomultipliers

In order to detect the scintillation light S1 and S2 3”Hamamatsu model R11410 PMTs are
used in the XENON1T experiment [BBF+13]. Figure 2.3 shows the Hamamatsu R11410
PMTs and a schematic of a PMT. These PMTs are optimized with the supplier for low

(a) Hamamatsu model R11410 (b) Schematic of a PMT

Figure 2.3.: (a) The Hamamatsu model R11410 PMT. The pins at the bottom of the PMT
are for the power supply of the dynodes. Figure taken from [LAB+12]. (b) A
schematic of a PMT. The created photoelectron is multiplied by passing every
dynode stage. Figure taken from [COM14].
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2.2. Design of the Time Projection Chamber of the XENON1T Detector 13

temperature measurements.
The photocathode of the PMT is the negatively charged electrode, that is coated with
a photosensitive compound. When this is hit by a photon, the absorbed energy causes
electron emission due to the photoelectric effect. These electrons move directly towards
the electron multiplier, where electrons are multiplied by the process of secondary emis-
sion [cL07]. The electron multiplier consists of a number of other electrodes (dynodes).
Each dynode is held at a more positive voltage, than the previous one. The electrons
striking the first dynode, more low energy electrons are emitted, and these electrons in
turn are accelerated towards the second dynode. The geometry of the dynode chain is
such that a cascade occurs with an ever-increasing number of electrons being produced at
each stage. This large number of electrons reach the last dynode called anode, where we
can measure our signal. The metal body has the same potential as the cathode. So the
electrons are forced to go from dynode to dynode.
The R11410 10 photomultiplier tube is a vacuum device with a transparent synthetic silica
window and a with 12 stage box and linear-focused style dynode structure. The photocath-
odes, made of low temperature bialkali have a diameter of 76 mm. The dynode structure
allows for good collection efficiency, and pulse linearity. The dynodes and photocathode
are enclosed in a kovar metal body support structure with a ceramic stem and kovar leads.
Intended to be used in extremely low background experiments, the R11410-10 PMT is
made from very low radioactive materials. [LAB+12]

2.2.3. Shielding of the sensitive Volume against multiple Background
Sources

To shield the XENON1T detector against neutrons and muons during operation an enor-
mous water tank was installed at the laboratory Laboratori Nazionali del Gran Sasso.
The water tank is equipped with photosensors, which will act as a passive veto against
external neutron backgrounds, and as an active muon veto. The water tank with installed
photosensors acts as a Cherenkov detector. The water tank has a volume of 700 m3 and
the XENON1T detector will be installed in the center of the water tank. Figure 2.4 shows
a schematic of the water tank with the XENON1T detector inside. All materials for the
construction of the XENON1T detector and the support structure will be screened with
a low background Ge detector (’Gator’) in order to determine their intrinsic radioactiv-
ity [BFA+11].

Figure 2.4.: The water tank of the Xenon1T detector. A human is drawn to show the size
of the tank. Figure taken from [dS14].
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14 2. Direct Detection of Dark Matter with a Dual-Phase Noble Gas Detector

Germanium is used because of the low threshold. The Germanium detector acts like a
diode. Only a signal is measured when a electron-hole pair is created. The germanium
detectors must be cooled with liquid nitrogen temperatures, because at a higher temper-
atures the electrons can easily cross the band gap in the crystal and reach the conduction
band and produce too much electrical noise. Cooling to liquid nitrogen temperatures re-
duces thermal excitations of valence electrons so that only a gamma ray interaction can
give an electron the energy necessary to cross the band gap and reach the conduction band.
The measured activities will be used as an input information for Monte Carlo simulations
in order to predict the background from the detector and shield materials. Because of the
huge amount of materials it is planned to build up a second low background Ge detector
(’Gator-2’).

2.3. Scientific Goal of the XENON1T Dark Matter Experi-
ment

The aim of the XENON1T experiment is to reach a sensitivity of down to 2·10−47 cm2 with
2 years of operation. Figure 2.5 shows the expected exclusion plot with XENON1T. The
next generation of xenon based dark matter detector is already in the planing phase (DAR-
WIN/XENONnT) [Bau12]. In the next upcoming years the DARWIN detector should be
designed. If this detector will be based on the XENON1T detector a new kind of sim-
ulation software is needed to design such huge geometry. The electric fields and electric
potential is important for such a study to avoid field emission and to maintain an homo-
geneous field inside the TPC for a well local resolution. The next chapters shows the used
algorithms and developed simulation package for simulations of the upcoming huge dark
matter experiments.

Figure 2.5.: The expected sensitivity of the XENON1T detector (green line). Also the
sensitivity of LUX (red line) and XENON100 is drawn. Figure modified from
[RM14]
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3. Numerics and Algorithms of
Electrostatic Field Simulations

This chapter gives an overview of numerical computational methods for solving electro-
static problems. There are two common techniques: One is the boundary element method
(BEM) and the other is the finite element method (FEM). COMSOL Multiphysics, a com-
mercial simulation software, is based on the FEM.
Only the schematic to obtain the electric potential with the FEM will be shown in this
chapter. The BEM will be discussed in more detail, because our simulation package
KEMField [Gro] takes advantage of the BEM. We will use both techniques to solve simple
electrostatic problems in chapter 4 with and without dielectrics. For a complex simulation
of a dual-phase noble gas detector in chapter 5 we will only use KEMField, because his
calculation technique.

3.1. Numerical Solution Technique of Maxwell’s Equation
with the FEM

The finite element method is a numerical technique for finding a solution in a domain with
boundary values. Therefore we have to discretize the whole computational domain into N
finite elements to obtain the electric potential in the inner region. Common elements are
tetrahedral in three dimensions and triangles in two dimensions.
The electric potential inside one triangle can be described by the three corner potentials
of the triangle: φ1, φ2 φ3. For the case we have only one element the corner potentials are
well known. The electric potential inside the triangle is assumed with a linear function by
the following equation [Sta14]:

φtri(x, y) = c1 + c2 · x+ c3. · y (3.1)

x and y stands for the coordinates and c1, c2 and c3 are coefficients. The coefficients c1,
c2 and c3 can be expressed by the the corner potentials of the triangle. In this way we
obtain a linear equation system for the electric potential inside the triangle:

 φ1
φ2
φ3

 =

1 x1 y1
1 x2 y2
1 x3 y3

×
 c1
c2
c3

 (3.2)
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16 3. Numerics and Algorithms of Electrostatic Field Simulations

After solving for the coefficients we get the potential in one element in terms of the corner
potentials. Given by the following formula [FAL93]

φtri(x, y) = N1φ1 +N2φ2 +N3φ3. (3.3)

Where N1, N2 and N3 are defined interpolation functions from the solution of 3.2.
If we have more than one triangle, we have to set up a global matrix over an additional
condition. The calculation of the corner potentials of the triangles becomes then very
difficult [Sta14]. Also this matrix gets very huge for a fine discretization and solving this
for the node potential needs a large amount of computer memory.
This is a big disadvantage of the FEM. The discretization of the whole computational
domain requires a lot of elements.

3.2. Numerical Solution Technique of Maxwell’s Equation
with the BEM

For simulations of large geometries the finite element method is not practicable, because of
his huge amount of memory. With the BEM we have to discretize only the surface of the
electrodes into several subelements. It is assumed that every element i of the electrode has
a constant charge density σi and a potential Ui. The potential Ui is equal to the applied
potential U . This is called Dirichlet boundary condition. The potential Ui in the center
of the element i is given by the sum of the potential contributions of all other elements
j [Lei09].

Ui =

N∑
j=1

φij (3.4)

The voltages Ui are applied to the electrodes and is known. φij is the potential in the
midpoint of subelement i caused by subelement j and is given by:

φij =
σj

4πε0

∫
d2rj

1

|~ri − ~rj |
, (3.5)

where σj is the charge density of subelement j. After summing over all elements j in
equation (3.4) we get the following linear equation system:

Ui =

N∑
j=1

Cijσj , (3.6)

where Cij = Cj(ri) is the so called Coulomb-matrix-element. It can be seen as the electric
potential at the midpoint of subelement i caused by subelement j with constant charge
density [Lei09]. It is a geometrical factor given by:

Cj(~ri) =
1

4πε0

∫
d2rj

1

|~ri − ~rj |
. (3.7)

We solve equation (3.6) (Eq. (12) in [FLC+11]) for σ. With these charge distributions, the
electric potential due to the entire electrode configuration can be computed in all regions
of space over following formula:
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U(~r) =
1

4πε0

∑
j

σj

∫
d2rj

1

|~r − ~rj |
(3.8)

After differentiating numerically the electric potential we can obtain the electric field.

~E = −~∇U(~r) (3.9)

Or the field can be found analytically by the following formula:

~E =
1

4πε0

∑
j

σj

∫
dr2j

~r − ~rj
|~r − ~rj |3

(3.10)

With BEM we do not have to discretize the whole volume. This is a big advantage,
because we can compute a very large geometry without to getting out of memory due
to discretization of empty space. In the following section we extend this formalism for
dielectric materials.

3.2.1. Extension of the BEM to Dielectrics

For the DARWIN experiment we need to calculate the electrostatic potentials and electric
fields in the presence of dielectric media, because we didn’t implemented only conductive
surfaces. For dielectric media surfaces can not be treated as an equipotential. So we have
to derive a solution to integrate dielectrics into the boundary element method. First we
focus on the boundary condition at the insulator-insulator interface. The displacement
vector ~D is continuous across the surface. If this surface is the boundary between two
dielectric materials, then the Maxwell’s boundary condition is valid [Gri07]. This is called
Neumann boundary condition:

ε+i
~E+
i · ~ni − ε

−
i
~E−i · ~ni = 0, (3.11)

where ε± is the permittivity above and below the surface of the subelement i, ~E±i is the
electric field at the sub-element i and ~ni is the surface normal vector of the interface.
The boundary condition can be easily expressed in a matrix equation, just as we did for
the scalar potential. So the electrostatic problem in presence of dielectrics is a mixture of
dielectric and conducting surfaces, as long as one calculates all contributions to the electric
field and electric potential when evaluating the appropriate matrix elements [FLC+11].

3.3. Discussion of the Input Geometry of possible Electro-
static Problems

To take advantage of the BEM we have to discretize the electrode surfaces into subelements
or called primitives, that have a fixed charge density. For the DARWIN and XENON1T
implementation wire segments, rectangles and triangles were used.

3.3.1. Wire Segments

A wire segment is defined by its endpoint ~x1, ~x2 and by its diameter d. The following
derivation of the electric potential is performed under the assumption that d is small
compared to the distance between the field point and the wire segment. In addition every
wire segment is assumed to have a constant charge density λ. We define the following
scalars x1 = |~x1 − ~x0| and x2 = |~x2 − ~x0|. So an infinitesimal potential is given by
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18 3. Numerics and Algorithms of Electrostatic Field Simulations

Figure 3.1.: A charged line segment with endpoints ~x1 and ~x2 and charge density λ, and a
field point P with distance z from the line segment. Figure taken form [Cor91].

dV =
1

4πε0
· dQ
r

=
1

4πε0
· λ · dx√

x2 + z2
(3.12)

Integrating from x1 to x2 leads to.

V =
λ

4πε0
log

(
x2 + r2
x1 + r1

)
(3.13)

To increase the computational time the equation will be simplified by substituting L =
|~x1 − ~x2| (the length of the wire segment) we get the electric potential [Cor91]:

V =
λ

4πε0
log

(
r1 + r2 + L

r1 + r2 − L

)
. (3.14)

Now we have an equation for the electric potential of a wire segment in terms of the length
l and the distance r1 and r2.

3.3.2. Rectangular Subelements

We define a rectangle sub-element by the position of its corner P0, its side lengths a and
b and the unit vectors defining along the sides of the rectangle. Using the coordinates in
Figure 3.2 and the substituting x = u − up, y = v − vp the electric potential from the
rectangle with constant surface charge density σ is given by the following equation:

V (~P ) =
σ

4πε0

∫ −up+a
−up

∫ −vp+b
−vp

1

χ
· dx · dy, (3.15)

with χ =
√
x2 + y2 + w2

p. After integrating this equation we get the final analytic solution

[Cor91]:

V (~P ) =
σ

4πε0
· (I2((−up + a), (−vp + b), wp)− I2(−up, (−vp + b), wp)

− I2((−up + a),−vp, wp) + I2(−up,−vp, wp)),
(3.16)

with I2(x, y, z) = z arctan
(
x
z

)
− z arctan

(
xy
zχ

)
− x+ y log (x+ χ+ x) log (y + χ).
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Figure 3.2.: A rectangular subelement defined by the position of a corner P0, the lengths
of the sides a and b, and the unit vectors in the directions of sides a and b.
The field point is defined as P , with local coordinates (up, vp, wp). A point Q
located on the surface of the sub-element is shown, with local coordinates (u,
v, 0). The distance between P and Q is χ. Figure taken from [Cor91].

3.3.3. Triangular Subelements

We define a right triangular subelement by the point ~P0, the lengths of its sides a and
b and the unit vectors defining its sides. Using the coordinates in Figure 3.3 we get the
integral equation for the potential of a triangle with the surface density σ.

V =
σ

4πε0

∫ y2

y1

∫ c+my

x1

1√
x2 + y2 + z2

· dx · dy, (3.17)

with c = x2y2+x1y1
y2−y1 and m = x2−x1

y2−y1 . The analytic solution of equation 3.17 is quite
complex. After using a common table of integrals and pre-computed indefinite integrals
we get [Cor91]:

V =
σ

4πε0
· z[I3(a′, b, u2)− I3(a′, b, u1)− I4(x′1, u2) + I4(x

′
1, u1)], (3.18)

Figure 3.3.: A right triangular subelement defined by the position of the corner point P0,
the lengths of the sides a and b, and the unit vectors along the sides. The
field point is defined as P , with local coordinates (0, 0, z). Figure taken
from [Cor91].
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with I3(a, b, u) =
∫
arcsinh

(
a+bu√
u2+1

)
·du , I4(x, u) =

∫
arcsinh( x√

u2+1
) ·du, a′ = a

z , u = y
z ,

u1 = y1
z , u2 = y2

z and x′1 = x1
z .

For complex geometries we also need non right triangles. The calculation of the potential
of a non right triangle can be found in [FLC+11]. With triangles it should be possible to
create every kind of geometry but the computational time using triangles as subelements
is much higher than with rectangles. All these subelements and their calculation routines
have been implemented into the simulation module KEMField by T.J. Corona. Also the
electric fields of all subelements are calculated analytically as well.

3.4. Solving Techniques for the Charge Densities with the
BEM

There are two methods to solve equation (3.6) for σ. The most well-known is the method
of Gaussian elimination. This method is slow and needs a lot of memory, because we have
to solve a N ×N huge equation system. N stands for the number of elements. The need
of memory depends quadratically of N (O(N2)).
Another method to solve equation (3.6) is the Robin Hood method. It calculates σ with
a trick. We randomize the individual charge distribution for each element i. If there is a
potential imbalance on the surface, charges we moved and swap until the proper potential
on the surface is reached [LvA06]. Fiqure 3.4 shows a flow chart of the algorithm. So we
get the charge distributions σ.
Consider a sphere held at a fixed potential U0. We divide this sphere in smaller sub-
elements and then randomize the charges on the sub-elements. Once the potential is

Figure 3.4.: Flow chart of the Robin Hood algorithm.
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3.4. Solving Techniques for the Charge Densities with the BEM 21

evaluated at each sub element, the algorithm then performs a search for the two elements
that differ most from the equipotential surface (m and n). The equipotential condition
forces that these two elements have the same potential. So a small amount of charge has
to move to these subelements to reach the equipotential surface. This case is given by the
following equation.

U0 = Um + δσm · Cmm + δσn · Cmn (3.19)

U0 = Un + δσn · Cnn + δσm · Cnm, (3.20)

where U0 is the applied potential, Um,n the current potential of the subelement, δσn,m the
exchanged charge density of the subelement and Cji the Coulomb-matrix-element. Because
the sphere is in contact with a external source, we do not have charge conservation. Solving
this equation system gives us the shift of charges between the two electrodes. It is given
by the following equation:

δσ′m =
(U0 − Um)Cnn − (U0 − Un)Cmn

CmmCnn − CmnCnm
(3.21)

δσ′n =
(U0 − Un)Cmm − (U0 − Um)Cnm

CmmCnn − CmnCnm
. (3.22)

The potential for every sub-element is subsequently updated to reflect the new charge
configuration. The method said to converge once the maximum and minimum values of
the potential of all individual electrode is below some user-defined value [FLC+11]:

η =
Ui − U0

U0
, (3.23)

where Ui is the potential of a subelement and η is set by the user. Instead of solving N×N
equation system we have now to solve only N · 2× 2 equation systems.
For the KEMField implementation only a small amount of charge has to move to one
element to reach the equipotential surface. It showed that the computational time for
changing the charge of one element is the best. The potential of a subelement i is given
by following formula:

Ui = σiCii +
∑
j 6=i

Cijσj (3.24)

This leads us to the shift of the charge of one element to get the Potential U0:

σn = (U0 −
∑
j 6=i

Cijσj)/Cii (3.25)

This method is very quick and does not need a large amount of memory. The need of
memory depends linearly of the subelements N(O(N)). Also the iteration number increases
logarithmically with the relative potential accuracy. The iteration number depends linearly
with the discretization of subelements and the computational time goes quadratically with
the number of subelements. [FLC+11]
In the next chapter an intensive study on our simulation package KEMField is presented.
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4. Validation of the Numerical Field
Computation Program

In this chapter we investigate our electrostatic simulation tool KEMField intensively by
computing electrostatic quantities for several test models. Also an analytically solvable
electrostatic problem in multiple media will be discussed. The first one is a simple plate
capacitor and the second one a more complex wire capacitor. Both capacitors are installed
within a box with walls hold on zero potential. The goal is to verify and to test the program
KEMField against analytical results and commercial software (COMSOL). Furthermore
the computation time of KEMField is tested on several computing platforms.

4.1. Geometry of the investigated Problems

The geometrical center of the box is located at the position x = y = z = 0. All other
position vectors are given relatively to that point. We test these geometries in vacuum
and within two dielectric media. For the relative permittivity we take the values for
liquid (εl ≈ 2) and gaseous (εg ≈ 1) xenon. Every side of the box has a height of 40
cm. For the test with dielectrics we fill the the bottom half of the box with liquid xenon
and the upper half with gaseous xenon. The box and the liquid gaseous boundary are
discretized with rectangle-primitives, which have been discussed in subsection 3.3.2. The
discretization scale for the box and the boundary has been chosen high enough to not lose
some accuracy.
The first geometry inside the box is a simple plate capacitor. The plate capacitor is made
of two square plates. Both square plates have a length and a width of 0.276 m without
a thickness. The center of the first square plate is installed at the position (0, 0,−0.01)
and the center of the second square plate is installed at the position (0, 0, 0.01). Hence
we constructed a plate capacitor with a distance of d = 0.02 m. The potential of the
upper plate (cathode) is Ucath = 1500 V and the potential of the bottom plate (anode) is
Uan = −500 V. The plates are discretized by rectangular primitives.
The type of capacitor consists of 52 wires. Each wire has a diameter of 0.001 m and a
length of 0.276 m. There are two layers (cathode and anode) and each layer consists of
26 wires with a gap of 0.01 m in x-direction. The distance between the upper layer and
the bottom layer is 0.19 m. The space between the last wires and the zero potential box
is 0.062 m. The length of the layer in y-direction is 0.276 m. The potential of the upper
wires (anode) is 1500 V and the potential of the bottom wires (cathode) is −500 V. The
wires are discretized with wire segments, which have been described in subsection 3.3.1.
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24 4. Validation of the Numerical Field Computation Program

Both geometries and the zero potential box can be found in the appendix A.
The geometries were discretized with a special for this test developed C++ program,
which uses KEMField for the calculation of the charge densities and the electric fields
and electric potentials. The region of interest can be chosen in this program to get the
physical output in ROOT [BR97]. The program is available in the Kasper package, called
”TestDielectrics.cc” and the code will be not discussed in context of this thesis.

4.2. Results of the Test Computations

For all simulations we calculate the electric field component Ez, the potential φ and the
electric displacement component Dz along the z-axis, at the position y = x = 0. The
discussion focuses on the region from z = −0.01 to z = 0.01. The simulation of the
charge densities were performed until the rectangles achieve a relative accuracy of 10−8,
as described in subsection 3.4.

4.2.1. Analytical Results

For an infinitely large plate capacitor without a dielectric medium we expect following
result for the electric field according to the well known analytical formula:

E =
U

d
. (4.1)

The electric potential φ is given by equation:

φ =
U

d
· z + c0. (4.2)

In our case the distance between the plates is 0.2 m and the voltage -2000 V. We obtain
an electric field of E = −100000 V/m.

To obtain an analytical formula for a two phase plate capacitor we have to consider ad-
ditional boundary conditions. The parallel component of the electric field ~E|| has to be
continuous through the interface. This relation comes from the conservative property of
the field over a dielectric interface (

∮
~E · d~L = 0).

~E1,|| = ~E2,|| (4.3)

In our case, ~E1,|| is the parallel component of the electric field in liquid xenon and ~E2,|| is
the parallel component of the electric field in gaseous xenon. The vertical component of
the electric field ~E⊥ isn’t continuous through the interface. The relation can be calculated
with the Gauss’ law over a closed surface centered around the interface:

E1,⊥ · ε1 = E2,⊥ · ε2, (4.4)

where ε1 and ε2 are the permitivities of liquid and gaseous xenon. In a plate capacitor
with infinitely large plates we only get an electric field in z-direction, so our total sum of
the voltage is given by following equation:

U = E1,z · d1 + E2,z · d2. (4.5)
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4.2. Results of the Test Computations 25

Solving equations (4.4) and (4.5) leads to following expressions of the the electric field in
liquid and gaseous xenon.

E1,z =
U

3 · d2
(4.6)

E2,z = E1,z ·
ε1
ε2

(4.7)

By plugging in the corresponding values for U = −2000 V, d2 = 0.01 m and the cor-
responding dielectric constants, we expect an electric field of E1

z = −6666.6 V/m and
E2
z = −13333.3 V/m.

These calculations are valid for an infinitely large plate capacitor. Hence we expect differ-
ences between the analytical solution and the simulated values especially at the edges of
the plate capacitor.
For complex wire capacitors it is not possible to compute an analytical solution.

4.2.2. Results of a numerically computed Plate Capacitor

Figure 4.1 shows a plot of the calculated electric field in vacuum and in gaseous/liquid
xenon, calculated with KEMField. The corresponding electric potentials can be found in
the appendix B. We see that the electric field of a vacuum plate capacitor in vacuum is
constant. For a dual phase plate capacitor the electric field is also constant, but there is a
jump in the electric field Ez at the interface. The electric field is different for the gaseous
phase and the liquid phase, because the value of the electric field depends on the electric
permittivity. This is an expected result and has been calculated analytical in 4.2.1 .
We compared the result of KEMField with the analytical solution in 4.2.1 and COMSOL
Multiphysics, a commercial simulation software. This software is based on the finite ele-
ment method (FEM) described in chapter 3. We build up the same geometry in COMSOL
and calculated the electric field Ez and the potential φ at the same points. For the im-
plementation of the geometry into COMSOL we need a closed computational domain,

Figure 4.1.: The electric field in vacuum and in liquid/gaseous xenon. The red points
indicate computed values in vacuum, and the green points in liquid/gaseous
xenon.
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26 4. Validation of the Numerical Field Computation Program

because of the FEM. Therefore we took two boxes, set the dielectric properties for every
box and installed the plate capacitor over the interface. For the simulation we discretized
the domain with tetrahedrals. The meshing is performed by COMSOL and limited by the
user.
Figure 4.2 shows the difference of the electric field Ez between COMSOL and our field
programm KEMField in vacuum and with dielectrics. Also the relative error for COMSOL
and KEMField has been calculated. The calculated relative error for a vaccum plate ca-
pacitor and a dual phase plate capacitor can be found in the appendix B. The relative
error f is defined as follows:

f =
xs − xa
xa

. (4.8)

xs is the value from the simulation and xa is the value from the analytical solution. To
get the percentage error we have only to multiply the last equation by 100%.

The absolute difference between the electric field and the potential values of COMSOL
andKEMField is for this simple geometry not very huge, but the difference isn’t constant
and varies a lot. The variations occur for a vacuum plate capacitor and a dual phase
capacitor. At some points the field values are almost the same and at some points it
differs very strongly. This is an indication of a bad discretization with COMSOL, because
with COMSOL we have to discretize the whole computational domain and weren’t able to
control the mesh at every position precisely. At all we see that for this simple geometry
KEMField and COMSOL compute almost the same values.
Also the calculated relative error f for Ez is very small, but KEMField gives us a better
constant error. The relative error from COMSOL varies a lot. The relative error in the
region of the plates is slightly higher than at the center, because of our chosen discretization
and the zero potential box. But the relative error of COMSOL is higher than the relative
error of KEMField. A possible explanation for this behaviour is that we didn’t discretize
with COMSOL very fine. COMSOL uses FEM and has to discretize the whole volume.
We often got out of memory with the caluclation with COMSOL and decided to avoid too

Figure 4.2.: The difference of the electric field Ez between COMSOL and KEMField for
the plate capacitor in vacuum (red points) and or a dual phase plate capacitor
(green points). The points indicate the absolute value of the difference between
the two field solvers.

26



4.2. Results of the Test Computations 27

Figure 4.3.: The dependency of the relative error of the number of elements. The point
(0, 0, 0.0004) of the plate capacitor were investigated.

small elements, hence too high discretization parameters. N.b.: If we use small elements we
have to fill our whole volume with these elements and we need a huge amount of memory.
For all calculations with KEMField we discretized our geometry into 118800 primitive
rectangles to have a short calculation time and a small relative error. Figure 4.3 shows the
dependence of the relative error on the number of elements. We took as example the point
(0, 0, 0.0004) and calculated the relative error of the potential of a vacuum plate capacitor
with different discretizations. We see in Figure 4.3 that we are able to minimize the relative
error f with KEMField, if we chose a high discretization. We have to find a compromise
between the number of elements and the accuracy. If we increase the discretization, the
calculation time increases as well by

t ≈ n2, (4.9)

where t denotes the calculation time and n is the number of elements. With COMSOL we
would also be able to minimize the relative error but due to the limited memory have not
been able to study the discretization quality of COMSOL.

4.2.3. Results of a numerically computed Wire Capacitor

For the discretization of this geometry we used rectangular primitives and wire segments.
Figure 4.4 shows the electric field. The electric potential can be found in the appendix B.
We can see that also with the wire capacitor the electric field has a jump at the gaseous-
liquid interface, because of the different dielectrics. For the wire capacitor we didn’t obtain
a constant electric field, inside of the capacitor. We compared this result with COMSOL.
We build up this wire capacitor in COMSOL and calculated the potential and the electric
field Ez and the electric potential φ along the z-axis. The difference between COMSOL
and KEMField of a wire capacitor can be found in the appendix B. We see in this case that
the difference between COMSOL and KEMField is significant. The difference occurs in
vacuum and in dual phase xenon. COMSOL delivers everywhere a higher electric field than
KEMField. The difference of the dual phase wire capacitor is higher than for the vacuum
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28 4. Validation of the Numerical Field Computation Program

Figure 4.4.: The electric field in vacuum and in liquid/gaseous xenon. The red points are
in vacuum and the green points are in liquid/gaseous xenon.

wire capacitor. A reason could be the different discretization of the boxes in COMSOL.
In KEMField we discretize everything very well, we have ensured that the discretized wire
elements are neither too big, too small.
There is a limit established by Dr. Ferenc Glück for the element size of the wires (F. Glück
2013, pers. comm.). The discretized element e of a wire is not allowed to be bigger than
the space between the wires s and smaller than the wire diameter d.

d ≤ e ≤ s. (4.10)

By respecting this rule, we can assume a constant charge density on one wire element as
a very good approximation. With COMSOL we will get out of memory if we discretize
the geometry very fine. So the difference between COMSOL and KEMField should come
from an insufficient discretization of COMSOL. To ensure that fact we made a step back:
We calculated the electric field of two parallel wires with COMSOL and KEMField. For
this very simple geometry we know a analytical solution and for such a small geometry we
can discretize with COMSOL a way finer.

4.2.4. Computation of Electrostatic Fields of two parallel Wires

We installed one wire at a position a and one wire at the position −a. The wires had
a diameter d. The analytical solution for the electric field E of an infinitely wire can be
found using the Gauss’s law in cylindrical coordinates:

2πrE =
λ

ε0
. (4.11)

Two infinite wires are located in the x-y plane, parallel to the x-axis. One carries a charge
density of +λ and is located at the location y = +a while the other carries a charge density
of −λ and is located at the point y = −a. The electric potential of one wire, we obtain by
using the formula [Gri07]:

V = −
∫

~Ed~l. (4.12)
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Figure 4.5.: The electric field for two parallel wires. The COMSOL discretization is fine.
The red points indicate the analytical solution. The green points are the
solution of KEMField and the blue points are the solution of COMSOL.

The potentials from the two wires we summed according to the superposition principle.
So the total potential and electric field is [Gri07]:

V =
λ

2πε0
ln

√
(y + a)2 + z2√
(y − a)2 + z2

(4.13)

E =
λ

2πε0

(
1√

(y − a)2 + z2
− 1√

(y + a)2 + z2

)
(4.14)

We build up this geometry in KEMField and COMSOL, with a = 0.01m and d = 0.001m
For COMSOL we needed a zero potential box to close the domain of computation, because
of the FEM. We made the wires very long to be able to use equation 4.13. Figure 4.5
shows the electric field between the wires at x = y = 0. We are now able to discretize
this simple geometry finer in COMSOL without to getting out of memory. We saw that
for a very coarse discretization the COMSOL solution deviates very strongly from the
analytical solution. For a finer discretization we see that the COMSOL solution converges
to the analytical solution. The coarse discretization result can be found in the appendix
B. COMSOL failed to calculate the electric field at z = 0 m for not understood reasons.
But also for this geometry we were limited in the discretization, because we got out of
memory. That is the reason for the small variation of the COMSOL results.
In this geometry we found something interesting about KEMField. The KEMField solution
differs from the analytical solution, because the wires are assumed as line segments and
the field points are too close to the wire. The assumption doesn’t hold longer valid. This
aspect and the bad discretization of the wire capacitor with COMSOL is a possible solution
for the difference of the COMSOL results and the KEMField results. This is an important
result for analysing the electrostatic fields. If we calculate the electric fields in the region
of wires, we have to think about the correctness of these results. In the future an other
field computation routine for wires should be developed to reduce this particular error.
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30 4. Validation of the Numerical Field Computation Program

A solution is to discretize the whole wire with triangles or rectangles so that we get a
cylinder. In the next section we analyse the fields and potentials of KEMField for another
geometry.

4.2.5. Computation of Electrostatic Fields of a Wire Grid

We modified our wire capacitor geometry in 4.1 so that we are able to compare it with
an analytical solution. Our zero potential box has now following size measure. A height
of 0.08 m, weight of 1 m and a depth of 1 m. The diameter of the wire is reduced from
0.001 m to 0.00001 m. The pitch between the wires is reduced from 0.01 m to 0.001 m.
The layer distance is increased from 0.02 m to 0.04 m. The total amount of wires per layer
is increased from 26 to 40. The potential of both layers is now 100 V. Figure 4.6 shows the
new geometry. With this geometry we are able to use equation (4.15) (Eq. 12 in [Glu07])
to calculate the potential at (0, y, 0):

φ = Ug +
Uf − Ug

1 + 2·l·π
s·ln( s

π·d)

. (4.15)

Uf is the potential of the box, Ug is the potential of the wires, l is the distance between
wire and box, s is the space between the wires and d is the diameter of the wires. So we
should get in such a geometry a potential at (0, y, 0) of 68.5575 V.
To obtain the electric field we make some approximations. With these approximations we
won’t find the true value of the electric field but we will find the scale of the electric field.
In a short distance away from the bottom plate the electric field is nearly constant in
y-direction. The electric field is given by:

Ep =
U

l
. (4.16)

Figure 4.6.: The 3D model of the new geometry. The colors represent the value of the
electric potential.
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Figure 4.7.: The red points are the absolute value of the difference between KEMField and
the analytical solution for the electrical potential.

We can compute the electric field from the electric flux by

E =
φ

A
. (4.17)

The electric flux φ close to the plate and around the wire should be the same, with the
assumption that every electric field line from the plate in a size s, ends in the wire with
the diameter d. So the electric field close to the wire should be given by equation (4.18):

Ew =
U

l
· s

π · d
. (4.18)

By plugging in the corresponding values for s, π, d , U and l we expect an electric field at
the wire of Ew = 1.59 · 105 V/m.
We build up this geometry in KEMField. With COMSOL it wasn’t possible because the
wires are now to thin.
In figure 4.7 we see that KEMField delivers a very good result for this geometry. The
analytical solution for the electric potential and the solution from KEMField match very
well in the center region. At the edge of the geometry the analytical solution and KEMField
don’t match, since the analytical solution assumes an infinitely large wire grid.
The electric field plot can be found in the appendix B. At the wires the electric field is
around Ez ≈ 1.50 · 106 V/m. This matches very good with our expectation. The reason
for the difference is that we assumed a too high electric field in front of the plate. E = U

l
gives us not exactly the correct value in front of the plate. But this technique is very good
to estimate the electric field.

4.3. Analyze and Optimization of the numerical Computa-
tion Programs

The calculation time depends on the number of discretized elements and on the method to
solve equation (3.6). The most common technique to solve this equation is the Gaussian
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elimination. The matrix Wij grows with the number of discretized elements and the need
of memory increases with number of discretized elements squared O(n2). The computer
runs fast out of memory and the linear equation system (3.6) cannot be solved for large
geometries.
Taking advantage of the iterative Robin Hood method, the amount of used memory in-
creases linearly with the number of elements and allows to compute charge densities for
large scale geometries containing small scale structures.

4.3.1. Comparison of different used Technologies for the Computations

To demonstrate the power of parallelized computing platforms (n.b. graphic processing
units can handle several hundreds jobs in parallel), we calculated the plate capacitor for
different discretization parameter. First we calculated the charge distribution on only one
GPU using the computer a NVidia graphic cards. Afterwards we implemented MPI [For93]
into our code to be able to use multiple GPUs in parallel. For this purpose we had to switch
to the AMD graphic cards due to technical reasons. Figure 4.8 shows the dependency of
the charge distribution calculation time in relation to the number of discretized elements.
Solving equation (3.6) with a direct solver is very slow and since the available computer
memory is limited, it is not recommendable to use very fine discretizations in combination
with this type of solver. The calculation time on a GPU with the Robin Hood method
is much better than the direct solver on a CPU. With the Robin Hood method we are
able to use very accurate discretizations without getting out of memory. The calculation
time on a GPU with the Robin Hood method is very amazing, it is roughly of one order
of magnitude lower than on a CPU. For geometry discretizations containing over 362600
elements it is useful to parallelize multiple GPUs with MPI.
Table 4.1 comprises some selected values of 4.1. The calculation time for 118400 elements

Figure 4.8.: The calculation time for different CPU- and GPU-platforms. The blue points
represent the calculation time on a CPU using a direct solver. The purple
points are the calculation time on a CPU using the iterative Robin Hood
method. The red points indicate the calculation time on a single GPU using
the Robin Hood method and the green points use four graphic units of the
AMD-GPU-cluster in parallel, which is realized by an implementation of MPI
within KEMField.
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Table 4.1.: Excerpt of values of figure 4.8

elements CPU-DS CPU-RH GPU-RH MPI-RH

16650 434073 s 9107 s 96 s x
118400 x 303853 s 2629 s x
362600 x x 22276 s 26202 s
740000 x x 110793 s 55857 s

with the Robin Hood method on a GPU is around 43 minutes. On a CPU the calculation
time for the same problem is around 3.5 days!
Because of this fact, firstly we used for our simulations a single GPU (NVidia), but after
increasing the number of discretized elements over the limit of 362600, it is worth while
parallelizing multiple GPUs. The question is why single GPUs deliver faster results for
smaller discretization than multiple GPUs?
The reason is the following: The GPUs have to communicate to each other and have to
access the memory. If more GPUs are active, the memory of the computer has to be
accessed more frequently. For small discretizations more time is spent on the transfer of
data between memory and the GPUs, it would be better to use only one GPU and avoid
this data transfer. In case of computing more elements, the advantage of splitting the job
and using multiple GPUs dominates.
The computational time dependence also on the type of used sub-elements (triangle, rect-
angles and wires) and on the boundary condition (Neumann or Dirichlet). If our surface
belongs to a Neumann condition then we have to solve more complex integrals which in-
creases our computational time.
The calculation time for the charge densities depends also on the different platforms. For
the field calcuation on a CPU we used the CPU-Cluster Tesla of the KIT Institute of
Nuclear Physics (IKP). It is a cluster with 776 nodes controlled by a Sun Grid Engine.
Every CPU is a Intel Xenon 5550 2.67 GHz. For one simulation up to 8 GB of memory
can be used.
At the Karlsruhe Institute of Technology we have access to two GPU-Clusters. Both
computers are located and administrated at the KIT Institute for Data Processing and
Electronics (IPE) and have been used for calculations on GPUs. The two clusters have
following technical specifications:

• 2x Intel Xeon E5-2640 CPUs (2.5 GHz and 12 Threads each), 24 GB RAM, 2x Tesla
XM and 4 NVidia GTX TITAN.

• 2x Intel Xeon E5540 CPUs (2.53 GHz and 8 Threads each), 96 GB RAM, 4x NVidia
GTX 590 Dual-Core GPUs and 1x NVidia GTX 680.
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5. Realization of Electrostatic Field
Computations for the XENON1T
Detector

For the next generation dual phase dark matter detectors, highly efficient techniques and
fast simulation software is needed, since detailed electrostatic simulations of large detector
geometries need a large amount of computing power.
As we have seen in the previous chapter, only the boundary element method (BEM) is
able to handle large scale problems efficiently, resulting in a minimal need of memory and
computation time.
For next generation dual phase dark matter detectors, like DARWIN and XENON1T, the
simulation package Kasper from the KATRIN experiment has been successfully adapted.
In order to use this software for dual phase detectors, new modules have been developed.
With this module it is now possible to build up complex dual phase geometries, using the
boundary element method as field solver and perform so electrostatic field simulations and
particle tracking.
For the test of the new submodules, the XENON1T geometry has been implemented and
simulated and will be discussed in detail. The following chapter is not a line per line
program documentation but a basic description of the classes and explains how they work.
The source code is fully available from the KATRIN GIT repository.

5.1. Presentation of the newly developed Computer Programs

The DARWIN module consists of two submodules, which depend on core modules of the
Kasper package.
One submodule is DGeoBag (DARWIN Geometry Bag). For a simulation, the geometry
has to be discretized by using well defined basic shapes. DGeoBag is the container for
these shapes and also responsible for the discretization of every shape. It has in principle
the same structure as KGeoBag (KATRIN Geometry Bag). Several new shapes and their
discretization have been created and added to DGeoBag. Also some test applications are
implemented into DGeoBag in order to investigate the quality of the discretization of the
shapes. With these new implemented shapes it is possible to build up an arbitrary TPC
geometry with dielectrics.
The other submodule is the existing KEMField (KATRIN electro magnetic field). It
consists of two new programs. The first program builds up the geometry with the shapes
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36 5. Realization of Electrostatic Field Computations for the XENON1T Detector

Figure 5.1.: The DARWIN module consists of two independent sub-modules (DGeoBag
and KEMField). These sub-modules uses some other modules of the Kasper
package to perform the simulations.

of DGeoBag and calculates the charge densities of the subelements with KEMField. The
second program calculates the electric field and electric potential in the region of interest
with pre-computed charge densities.
Figure 5.1 shows the implementation of the DARWIN module into the Kasper framework.
The next subsections describe the implementation of the shapes into DGeoBag and the
implementation of the field calculation programs into KEMField.

5.1.1. DGeoBag

For every new shape, which are implemented into the submodule DGeoBag, two new classes
are needed. The first class holds all important parameters and constructs the shape. Some
important parameters are e.g the discretization parameter, size and voltage of the shape.
The second class discretizes the shape with the primitives described in section 3.3. The
primitives are triangles, rectangles and wires. Figure 5.2 shows a schematic of the DGeoBag
sub-module.
For the class names of the shapes and their discretizers prefixes ’DG’ (DARWIN Geome-
try) or ’XG’ (XENON Geometry) for a better distinction is chosen. For a basic shape like
a disc, ’KG’ (KATRIN Geometry) is used as the prefix.
For the XENON1T geometry eight new shapes and their discretizers have been imple-
mented into DGeoBag. The following list shows the parts which have been developed
especially for the XENON1T geometry.

• Vessel Creates the vessel of the XENON1T geometry.

Figure 5.2.: The two classes, which are needed to implement one shape into the DGeoBag
sub-module. The name of the class describes the shape.
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5.1. Presentation of the newly developed Computer Programs 37

• RingElectrode Creates one field shaping ring.

• CAD Imports CAD drawings into the geometry.

• WireMesh Creates a wire mesh, which is needed e.g. for the cathode.

• PMT Creates a PMT array.

• Cathode-holder Holder for the cathode.

• Anode-holder Holder for the anode.

• Gate-holder Holder for the Gate.

In context of this work, discretization routines of other standard shapes have been com-
pleted to be able to use them for dual phase detector geometries as well as for the KATRIN
geometry. The following list shows the completed standard shapes.

• Disk Creates a disk.

• Annulus Creates a annulus.

• Cone Creates a cone.

• Cut-Cone Creates a complete cute-cone.

• Cut-Cone-shell Creates the shell of a cut-cone.

• Torus Creates a torus.

The discretization principle of the CAD imported elements, disks, annulus, wire meshes
and cylinder shapes will be discussed more in detail in section 5.2, because these shapes use
all different kinds of primitives. Their implementation code can be found in the appendix
C.
The implementation of the other new very complex shapes will not be discussed, because
their discretization technique is similar. The geometries of the complex XENON1T shapes
are shown in the appendix E but not their implementation. This code can be found with
the whole DARWIN module on the KATRIN GIT repository.

5.1.2. KEMField

To calculate the charge densities and to analyse the geometry, two new programs have been
developed and implemented into the DARWIN module. The submodule uses KEMField
for the calculation of the charge densities, electric fields and electric potentials.
The first program builds up the geometry and computes the charge densities with the Robin
Hood algorithm. The geometry will be build up with the discretized shapes from DGeoBag.
Therefore an object of the shape has to be created. The output of this program is an
ASCII or a binary file, which contains the calculated charge densities and the geometrical
positions of the subelements. This calculation can be performed either on a CPU or on a
GPU. Also MPI has been implemented into the code to be able to use multiple GPUs or
multiple CPUs in parallel.
The second program calculates the electric field and electric potential in the region of
interest. The region of interests of a TPC can be found in [BH12] and has been insert
into the code. As input, the ASCII file or the binary file of the previous simulation is
needed. The output is a ROOT file, which contains plots of the computed electric fields
and potentials. Also a real time plotter has been developed, which gives the user the
opportunity to control the calculated field points. This calculation can also be performed
on CPUs or GPUs but not in parallel. The programs are also available on the KATRIN
GIT repository.
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38 5. Realization of Electrostatic Field Computations for the XENON1T Detector

5.2. Geometrical Description of the Electrostatic Problem

This section describes the discretization principle of the shapes with wires, triangles and
rectangles. Therefore the discretization of the wire mesh, the cylinder and disk/annulus
is discussed more in detail. Another very powerful shape is the CAD import shape. With
this shape it is possible to import CAD drawings or meshes from an external software.
This is an easy way to build up geometries with existing CAD drawings. The usage of this
shape and their implementation will also be discussed.

5.2.1. CAD Import into KEMField

The implemented CAD import shape uses STL files. STL is known as Standard Tes-
sellation Language. STL files describe only the surface of the CAD drawing. A STL
file describes a raw unstructured triangulated surface by the unit normal and vertices of
the triangles using a three-dimensional Cartesian coordinate system. The STL file con-
sists of a huge number of triangles. The triangle is described by the unit normal vector
(ni, nj and nk) pointing outwards from the triangle and by its three points (~v1, ~v2 and
~v3). The CAD import shape opens and reads in these STL files. The program looks for
the vertices and the normal unit vectors of the triangle inside the STL file and creates
a triangle primitive. The program also checks if the normal unit vector has been calcu-
lated correctly. The triangle primitive is created in DGeoBag over the following command:

1 KGMeshTriangle∗ t r i a n g l e = new KGMeshTriangle ( t 1 , t 2 , t 3) ;
2 AddElement ( t r i a n g l e ) ;

Listing 5.1: The creation of an triangle primitive in DGeoBag.

t1, t2 and t3 are the corner points of the triangle. The normal unit vector is determined
over v1× v2.
The big advantage of using STL files is that we don’t have to take care about discretization
parameter, because a STL file contains already the discretized surface information. CAD
softwares like CATIA or SOLIDWORK are able to safe their CAD drawings into a STL
file. Figure 5.3 shows a three-dimensional CAD drawing of the DARWIN logo before and
after import into the DARWIN module. For the visualization we used VTK [ea13]. The
Visualization Toolkit (VTK) is an open-source, freely available software system for 3D
computer graphics. Using the STL mesh from software like CATIA or SOLIDWORK
have a disadvantage. The mesh is quite coarse and cannot be controlled precisely, but a
good discretization is needed for some imported CAD drawings. Hence for the XENON1T
geometry didn’t import the STL files directly from the CAD software. We used NetGen
[SGG03] where could precisely change the STL mesh of our CAD drawings. NetGen

(a) CAD-DARWIN logo in CATIA (b) CAD-DARWIN logo in the DARWIN module

Figure 5.3.: (a) The CAD DARWIN logo visualized with CATIA. (b) The imported dis-
cretized DARWIN logo visualized with VTK.
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5.2. Geometrical Description of the Electrostatic Problem 39

Figure 5.4.: The mesh for the CAD drawing will be created with NetGen. The output
from NetGen can be imported into the DARWIN module.

is an open source software, which uses the Delaunay triangulation. With the Delaunay
triangulation can create for a set of points P a polygon mesh. The output of NetGen is a
qualitatively good mesh in STL format. This STL file can import over the CAD import
shape into our DARWIN module. The source code of the Delaunay triangulation could
also be implemented directly in the Kasper package in the future. Figure 5.4 shows the
schematic of the CAD import for XENON1T.
In principle, the whole XENON1T geometry could be imported via CAD drawings, but
this is not recommended, because of the limited precision in setting the mesh of a CAD
drawings and the huge need of subelements of a detailed CAD drawing. Using a mix
between standard shapes, complex shapes and CAD imports is the best solution. CAD
imports are good for shapes, which would take a lot of time to implement, e.g for an
electrode with a lot of holes and a non-smooth surface.

5.2.2. Disk and Annulus Discretizer

This section gives an introduction into the common discretization technique of complex
shapes. The discretization of a disc and an annulus is quiet similar, therefore both will
be shown. For the discretization triangular subelements are used. It is also possible to
discretize these shapes with rectangles, but this would need a lot of more elements.
For the disc and annulus discretization we create first a single trapezoid, which consists of
two triangles. The complete disc and annulus is then created with these trapezoids. Figure
5.5 shows a trapezoid divided into two triangles. For the discretization of the disc, first
the radius R will be discretized into N elements with a discretization power of P . Then
the disc will be discretized into M arcs. Every arc will be build up with N − 1 trapezoids
and one triangle at the center. The total amount of triangular subelements is given by
(2N − 1) ·M .
For the annulus we only have to discretize the radius from R1 to R2 and leave the first
triangle. Figure 5.6 shows the discretized disc and annulus visualized with VTK. The user
has the opportunity to control the meshing of these two shapes. It can be chosen the

Figure 5.5.: The trapezoid gets divided into two triangles (D1 and D2). The first triangle
D1 is described by the points P1, P2 and P4. The second triangle D2 is
described by the points P2, P3 and P4.
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40 5. Realization of Electrostatic Field Computations for the XENON1T Detector

(a) Discretized disc (b) Discretized annulus

Figure 5.6.: (a) The discrezized disc with triangles. (b) The discrezized annulus with
triangles.

discretization in radial direction, the power of the radial meshing and the number of arcs.
With this method also curvatures and complex shapes can be created. Almost all complex
shapes of the XENON1T model have been implemented using this technique. Therefore
the discretization of these shapes will be not discussed. The principle to discretize with
rectangles and wires will be shown in the next subsections.

5.2.3. Cylinder Shell Discretizer

Another shape is the cylinder shell. This shape is chosen for explaining how to discretize
a surface with rectangles.
For the discretization the cylinder shell is subdivided into several stripes M . Every stripe
is discretized into N rectangular primitives with a power of P . The following command
shows, how to create a rectangular primitive in DGeoBag:

1 KGMeshRectangle∗ r ec = new KGMeshRectangle ( r 0 , r 1 , r 2 , r 3) ;
2 AddElement ( r ec ) ;

Listing 5.2: The creation of an rectangle primitive in DGeoBag.

where r0, r1, r2 and r3 are the corner points of the rectangle. The total amount of
subelements is then given by N ·M . It is a very simple technique to discretize rotational
surfaces and doesn’t need too much elements. Huge quadratical surfaces should always
been discretized into rectangles in order to minimize the total count of subelements.

5.2.4. Wire Mesh Discretizer

The wire mesh, e.g. for the cathode of XENON1T, consists of several parallel wires and
has the shape of a disk. The coordinate origin is in the center of the wire mesh. The
x-coordinates of the start and end point for each wire is given by: xstart =

√
(d)2 − p2

and xend = −xstart, where d denotes the diameter of the disc, p the distance between the
first wire and the current wire, xstart the start point of the wire and xend the end point
of the wire. The y-coordinates is given by p and the z-coordinates are fix. Each wire
gets discretized into several wire primitives. N. b. in principle it is also possible to use
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5.2. Geometrical Description of the Electrostatic Problem 41

Figure 5.7.: The wire mesh discretized with wires inside DGeoBag. It has been designed
to fit in several geometries, which uses a wire mesh. This wire mesh consists of
about 190 parallel wires, which got discretized in smaller sub-elements. Due
to VTK there are some reflections on the wires surfaces.

only one long wire primitive, but then the assumption of a constant charge density of the
primitive doesn’t hold valid. The following command shows how to create a wire primitive
in DGeoBag:

1 KGMeshWire∗ wire = new KGMeshWire(w0 ,w1 ,d) ;
2 AddElement ( r ) ;

Listing 5.3: The creation of an rectangle primitive in DGeoBag.

w0 is the start point of a wire, w1 is the end point of a wire and d is the diameter of the
wire. Figure 5.7 shows the discretized wire mesh visualized with VTK. We can see that
this shapes consists of several parallel wires. This wire mesh is designed for the cathode,
anode, gate and the protection grid of XENON1T. It is also possible to change the pitch
and diameter of the wires and the diameter of the wire mesh. Because this shape needs a
lot of subelements, the discretization has investigated more in detail in order to decrease
the number of subelements.
A common discretization rule for the wire segments established by Dr. Ferenc Glück is
that the size of an subelement should be one magnitude smaller or equal than the distance
to the next subelement (F. Glück 2013, pers. comm.). This rule is needed to maintain
the assumption of a constant charge density along the primitives and to guarantee precise
results for the fields and potentials calculations:

e ≤ d, (5.1)

where e is the subelement size and d the distance to the next subelement. With a small wire
pitch of d = 0.005 m and a wire mesh diameter of 0.90 m, the wire mesh consists then of
about 360000 subelements. To save some subelements and to accelerate the computation,
the discretization of the wire mesh has been investigated in more detail.
Therefore two parallel wire grids with a distance of 0.005 m have been build up. The wire
grids consist also of several parallel wires with a pitch of 0.005 m. The wires have a length
of 20 cm. The discretization of the wires has been changed and the charge densities have
been calculated with the Robin Hood algorithm. Figure 5.8 shows the charge density for
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42 5. Realization of Electrostatic Field Computations for the XENON1T Detector

Figure 5.8.: The charge density for different discretizations. The points show the charge
density along the wire in the middle of the grid. For the yellow line the wire
has been discretized in 0.005 m big sub-elements. The other lines show the
charge density for a more coarse discretization.

different discretizations along one wire in the middle of the grid.
We can see that at the end points of the wire, the charge density changes a lot for different

discretization parameters. Therefore we have to discretize the edges of the wire array very
fine in order not get a bad accuracy. In the center of the wire, the charge density is almost
constant, hence we can discretize the center of our wire mesh more coarse to save some
subelements. The wire mesh in the DARWIN routines have been implemented by taking
these results into account. In this way it was possible to save some subelements and to
speed up the simulation.

5.3. Electrostatic Simulation of a realistic XENON1T Model

With the new implemented shapes into the DARWIN module, it is possible to build up
an exact model of the XENON1T detector. Till now it doesn’t exist an exact model of
XENON1T. Only axially symmetrical simulations have been performed with COMSOL.
An exact simulation of XENON1T is necessary to analyse the later data properly.
XENON100 and also XENON1T uses the primary scintillation light to establish the en-
ergy scale for nuclear recoils. This scintillation light depends on the electric field and is
taken into account by the field quenching factor See. This field quenching factor has to
be chosen properly for the current electric field [A+14]. Therefore an exact electrostatic
simulation has to be performed for XENON1T.
For the simulation, several CAD drawings of XENON1T have been used and some as-
sumptions have been made, e.g. the PMT arrays have been taken as a charged cylinder.
The reason of this assumption was to save some subelements and to save computation
time. The CAD drawings have been used for the power supply of the cathode, the Teflon
reflectors of the PMT arrays and the high voltage isolation. The discretization of all shapes
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has been chosen carefully in order to avoid imprecise results. A sketch of XENON1T and
the drawings of the implemented shapes in the DARWIN module can be found in the
appendix D E. All shapes were discretized with wires, triangles and rectangles.
For the calculation of the charge densities, the electric potentials and electric fields KEMField
was used. To visualize the results we used ROOT.
The data output of the simulation of the charge densities is a binary file and a VTK
file. The binary file contains the coordinates, charge densities, potentials etc. of the sub-
elements, which are generated by KEMField. With the VTK file we are able to construct
a three dimensional model of the geometry with Paraview [Hen07]. The binary file takes
our field calculator as input and calculates the electric fields and electric potentials in the
region of interest.
The calculations were performed with the Robin Hood algorithm using a NVDIA GTX690
graphics card. Some details of the graphic card: NVIDIA GTX680 with 1536 shader
units and a memory of 2048 MB. It is not possible to allocate more than 1/4 memory
on a NVIDIA graphic card for an object (array etc), because of the manufacture. So it
is not able to calculate geometries which contain more than 3.2 M elements. At the end
of this master thesis new graphic cards were installed (NVIDIA GeForce GTX TITAN:
Shader units: 2688, Memory: 6144 MB), with this card simulations of bigger geometries
are possible.

5.3.1. Details of the Simulation of the XENON1T Model

The XENON1T geometry was build up with 23 different shapes of DGeoBag. The geome-
try consists of several electrodes and dielectrics. The code for the geometry implementation
can be found in the appendix C. The different applied potentials are shown in the following
table:

Table 5.1.: The applied potential for the implemented geometry. The homogeneous electric
field is generated by applying a potential difference across the field shaping
rings.

PMT Protection grid Cathode Gate Anode Vessel

Potential -1.5kV 0V -100kV 0V 4kV 0V

Because of the long calculation time it was only possible to simulate one potential configu-
ration. To create a homogeneous electric field along the TPC, a potential difference across
the field shaping rings is applied. For the dielectrics we have to set the correct dielectric
constants. The used dielectric constants are shown in the following table:

Table 5.2.: The used dielectric constants for liquid- xenon, gaseous xenon, Teflon and vac-
uum. The difference between the dielectric constants of liquid xenon and Teflon
is not huge.

liquid Xenon gaseous Xenon Teflon vacuum

εr 2 1 2.1 1

We can see that the dielectric constant for liquid xenon and Teflon are almost the same.
In this simulation we implemented the Teflon parts into the liquid xenon phase. Another
simulation should be performed without Teflon in the liquid phase if an implementation of
TEFLON parts is needed. If these Teflon parts are not needed, then we can speed up our
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Figure 5.9.: The assembled XENON1T geometry. It consists of electrodes and dielectrics.
Detailed drawings of the different shapes can be found in the appendix. The
geometry consists of 3.1 million elements. The most elements are triangles.

simulation significantly. Figure 5.9 shows the implemented XENON1T geometry into the
DARWIN module. The VTK file has been visualized with Paraview. The calculation time
of the charge densities took ≈ 16 days. The calculation time was time consuming because
the geometry consists of ≈ 3.1M sub-elements, a lot of dielectrics are used and the most
subelements are triangles ≈ 2M. It would be possible to speed up the simulation by using
more then one GPU but they had been in use at this time. The calculation time of the
electric potentials and electric fields in the region of interest took ≈ 24h. The reason for
such a long computation time for the electric fields and electric potentials is quiet simple.
KEMField calculates the electric field and electric potentials for every subelement at a
given field point P analytically and sums up the potentials and electric fields of every
subelement. So 30 ROOT plots have been created. In the next section the results of this
simulation will be discussed.

5.3.2. Results of the Electrostatic Simulation of XENON1T

In this section we will investigate the results of the XENON1T simulation. This was the
first simulated dual phase detector with Kasper, so we have to ensure the correctness of
these results. Therefore we created field maps, potential maps and calculated the electric
field and electric potential at different regions inside the TPC. For e.g figure 5.10 shows
the electric field along the z-axis 5mm in front of the Teflon reflector from the field shaping
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Figure 5.10.: The electric field in front of the field shaping rings. The electric field varies
because of the small gap between the different field shaping rings.

rings. The electric field varies here, because of the field shaping rings. The field shaping
ring structure was optimized to minimize these variation in the near of the field shaping
rings. It can be seen that the optimization of the field shaping rings delivers a relative
stable electric field.
Also the other generated plots were investigated in advance for anomalies in the electric
field and electric potentials. In this study we discovered something important about our
simulation package. In the most plots we saw strange behaviour of the electric fields. E.g.
figure 5.11 shows the radial electric field in radial direction in the middle of the TPC
z = 0.5. We see that the electric field varies a lot. The multiple-valued function is due to
fluctuations of the field values between close field points. The question is, where are these
fluctuations coming from and do we have the same issues in the KATRIN experiment?
Till now nobody had a closer look at the simulated electric fields of the KATRIN experi-
ment. Therefore the electric fields and the electric potentials of the KATRIN experiment
has been calculated and they also showed a fluctuation. The plots can be found in the
appendix F.
This strange behaviour of the potential and the field results indicate for some kind of nu-
merical error in the calculation of the electric field and electric potential or a discretization
error.

5.3.2.1. Numerical Error of the Simulation

The numerical error could come from different sources:

• For the calculation of the electric field and electric potential a few million of numbers
have to be summed up. In this step we can lose some accuracy.

• The calculation of the electric field and electric potential of every subelement could
have some round-off errors.

To avoid the first point a special algorithm is already implemented into KEMField to
control the summing up of the numbers. The Kahan summation algorithm [Kah65], which
significantly reduces the numerical error by adding a sequence of finite precision floating
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Figure 5.11.: The radial electric field in radial direction at z = 0.5. We got a multiple-
valued function due to fluctuations of the field values.

point numbers, is already implemented into KEMField.
To avoid the second point new field calculation methods are needed. It seems that the
overall numerical errors are more sensitive to the triangles than to the rectangles and wires.
One suggestion from Dr. Ferenc Glück was to develop a numerical cubature method for
triangles. We saw in subsection 3.3.3 that for the calculation of the electric potential and
electric field of a triangle an integral of the following form has to be calculated:∫

A
f(α, β, γ)dA. (5.2)

α, β and γ are new defined natural co-ordinates for a point Q of the triangle. These
coordinates are defined as follows:

α =
A1

A
, β =

A2

A
, γ =

A3

A
. (5.3)

where A is the area of the triangle and A1, A2, A3 are the the created areas by a point Q
on the surface of the triangle. Figure 5.12 shows the used coordinate system for a triangle.
The integration of 5.2 for a triangle is now performed with the Gaussian quadrature rule
instead of using the Newton-Leibniz method [Dun85].

∫
A
f(α, β, γ)dA = A

ng∑
i=1

wi · f(α, β, γ) (5.4)

Where wi is the Gaussian weight for the i-th sampling point and ng the number of sampling
points. So we can see from equation 5.4 that with the numerical cubature method, the
complex integral for the electric potential and electric fields of a triangle can easily been
calculated by approximation the area of the triangle with weighted point charges. This
new field calculation routine has been developed and implemented into KEMField. The
new field calculation routine can be found in the appendix F. We computed the triangle
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Figure 5.12.: A point Q in the triangle creates three different areas A1, A2 and A3. The
coordinates of the point Q is given by α = A1

A , β = A2
A and γ = A3

A .

in our implementation with seven point charges (ng = 7). The corresponding Gaussian
weight wi and the coordinates α, β and γ can be found for this configuration in [Dun85].
This assumption of course only holds valid for field points far away from the triangles
and has been considered in the implementation. If the distance from the triangle to the
field point divided by the averaged side lengths of the triangle is bigger than 60, then the
new calculation routine will be used otherwise the old routines will be used. The electric
potential and electric field of a point charge Q is given by the following formula [Gri07]

φ =
q

4πε0
· 1

r
(5.5)

~E =
q

4πε0
· ~r
r3
. (5.6)

A first test with the new implemented 7-point numerical cubature method have been per-
formed with the KATRIN geometry. The plots can be found in the appendix F. Also the
radial electric field in figure 5.11 has been recalculated. Figure 5.13 shows the radial elec-
tric field calculated with the new developed 7-point numercial cubature field routine. We
see that the fluctuation of the radial electric field disappeared in the simulation with the
7-point numerical cubature method. The implementation into KEMField was successful.
Only a implementation for calculation on CPUs has been performed a GPU implementa-
tion is necessary as well to speed up the calculation and to check the whole XENON1T
geometry.

5.3.2.2. Discussion of the Discretization Error

Another source of this behaviour could be the discretization scale. It could be that the
discretization rule wasn’t set precise enough at sensitive points of the geometry, so we
get at some points a good discretization and at other points we lose accuracy because of
the bad discretization. Another source could be that some subelements of the geometry
overlap and leaps to these result. Therefore the geometry has to investigate more in detail
in the future. Overall we saw that is now possible to simulated different types of dual-
phase detectors. The problems with the numerical error of the electric field has been solved
by implementing a new field calculation routine into KEMField. In the next chapter the
hardware work for the XENON1T detector will be discussed. In the next chapter the
hardware work for the XENON1T detector will be discussed.
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Figure 5.13.: The radial electric field in radial direction at z = 0.5 calculated with the
implemented 7-point numerical cubature. The fluctuations of the electric
field disappeared.
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6. Low-Temperature Hardware Tests for
the XENON1T Experiment

In this chapter the results of two different low temperature tests will be discussed. The
main design for XENON1T is fixed but several smaller questions are still open and have
to be investigated by the XENON groups. At the XENON group in Zürich, several low
temperature measurements in liquid and gaseous xenon are performed with focus on low-
temperature PMT tests. In context of these measurements, an amplifier PMT test and a
bell test have been performed.
The goal of the amplifier PMT test was to test two different kinds of amplifiers for PMTs.
The amplification of the PMT signals results in higher gains at lower voltages, which would
allow for higher linearity, lower power consumption and a better usage of the dynamic
range. The goal of the bell test was to find a new solution to stabilize the liquid-gaseous-
xenon interface for dual-phase detectors. For the amplifier test and the bell test a special
setup has been developed and installed inside the MarmotXL setup. The setup and the
results of these tests will be shown in the following chapter.

6.1. Presentation of the experimental Setup for Low-Temperature
Tests

The MarmotXL setup, which is installed at the laboratory of the XENON group at the
university Zürich, is the second generation setup from the XENON group in Zürich. The
MarmotXL setup consists of an enclosed in the vacuum insulated cryostat, a gas system,
a DAQ-System, a PTR (Pulse tube refrigerator Iwatani PDC08 [GAC+11]) and several
feedthroughs. All the structures are made of stainless steel, aluminum and cooper. Sev-
eral kilos of xenon are able to pump into the cryostat. The PTR is used to cool down the
xenon and to hold this temperature over a long time. The gas system is quite complex. It
consists of one storage cylinder for the xenon filling and one storage cylinder for recuper-
ation, a high pressure line, a regulator, a low pressure line, a getter for purification and
a recirculation line containing buffer volume and a pump. In the main recirculation loop,
the liquid is extracted trough a siphon tube from the detector chamber to a buffer volume
to guarantee that the xenon is in gas phase. Afterwards a recirculation pump pushes the
gas through the purification module (a heated getter) and from there, the gas enters the
detector again. The flow is manually controlled with a needle valve and the recirculation
rate is given by the reading of the calibrated flow-meter. [Gro14]
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All relevant parameters as temperature, pressure, heater output, gas flow, compressor sta-
tus and SMS/e-mail alarming in case of anomalous data of the MarmotXL setup are con-
trolled by the MarmotXL slow control. The data is collected and stored by C-applications
and several plots that can be seen on a slow control web page are created using ROOT.

6.2. The Amplifier PMT Test at Low-Temperatures

The main goal of the Amplifier-PMT-Test was to make a detailed study about the Hama-
matsu R11410R11410-21 PMTs in connection with different amplifiers. Two different types
of amplifiers were investigated in this experiment. The Philips PS776 [Sci14] amplifier,
which is already in use in the XENON100 experiment, and a new selfmade amplifier from
the electronic workshop in Zürich, called UZH amplifier. The UZH amplifier is based on
microelectronics. Five PMTs in connection with the two different amplifiers were tested
(KB055, KB127, KB138, KB145 and KB150). The reason to use five PMTs was simply
to get more statistics. First the PMTs were connected with the ADC (analog digital
converter) module and the signals were acquired. Afterwards, the PMTs cables were con-
nected to a Phillips-Amplifier (x10) and the UZH-Amplifier (x10) and the measurements
were repeated. All measurements were performed in dark, in use of a fiber optic setup
and with different high voltage settings. The following sections describe the results of each
measurement phase.

6.2.1. The Experimental Setup of the Amplifier PMT Test

For the amplifier test, five of Hamamatsu R11410R11410-21 PMTs are installed inside the
MarmotXL cryostat. To read out the PMTs, a special electronic circuit, called base, was
used. The same base will be used for XENON1T. The base has the task to supply the
cathode and every dynode with high voltage and transports the signal to the DAQ. Every
dynode of the PMT will be supplied by a different voltage to accelerate the electrons
from dynode to dynode. For the last four dynodes a capacitor is needed to recharge
the dynodes. To complete the base a 50 Ohm input impedance is used to avoid signal
reflections. Every base is connected with a capton cable through the feedthrough to the
high voltage. The capton cables were used to test their behaviour and handling in a low
temperature environment. Also has capton a low intrinsic radioactivity. The output signal
of the base is transported via a capton coaxial cable through an other feedthrough to the
DAQ. A coaxial cable is used to achieve a better shielding and to minimize crosstalk.
Figure 6.1 shows the circuit diagram of the PMT bases.
The PMTs inside the cryostat are facing down to a Teflon plate. To safe more liquid

Figure 6.1.: The circuit diagram of the PMT base. The base has to supply 12 dynods (D)
and one cathode (K). This special base has been developed after several PMT
tests. Figure modified from [Jam14].
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Figure 6.2.: Left: The setup inside the cryostat as CAD drawing. CAD drawing taken
from [Jam14]. Right: The installed Filler, PMTs and fiber optics before closing
the cryostat.

xenon all the empty space was filled up with a aluminium block. The filler/PMT holder
is fixed to the aluminium plate on top by threaded rods. To create a signal for the PMTs,
a fibre optic setup was installed inside the cryostat. The fibre optics setup was controlled
and triggered with an external pulser. The holders and filler were constructed by the
workshop of the UZH after creating the CAD drawings. Fig 6.2 shows the setup inside the
MarmotXL cryostat.
The handling of the coaxial capton cables were very difficult, because they were very stiff
and often the soldering to the base or to the feedthrough broke. Also to crimp the cables
was a difficult task. It is not recommended to use them in XENON1T. It is recommended
to use the more flexible Teflon coaxial cables. But for these cables the outgassing of the
Teflon has to be studied more in detail.
For the amplifier PMT test the cryostat was filled up with gaseous xenon and cooled down.
The amount of xenon was chosen to be low, because in parallel other xenon measurements
had to be performed.

6.2.2. Electronics and Data Acquisition

The PMT signals are amplified by a factor 10 with two different kind of amplifiers and
digitized are with CAEN V1724 as ADCs with 100 MHz sampling rate, 14 bit resolution,
and 40 MHz bandwidth. The CAEN ADC digitizes the full waveform of the 5 PMTs,
where the time window for an event is 550 µs. One sample is equal to a time window of
10 ns. Using circular buffers in flash ADCs, with 512 kB memory per channel, the DAQ
samples continuously, and stores the data if a trigger occurs. The trigger is generated by
the external pulser of the optical fibres. The measurements and data storage are performed
with the XENON Data Acquisition software program (DAX). The settings for the data
acquisition are defined in XML-files. For each acquired data set, it generates an ASCII log
file that contains information on the measurement (file name, timing, settings) and scalar
values. DAX can be also run in oscilloscope mode, which provides real time access to the
digitized waveforms. All samples of an event were stored into a ROOT tree. Figure 6.3
shows the schematics of the MarmotXL-Amplifier-Test data acquisition system.
The raw data is converted into physical parameters using an self programmed Raw Data
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Figure 6.3.: Schematic of the MarmotXL-Amplifier-Test data acquisition system.

Processor, a ROOT based C++ program, specially developed for the amplifier PMT test
data analysis called miniProcess (MP). All programs can be found on the ATP wiki of
the University Zürich. In the pre-processing stage, the baseline and its derivation of each
waveform is computed on the first 50 samples, and the raw waveforms get subtracted by
this baseline. Afterwards the signal search in the waveform starts. Therefore the integral
of the first peak after the trigger is calculated and stored. Also the integral of every peak
has been stored. The integral of a peak has been calculated as follows.
The algorithm looks for the peaks in the waveform above a user defined threshold and
calculates the integral of two samples before the peak to two samples after the peak
to ensure to process the signal. The program also stores the position of the peaks in
a waveform. In the end, a fast Fourier transformation will be calculated to obtain the
frequency content. Therefore the fast Fourier transformation the FFTW C++ subroutine
library were used.

6.2.3. Determination of the Amplification Factor for different Amplifiers

The UZH amplifier and the Philips amplifier should give an amplification factor of ten
(x10), but they have an error of ±10% (A. Vollhardt 2013, pers. comm. ). So the first
step was to estimate the real amplification factor for the amplifiers. The amplification
factor is calculated as follows.
With the pulser, a square signal is generated. This square signal is taken as input for
the ADC instead of the PMT signal. The signal is measured with and without the the
amplifiers. The ratio of the amplified signal to the unamplified signal is defined as the
amplification factor (X = Sa

Su
). Where Sa is the signal height with and Su without an

amplifier connected. Because of the electronic noise the square signal is not perfect. To
calculate the amplification factor, the height of the square signal was averaged over the
width of the signal. With this technique the amplification factor for the Philips amplifier
was calculated to X = 10.3.
Figure 6.4 shows the measurement with the UZH-amplifier. A closer look at the circuit
diagram of the UZH amplifier shows us that the transistors, resistors and capacitors in-
side the amplifier creates a RC-circuit! As a consequence, for a long constant signal the
capacitor C of this RC-circuit gets charged over the resistor R. The voltage at the resistor
during the charging of the capacitor can be calculated over the following formula [Gri07]:
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Figure 6.4.: The square signal after the amplification with the UZH-Amplifier. The square
signal isn’t constant and falls exponential after the amplification. This be-
haviour can be explained with the RC-circuit.

UR = Us exp
−t
R·C , (6.1)

where UR is the voltage at the resistor R, Us is the voltage of the square signal and t the
time. This explains the exponential decay of the constant square signal. The tail of the
waveform can be explained by discharging of the charged capacitor over the resistor.

UR = Uc ·
(

1− exp
−t
R·C

)
. (6.2)

Where Uc is the voltage at the capacitor. This explanation has been also confirmed with
a simulation of the RC-circuit.
This particular behaviour of the UZH amplifier described above didn’t take any effect
on the amplifier PMT test, because the signals of the PMTs are very short and so the
amplifier doesn’t affect our measurements. The determination of the right amplification
factor was more difficult. The amplification factor was calculated with the highest peak
of the square signal and was determined to X = 10.6.

6.2.4. Discussion of Electronic Noise

In the first measurement phase the signals of the PMTs were acquired without a light
source. This measurement was performed without an amplifier, with the Philips amplifier
and with the UZH amplifier. Because of the darkness inside the chamber this measurement
gives us the electronic noise of the PMTs with and without the two amplifiers.
200000 events, were measured with a sampling frequency of 100 MHz to create the noise
spectrum. For a finer frequency resolution another measurement has been started with
a sampling frequency of 35 MHz and a waveform length of 135000 samples. The data
has been reprocessed with miniProcess and visualized with a ROOT program. The first
measurement showed that there is a lot of noise in the waveforms with both amplifiers.
Figure 6.5 shows the reprocessed waveform of PMT1 (KB055) and the frequency content
of the waveform with the UZH amplifier. The noise appears in the waveforms of all PMTs
and with both amplifiers.
The frequency content of PMT1 shows this in more detail. The frequency range of the
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Figure 6.5.: Upper Plot: The Reprocessed waveform of PMT1. There are big noise burst
inside the waveform. Bottom Plot: The calculated frequency content of
PMT1.

noise is very wide and so it is very complicated to find the source of the noise.
To determine the source of noise in such a complex setup is very complicated. Several
things have been tested to find the source. At the first step the coaxial cables have been
checked and renewed with shorter double shielded coaxial cables. This had the effect that
the cables are better shielded versus electromagnetic radiation from other experiments
inside the laboratory. The effect was measurable, but there were still some smaller noise
bursts in the waveforms.
The next step was to use another power supply module, which delivers a better constant
voltage. After replacing the old external power supply module with a NIM (Nuclear
Instrumentation Standard) power supply module the burst peaks disappeared. So the
old power supply didn’t deliver a constant voltage. The high voltage cables inducted a
signal into the signal cables, because the high voltage cables inside the cryostat and at the
feedthrough are nearby to the signal cables. After reducing the noise, it was possible to
make a comparison between the two amplifiers.
There was no significant difference in the noise spectra. With the Philips amplifier we saw
that the baseline of the waveform varies with a frequency of 50 Hz, which is the frequency
of the power supply. This effect was not very high but measurable. Figure 6.6 shows the
low frequency content of the waveform with the Philips amplifier and the UZH amplifier.
Any frequencies over 500000 Hz haven’t been seen for both amplifiers. Only electronic
noise has been detected. We can see that the low frequency spectrum of PMT1 with the
two different amplifiers is very similar. The low frequencies with the Philips amplifier are
slightly higher than with the UZH amplifier. The Philips amplifier is not very resistant
against any kind of noise source compared to the UZH amplifier. Till now for the UZH
amplifier doesn’t exist any type of shielding. It is a open circuit board, which has been
shielded with aluminium foil. If we shielded our UZH amplifier with a metal box, we would
probably get lower noise.
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Figure 6.6.: Upper plot: The noise spectrum of PMT1 in connection with the UZH-
Amplifier. Bottom Plot: The noise spectrum of PMT1 in connection with
the Philips-Amplifier.

6.2.5. Determination of the PMT Gain with different Amplifiers

A very important parameter for the XENON100 and XENON1T experiment is the gain
of the PMTs. The PMT gain is determined as the mean number of electrons produced by
a phototube in response to one photoelectron (PE). The energy deposit for nuclear recoils
ENR in XENON100 and XENON1T is calculated over the scintillation light. Hence it is
necessary to measure the gain very precisely. The gain can be measured by using a very
weak light source, which produces one photoelecton at the PMT cathode.
For this test the optical fibre setup is used to create weak light pulses. The hardware
system for the PMT measurements with LEDs has been set up as shown in 6.7. The pulse
generator provides two output channels. The first output channel is connected to a light-
tight box with a InGaN (’blue’) LED (Light-emitting diode), which emits blue light with
an average wavelength of 470 nm. The second output channel is connected to the ADC.
The light from the LEDs is transferred by one standard coated optical fibre (1 mm core)
to the optical feedthroughs of the detector. In order to diffuse the light and to achieve
an uniform illumination of all PMTs, the quartz fibres are connected inside the cryostat
to a bundle of polymethylmethacrylate (PMMA-PFA) fibers with 180 µm core [Kis11].
The total amount of light produced by a LED depends on the amplitude of the pulse
and on its time width. In order to achieve a single PE level for PMT illumination, the

Figure 6.7.: Schematic of the optical setup for the PMT amplifier test.
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amplitude of the pulse has been set to the minimum required to turn on the LED. The
light pulse was set to a period of 1.5 µs and a pulse width of 0.5 µs. The voltage for the
light intensity was set as low as possible to create a single photo electron. Therefore the
DAX has been running in oscilloscope mode to have a closer look when the PMT starts to
response. Figure 6.8 shows a raw waveform of PMT1 in the oscilloscope mode. Ideally, all
PMTs should be uniformly illuminated, so that each phototube detects light on the level
of single PE. Since the optical fibers for illumination of PMTs inside the cryostat are very
disorganized, the amount of light is not the same for every PMT. So for every PMT the
light pulse intensity has be varied. The first measurement has been performed without an
amplifier.
100.000 events have been measured in 5 min. The raw data was reprocessed with the
miniProcess, where also the pulse area is calculated. The spectrum of PMT1 induced by
the LED light is shown as integrated ADC counts in Figure 6.9. The response of the
PMT is described by a sum of two functions, describing the noise peak and the single PE
peak. The noise peak is usually fitted by a Gaussian function as well as the single PE
peak. If two photoelectrons have been created at the cathode, then a second single photon
electron peak appears. This peak is also described by a Gaussian function. These have
the following form:

F (x) = h · exp
−(x−µ)2

2·σ , (6.3)

where h, µ and σ are the fit parameters. The integrated ADC counts are converted to
PMT gain as following [Kis11]:

g =
µ · r

f ·A · Z · e
, (6.4)

where g is the gain, µ the mean of the single PE peak , r the ADC resolution (2.25/214[V/Bit]),
f the sampling frequency, X the amplification factor, Z =50 Ω and e the electron charge.
We have to fit the whole spectrum to get the correct value for the PE peak. The fit and
the visualization is performed by a self programmed C++, ROOT based program. Several

Figure 6.8.: A raw waveform of PMT1 without an amplifier. The signal was created with
the optical fibre setup. The intensity of the optical fibre setup was set to a
very low value (∝ mV ). The light pulse is created between the 100th and the
150th sample.
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Figure 6.9.: The PMT spectrum of PMT1 without an amplifier. The noise peak, single-
photo-electron-Peak (SPE) and the second SPE peak are fitted with Gaussian
functions. The red curve is the whole fit of the spectrum.

additional parameters are also determined, such as the single photoelectron resolution,
peak-to-valley, and signal-to-noise ratio. Figure 6.9 shows the spectrum of PMT1 without
using an amplifier.
We see that without an amplifier the SPE-peak is very close to the noise peak. For most
of the PMTs, a Gaussian function is a good approximation of the noise distribution. It
is complicated to fit the SPE correct. The second SPE-peak is very small, because we
configured the intensity of the LED very low, but high enough to see the SPE peak. The
’peak-to-valley’ ratio is calculated as the ratio of the height of the single PE peak and
the valley after the pedestal, and thus quantifies the separation of the noise and signal.
The gain was measured to: g = 2.39 · 106. And the peak-to-valley ratio is 1.32. The
peak-to-valley ratio is low because of the near noise peak. The other four PMTs showed
the same behaviour and will be not shown. The next measurements were performed with
the two different amplifiers. The created spectra can be found in the appendix G.
We see that the noise peak is very far away from the SPE peak with the two different
amplifiers. This also confirms the ’peak-to-valley’ ratio. Table 6.1 shows the comparison
of all relevant parameters of PMT1.

Table 6.1.: The values peak-to-valley and gain of PMT1 without an amplifier, with the
Philips amplifier and the UZH amplifier.

NO AMP Philips AMP UZH AMP

Gain 2.39 · 106 2.4 · 106 2.47 · 106

Peak-to-valley 1.32 4.00 4.13

The best peak-to-valley value delivers the measurement with the UZH amplifier. The
results for the gain are slightly different between the Philips amplifier and the UZH am-
plifier. This difference could result from a wrong determined value of the amplification
factor of the UZH amplifier (see subsection 6.2.3). Another explanation could be a too low
voltage for the UZH amplifier. The UZH amplifier is till now an experimental one and its
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power supply must be configured by hand. The Philips amplifier instead has the Nuclear
Instrumentation Module (NIM) Standard.
We can also see in the spectrum a plateau between the noise peak and the SPE peak with
both amplifiers. In principle there should be a very deep valley. It could be noise, but
normally the noise rises only till 20 integrated ADC counts and the number of events is
much higher than expected. Another explanation could be that this plateau comes from
the photoelectrons, which were created at the first dynode. This is a new observed effect
with the Hamamatsu R11410R11410-21 and from now on under investigation. To be able
to fit the spectrum we fit a gaussian between the noise peak and the SPE. This Gaussian
should describe the electrons from the first dynode. We saw this behaviour also for the
other four PMTs.

6.2.6. Results

This experiment showed us some interesting facts about the Hamamatsu R11410R11410-21
PMTs in connection with an amplifier. Using an amplifier has the advantage to determine
the SPE peak very well. With this measurement it is possible to calculate the gain of a
PMT very precisely. We also saw that using an amplifier showed us a not well understood
spectrum for the Hamamatsu R11410R11410-21 PMTs. The plateau between the noise
peak and the SPE peak has to be investigated. To confirm that this plateau comes from
the first dynode, a new experiment is needed but not discussed in this thesis.
The suggestion is to design a new base, which delivers no high voltage to the cathode.
So only light which hits the first dynode creates a photon-electron. If the spectrum gets
shifted to the value of the plateau, the theory is confirmed.
With this experiment we also compared a new selfmade amplifier with the old Philips am-
plifier. The experiment showed us no big difference between the Philips amplifier and the
UZH amplifier. The UZH amplifier is slightly better and should be used for the XENON1T
experiment, because of its microelectronics. The Laboratori Nazionali del Gran Sasso is
housing a lot of experiments and therefore a good electromagnetic shielding is needed.
Shielding the small component of the UZH amplifier is easy and the microelectronics is
more resistance against electromagnetic radiation.

6.3. Test of a new Technique to stabilize the liquid-gaseous
Level in XENON1T

Also a bell test has been performed at the MarmotXL setup. As a possible way to control
the level of the liquid xenon inside a TPC is using a ’bell’ (diving-bell). This method is
used in the XENON100 experiment and should be also used for XENON1T experiment
[Col10]. To control the xenon level, xenon gas is pushed inside the bell. The xenon level
is measured by capacitive level meters. This technique was very complicated to handle in
the XENON100 experiment. The main purpose of this bell test is to check the feasibility
of using a heater to control the liquid level and to test the stability and control ability of
this method. Using a heater increases the pressure inside the bell. Adjusting the heating
power will adjust the liquid level inside the bell.

6.3.1. Experimental Setup of the Bell Test

For this test a diving bell, which consists of a cylinder with a cover plate welded on top
of it, was installed into the MarmotXL cryostat. The empty space around the bell was
filled up with aluminium fillers to safe xenon. For the heater a special Teflon holder was
designed. The heater is placed in the center of the Teflon holder. If the heater is turned
on it will vaporize the xenon. This gaseous xenon will go through the holes of the Teflon
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(a) The CAD drawing (b) The installation

Figure 6.10.: (a) The CAD drawing of the bell test. To safe xenon alumium fillers were
used. CAD drawing taken from [Jam14] (b) The setup of the bell test before
closing the cryostat. The level meters are connected with coaxial cables,
which go to the feedthrough.

holder inside the bell. This should avoid bubbles at the liquid-gasous xenon interface and
adjust the xenon level.
The heater were controlled simply by hand with a power supply module. During operation,
the bell is submerged in liquid xenon and has gaseous xenon inside. To monitor the level
of the liquid xenon inside the bell, three capacitive level-meters are mounted inside the
bell. The level meters are cylindrical capacitors, which change their capacitive with the
xenon level. This behaviour can be described by the following formula [Gri07]:

C = 2πε0εr
l

ln
(
R2
R1

) , (6.5)

where l is the length of the capacitor, R1 is the inner radius, R2 is the outer radius and ε
is the electric permittivity of liquid xenon (εr = 2). Figure 6.10 shows the CAD-Drawing
of the setup and the installation into the MarmotXL cryostat. The bell, the level meters
and the fillers were made by the machine shop of the UZH. The special Teflon holder was
made by hand.
To calibrate the level meters several Teflon spacers were installed inside the capacitor in
a distance of 1 cm. So if the xenon reaches this Teflon spacers, the readout should be
constant. The capacitors were read out with Labview via an universal transducer interface
(UTI). With this calibration we can translate the arbitrary units of LabView in a height.
Figure 6.11 shows the calibration curve of level meter 3. Therefore a total mass of 9.96
kg xenon was pumped into the MarmotXL cryostat and cooled down. The producer for
the two other level meters were the same and their calibration curve can be found in the
appendix H.
The filling curve of level meter 3 (Figure 6.11) shows a step-wise increase of capacitance
up to its maximum. Measurements points from the first increase indicate that the LXe
level rises above the bottom copper ring of the level meter and the step up to the first
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Figure 6.11.: The filling curve of the level meter 3. This curve is used to calibrate level
meter 3. The step comes from the installed Teflon spacer inside the capacitor.

Table 6.2.: The calibration values for the three level meters. The change in Capacitance
is measured from the calibration curves.

Level Meter change in Capacitance (A.U) Capacitance change/cm height (A.U/cm)

|LM1| 33900-32350=1550 1550
|LM2| 35700-33650=2050 2050
|LM3| 34700-33150=1550 1550

spacer be the distance between the copper ring and the first Teflon spacer. The horizontal
step is the little Teflon spacer around the inner conductor which is 2.5 mm high. Table
6.2 shows the calibration result of all level meters.

6.3.2. Results

After the calibration we control the heater by hand and tried to get a stable liquid-gaseous
xenon level. Stable operation was extremely difficult. Too much power for the heater
leads to an empty bell, too less power leads to an full bell. We did manage to find a stable
configuration to estimate the accuracy of the heater control. With 300 mW of power
through the heater resistor over a period of about 1 hour, the liquid level stays within 1
cm. Figure 6.12 shows the readout of the three level meters with the turned on heater
resistor.
The combination of the level meter design and UTI readout proved to be very unreliable.
Sometimes the readout showed us useless data. The level meter got often in contact with
the bell and a short circuit has been produced. This happened because it wasn’t able to
mount the level meters probably. This first design of the level meters were too unstable.
A simpler plate capacitor and a readout using an LRC circuit analyser were designed
in cooperation with the technical assistant to improve significantly the robustness and
readout. The newly developed level meters can be found in the appendix.
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Figure 6.12.: The readout of the three level metes (green, blue and red) with the turned
on heater resistor. The liquid level almost stayed constant.
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7. Conclusion

The XENON1T experiment aims to detect directly dark matter via WIMP-nucleon scat-
tering. The incoming WIMP leads to a nuclear recoil of the target material and produces
an electronic and a nuclear recoil of the target material. The experiment uses a time pro-
jection chamber (TPC) to separate the ionization signal from the scintillation signal. The
XENON1T experiment aims to reach a sensitivity of down to 2 · 10−47cm2 with 2 years of
operation. The DARWIN project has the aim to build up a facility housing two multi-ton
dual phase detectors to reach a sensitivity of down to 2 · 10−48cm2. An electrostatic simu-
lation of the TPC is indispensable for the optimization of the electrostatic design and for
the data analysis.

This thesis demonstrates that the simulation module KEMField (written by T.J Corona)
is a very powerful tool to simulate large geometries as the DARWIN geometry.
We are able to calculate very big and complex geometries on fast parallelized computing
platforms like GPUs or CPUs. Due to usage of the iterative Robin Hood methods as
charge density solver, the memory consumption has been highly reduced. We saw that the
commercial simulation software COMSOL Multiphysics needs a huge amount of memory,
because of intrinsic properties of the finite element method. It will not be possible to
simulate a detailed three dimensional model of DARWIN with COMSOL. With KEMField
this will not be a problem. To be able to simulate the next generation of dual phase
noble gas WIMP detector a new DARWIN module had been implemented into the Kasper
simulation package within this thesis.

Also new shapes have been developed and implemented into the DARWIN module. The
simulation module KEMField and the new DARWIN module were tested intensively.
Therefore the XENON1T detector has been implemented into the DARWIN module. With
this simulation we got the first non-axial symmetrical simulation of the XENON1T exper-
iment, so that today exists a stable and reliable tool for electric field simulation for the
DARWIN experiment or other dark matter experiments.

We also saw that the calculated electric field and electric potential in such a huge geometry,
as the XENON1T geometry, has a measurable high numerical error. This was also observed
in the simulations of the KATRIN experiment. Therefore new field calculations routines
have been implemented into KEMField. This routines have a very low numerical error
and are 5 times quicker than the old routines. A GPU implementation of this routines is
necessary to speed up the calculation time and will be performed in the future.

Another focus in context of this master thesis was the hardware work for XENON1T. The
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aim was to test a new kind of amplifier in connection with the XENON1T photomultiplier
and to develop a new technique to stabilize the liquid-gaseous xenon interface in the
XENON1T experiment. To control the liquid-gaseous-xenon interface with a heater was
successful and should be investigated in the future with the newly developed level meters.
The intensive amplifier PMT test showed that the new UZH amplifier is ready-to-use for
the XENON1T experiment. The spectrum of this amplifier will be investigated in future.

The goal of the next measurement phase of the MarmotXL detector in Zürich is to build
up a small TPC. With this TPC, the S2 signal extraction efficiency will be measured
for several electric field configurations in order to determine the best extraction field for
XENON1T. Also the possibility to use Avalanche-Photodiodes instead of photomultipliers
will be investigated in future.
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Appendix

A. Geometry Test Model

Figure A.1 shows a sketch of the geometry used for calculations in section 4.2.2. Figure
A.2 shows the implemented 3D model of the sketch.

Figure A.1.: 2-D cross section of the plate capacitor.

Figure A.2.: The 3D model of the zero potential box and the plate capacitor. The colors
represent the value of the potential. The red coloured area represents a high
potential and the green/blue coloured area represents a low potential.
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72 7. Appendix

Figure A.3 shows a sketch of the geometry used for calculations in section 4.2.3. Figure
A.4 shows the implemented 3D model of the sketch.

TPC Cube for 2-Phase Test Calculations (Wire Layout)

y

z

0.276 m

0.001 m 0.01 m

0.062 m0.062 m

0.0095 m

0.01 m

Figure A.3.: 2-D cross section of the wire capacitor. Not all wires are drawn.

Figure A.4.: The three dimensional model of the zero potential box and the wire capacitor.
The box was cut through the yz-plane. The wire capacitor is placed in the
center of the box. The colors represent the value of the potential
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B. Results Test Model

Figure B.5 shows the electric potential of the calculated plate capacitor in section 4.2.2.
Figure A.2 shows the electric potential of the calculated wire capacitor in section 4.2.3.
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Figure B.5.: The electric potential in vacuum and in liquid/gaseous xenon. The red points
are in vacuum and the green points are in liquid/gaseous xenon.
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Figure B.6.: The electric potential in vacuum and in liquid/gaseous xenon for a wire capac-
itor. The red points are in vacuum and the green points are in liquid/gaseous
xenon.
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Figure B.7 shows the relative error of the simulated plate capacitor in vaccum and figure
B.8 shows the relative error of the simulated plate capacitor with dielectrics. For the
simulation KEMField and COMSOL is used.
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Figure B.7.: The relative error f for the vacuum plate capacitor. The red points are
the relative error for COMSOL. The green points are the relative error for
KEMField.
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Figure B.8.: The relative error f for the dual phase plate capacitor. The red points are
the relative error for COMSOL. The green points are the relative error for
KEMField.
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Figure B.9 shows the difference between COMSOL and KEMField of the simulated wire
capacitor in vaccum and figure B.10 shows the difference between COMSOL and KEMField
of the simulated wire capacitor in dielectrics.

Figure B.9.: The difference between COMSOL and KEMField for a wire capacitor in
vacuum. The red points are the absolute value of the difference between
COMSOL and KEMField.
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Figure B.10.: The difference between COMSOL and KEMField for a dual phase wire ca-
pacitor. The red points are the absolute value of the difference between
COMSOL and KEMField.
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Figure B.11 shows the electric field between two parallel wires simulated in section 4.2.4.
Figure B shows the electric field between a zero potential plate and a wire grid simulated
in 4.2.5.

Figure B.11.: The electric field for 2 parallel wires. The COMSOL discretization is coarse.
The red points are the analytical solution. The green points are the solution
of KEMField and the blue points are the solution of COMSOL.
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Figure B.12.: The electric field along the z-Axis from the plate to the wire grid.
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C. DGeobag Code

Listing 7.1 shows the code for modelling the XENON1T geometry, the simulation results
are shown in chapter 5.3.

1 . . .
2 DGTank∗ v e s s e l = new DGTank( ) ;
3 v e s s e l −>SetName( ” v e s s e l ” ) ;
4
5 //Bot−PMT−Array
6 DGPMT∗ BotPMT = new DGPMT() ;
7 BotPMT −>SetName( ”BotPMT ” ) ;
8 BotPMT−>SetZ 1(−0.124) ;
9 BotPMT−>SetZ 2(−0.010) ;

10 BotPMT−>SetR (0 .49085) ;
11
12 //Tef lon r e f l e c t o r o f the bot PMT array
13 KGCADImport∗ CADImportPMTReflectorBot = new KGCADImport ( ) ;
14 CADImportPMTReflector −>SetName (”CADImportPMTReflector ”) ;
15 CADImportPMTReflector −>Set InputF i l e ( ”PMT Re f l e c t o r Bot . s t l ”) ;
16 CADImportPMTReflector −>SetVerbose (0) ;
17
18 //Bot−PMT−Protect ionGrid−ho lder
19 DGHolderProtection∗ Protect ionGridHolderBot = new DGHolderProtection ( ) ;
20 Protect ionGridHolderBot −>SetName( ”Protect ionGridHolderBot ” ) ;
21 Protect ionGridHolderBot −>SetZ 1(−0.006) ;
22 Protect ionGridHolderBot −>SetZ 2(−0.001) ;
23 Protect ionGridHolderBot −>SetR 1(0 . 472 ) ;
24 Protect ionGridHolderBot −>SetR 2(0 . 480 ) ;
25
26 //Bot−PMT−Protect ionGr id
27 KGWireMesh∗ BotPMTprotectionGrid = new KGWireMesh ( ) ;
28 BotPMTprotectionGrid −>SetName( ”BotPMTprotectionGrid ” ) ;
29 BotPMTprotectionGrid −>SetZ (−0.0005 ) ;
30 BotPMTprotectionGrid −>SetWiresDiameter ( 0 .000125 ) ;
31 BotPMTprotectionGrid −>SetCyl inderDiameter ( 0 . 944 ) ;
32 BotPMTprotectionGrid −>SetPitch (0 .00475) ;
33
34 //Tef lon r e f l e c t o r bot
35 DGTeflonWallBot∗ Tef lon Boundary Rings Bot PMT= new DGTeflonWallBot ( ) ;
36 Tef lon Boundary Rings Bot PMT−>SetName( ”Tef lon Boundary Rings Bot PMT” ) ;
37
38 //Cathode−ho lder
39 DGCathodeHolder∗ BotCathodeHolder = new DGCathodeHolder ( ) ;
40 BotHolder −>SetName( ”BotHolder ” ) ;
41
42 //Cathode
43 KGWireMesh∗ cathode = new KGWireMesh ( ) ;
44 cathode −>SetName( ”cathode ” ) ;
45 cathode −>SetZ ( 0 .0705 ) ;
46 cathode −>SetWiresDiameter ( 0 .000125 ) ;
47 cathode −>SetPitch (0 .00485) ;
48 cathode −>SetCyl inderDiameter ( 0 . 9 74 ) ;
49
50 // Import o f the cathode power supply
51 KGCADImport∗ CADImportCathode = new KGCADImport ( ) ;
52 CADImportCathode −>SetName (”CADImportCathode ”) ;
53 CADImportCathode −>Set InputF i l e ( ”Power supply . s t l ”) ;
54 CADImportCathode −>SetVerbose (0) ;
55
56 // Import o f the cathode i s o l a t i o n
57 KGCADImport∗ CADImportPMTTeflon= new KGCADImport ( ) ;
58 CADImportPMTTeflon−>SetName (”CADImportPMTTeflon ”) ;
59 CADImportPMTTeflon−>Set InputF i l e ( ”Cathode i s o l a t i o n . s t l ”) ;
60 CADImportPMTTeflon−>SetVerbose (0) ;
61
62 //76−Ring e l e c t r o d e s
63 std : : vector<DGRingElectrode∗> fR ingElect rode ;
64 Double t Z1(0 . 0839) ;
65 Double t Z2(0 . 0889) ;
66 Double t R1(0 .4875) ;
67 Double t R2(0 .4925) ;
68 Double t space ( 0 . 0 13 ) ;
69 Int t Number = 76 ;
70 f o r ( i n t i =0; i<Number ; i++){
71 s t r ing s t r eam ss ;
72 s s << i ;
73 s t r i n g s t r = ss . s t r ( ) ;
74 fRingElec t rode . push back ( new DGRingElectrode ( ) ) ;
75 fRingElec t rode [ i ]−>SetName (”Ringe l e c t rode number : ”+ s t r ) ;
76 fRingElec t rode [ i ]−>SetZ 1(Z1) ;
77 fRingElec t rode [ i ]−>SetZ 2(Z2) ;
78 fRingElec t rode [ i ]−>SetR1(R1) ;
79 fRingElec t rode [ i ]−>SetR2(R2) ;
80 Z1= Z1+space ;
81 Z2= Z2+space ;
82 }
83 //Tef lon r e f l e c t o r o f the f i e l d shaping r i n g s
84 DGTeflonWall∗ Tef lon Boundary Rings = new DGTeflonWall ( ) ;
85 Tef lon Boundary Rings−>SetName( ”Tef lon Boundary Rings ” ) ;
86
87 //Gate
88 KGWireMesh∗ Gate = new KGWireMesh ( ) ;
89 Gate −>SetName( ”cathode ” ) ;
90 Gate −>SetZ (1 .05345 ) ;
91 Gate −>SetWiresDiameter ( 0 .000125 ) ;
92 Gate −>SetPitch (0 . 0023 ) ;
93 Gate −>SetCyl inderDiameter ( 0 . 973 ) ;
94
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95 //Gate−Holder
96 DGLRingGate∗ GateHolder = new DGLRingGate ( ) ;
97 GateHolder −>SetName( ”GateHolder ” ) ;
98
99 //Boundary l i qu id−gaseous xenon

100 KGDisk∗ xenon boundary 1 = new KGDisk ( ) ;
101 xenon boundary −>SetName( ”xenon boundary ” ) ;
102 xenon boundary −>SetZ (1 .05595) ;
103 xenon boundary −>SetR (0 . 5155 ) ;
104 xenon boundary −> SetAxialMeshCount (200) ;
105 xenon boundary −> SetRadialMeshCount (300) ;
106 xenon boundary −> SetRadialMeshPower (1) ;
107
108 //Boundary l i qu id−gaseous xenon
109 KGAnnulus∗ xenon boundary 2 = new KGAnnulus ( ) ;
110 xenon boundary 2 −>SetName( ”Top PMT” ) ;
111 xenon boundary 2 −>SetZ (1 .05595) ;
112 xenon boundary 2 −>SetR1( 0 .5215) ;
113 xenon boundary 2 −>SetR2( 0 .550 ) ;
114 xenon boundary 2 −>SetAxialMeshCount (200) ;
115 xenon boundary 2 −>SetRadialMeshCount (50) ;
116 xenon boundary 2 −>SetRadialMeshPower (2) ;
117
118 //Anode−Holder
119 DGLRingAnode∗ AnodeHolder = new DGLRingAnode ( ) ;
120 AnodeHolder −>SetName( ”AnodeHolder ” ) ;
121
122 //Anode
123 KGWireMesh∗ Anode= new KGWireMesh ( ) ;
124 Anode−>SetName( ”cathode ” ) ;
125 Anode−>SetZ (1 .05845) ;
126 Anode−>SetWiresDiameter ( 0 .000125 ) ;
127 Anode−>SetPitch (0 . 0023 ) ;
128 Anode−>SetCyl inderDiameter ( 0 . 9 61 ) ;
129
130 //Tef lon r e f l e c t o r o f the top PMT array
131 KGCADImport∗ CADImportPMTReflectorTop = new KGCADImport ( ) ;
132 CADImportPMTReflectorTop −>SetName (”CADImportPMTReflectorTop ”) ;
133 CADImportPMTReflectorTop −>Set InputF i l e ( ”PMT Re f l e c t o r Top . s t l ”) ;
134 CADImportPMTReflectorTop −>SetVerbose (0) ;
135
136 //Top−PMT−Array
137 DGPMT∗ TopPMT = new DGPMT() ;
138 TopPMT −>SetName( ”TopPMT ” ) ;
139 TopPMT −>SetZ 1(1 . 1274) ;
140 TopPMT −>SetZ 2(1 . 2414) ;
141 TopPMT −>SetR (0 . 522 ) ;
142
143 //Top PMT Protec t ion g r id
144 KGWireMesh∗ PMTProtectionGridTop = new KGWireMesh ( ) ;
145 PMTProtectionGridTop −>SetName( ”PMTProtectionGridTop ” ) ;
146 PMTProtectionGridTop −>SetZ (1 .118 ) ;
147 PMTProtectionGridTop −>SetWiresDiameter ( 0 .000125 ) ;
148 PMTProtectionGridTop −>SetPitch (0 .00485) ;
149 PMTProtectionGridTop −>SetCyl inderDiameter ( 1 . 044 ) ;
150
151 . . .

Listing 7.1: The implemented code for modelling the Xenon1T geometry. All the objects
of the different parts will be created.
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Listing 7.2 shows the code for DGeoBag to discretize a disc with triangles.

1 . . .
2 f o r ( i n t j =1; j<=AxialMeshCount ; j++){
3
4 // F i r s t t r i a n g l e o f one arc
5 th = ( ( double ) ( j % AxialMeshCount ) ) /AxialMeshCount ∗2.∗M PI ;
6
7 p0 [0 ]=( tRadi i [ 1 ] ) ∗ s i n ( th l a s t ) ;
8 p0 [1 ]=( tRadi i [ 1 ] ) ∗ cos ( th l a s t ) ;
9

10 p1 [0 ]=( tRadi i [ 1 ] ) ∗ s i n ( th ) ;
11 p1 [1 ]=( tRadi i [ 1 ] ) ∗ cos ( th ) ;
12
13 p 2 [0 ]=0 ;
14 p 2 [1 ]=0 ;
15 p2[2]=p1[2]=p0[2]= z ;
16
17 AddElement ( CreatTr iang le (p2 ,p1 ,p0) ) ;
18
19 // r e s t o f the arc . Every t rapezo id ge t s d iv ided in to two t r i a n g l e s
20 f o r ( i n t i =0; i<(RadialMeshCount−1) ; i++){
21
22 p0[0]= s in ( th l a s t ) ∗( tRadi i [ i +1]) ;
23 p0[1]= cos ( th l a s t ) ∗( tRadi i [ i +1]) ;
24
25 p3[0]= s in ( th l a s t ) ∗( tRadi i [ i +2]) ;
26 p3[1]= cos ( th l a s t ) ∗( tRadi i [ i +2]) ;
27
28 p1[0]= s in ( th ) ∗( tRadi i [ i +1]) ;
29 p1[1]= cos ( th ) ∗( tRadi i [ i +1]) ;
30
31 p2[0]= s in ( th ) ∗( tRadi i [ i +2]) ;
32 p2[1]= cos ( th ) ∗( tRadi i [ i +2]) ;
33
34 p2[2]=p1[2]=p0[2]=p3[2]= z ;
35
36 AddElement ( CreatTr iang le (p0 ,p1 ,p3) ) ;
37 AddElement ( CreatTr iang le (p1 ,p2 ,p3) ) ;
38
39 }
40 th l a s t = th ;
41
42 }
43 . . .

Listing 7.2: Discretization code for a disc in DGeoBag.
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Listing 7.3 shows the code in DGeoBag to discretize a annulus with triangles.

1 f o r ( i n t j =0; j<AxialMeshCount ; j++){
2
3 // every trapez get d iv ided in to 2 t r i a n g l e s
4 f o r ( i n t i =0; i<RadialMeshCount ; i++){
5
6
7 // f i r s t t r i a n g l e s o f the t rapez
8 double f i r s t po int x = s in ( ( j ∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i ] ) ;
9 double f i r s t po int y = cos ( ( j ∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i ] ) ;

10
11 double second point x = s in ( ( ( j +1)∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i ] ) ;
12 double second point y = cos ( ( ( j +1)∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i ] ) ;
13
14 double th i rd point x = s in ( ( ( j +1)∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i +1]) ;
15 double th i rd point y = cos ( ( ( j +1)∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i +1]) ;
16
17 KThreeVector v1( f i r s t po int x , f i r s t po int y , f i r s t po int z ) ;
18 KThreeVector v2( second point x , second point y , second point z ) ;
19 KThreeVector v3( th i rd point x , th i rd point y , th i rd point z ) ;
20
21 KThreeVector fN1 = v2−v 1 ;
22 KThreeVector fN2 = v3−v 1 ;
23 double fA = fN 1 . Magnitude ( ) ;
24 double fB = fN 2 . Magnitude ( ) ;
25 fN1 = fN 1 . Unit ( ) ;
26 fN2 = fN 2 . Unit ( ) ;
27 double fN3 = fN 1 .GetX ( ) ∗fN 2 .GetY( )− fN 1 .GetY( ) ∗fN 2 .GetX( ) ;
28 i f ( fN3>0){
29 KGMeshTriangle∗ r = new KGMeshTriangle (v1 , v2 , v3) ;
30 AddElement ( r ) ;
31
32 }
33 e l s e {
34 KGMeshTriangle∗ r = new KGMeshTriangle (v1 , v3 , v2) ;
35 AddElement ( r ) ;
36 }
37 }
38
39 f o r ( i n t i =0; i<RadialMeshCount ; i++){
40 // second t r i a n g l e s o f the t rapez
41 double f i r s t po int x = s in ( ( j ∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i ] ) ;
42 double f i r s t po int y = cos ( ( j ∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i ] ) ;
43
44 double second point x = s in ( ( j ∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i +1]) ;
45 double second point y = cos ( ( j ∗ d i s c ange l )∗PI /180) ∗( tRadi i [ i +1]) ;
46
47 double th i rd point x = s in ( ( j +1)∗ d i s c ange l∗PI /180) ∗( tRadi i [ i +1]) ;
48 double th i rd point y = cos ( ( j +1)∗ d i s c ange l∗PI /180) ∗( tRadi i [ i +1]) ;
49
50
51 KThreeVector v1( f i r s t po int x , f i r s t po int y , f i r s t po int z ) ;
52 KThreeVector v2( second point x , second point y , second point z ) ;
53 KThreeVector v3( th i rd point x , th i rd point y , th i rd point z ) ;
54 KThreeVector fN1 = v2−v 1 ;
55 KThreeVector fN2 = v3−v 1 ;
56 double fA = fN 1 . Magnitude ( ) ;
57 double fB = fN 2 . Magnitude ( ) ;
58 fN1 = fN 1 . Unit ( ) ;
59 fN2 = fN 2 . Unit ( ) ;
60 double fN3 = fN 1 .GetX ( ) ∗fN 2 .GetY( )− fN 1 .GetY( ) ∗fN 2 .GetX( ) ;
61 i f ( fN3>0){
62 KGMeshTriangle∗ r = new KGMeshTriangle (v1 , v2 , v3) ;
63 AddElement ( r ) ;
64
65 }
66 e l s e {
67 KGMeshTriangle∗ r = new KGMeshTriangle (v1 , v3 , v2) ;
68 AddElement ( r ) ;
69 }
70
71 }
72 }

Listing 7.3: Discretization code for an annulus in DGeoBag
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Listing 7.4 shows the code in DGeoBag to discretize a wire mesh with wires.

1 . . .
2 double f i r s t x = sq r t ( ( r e a l r ∗ r e a l r )−(p i t ch ha l f ∗ p i tch ha l f ) ) ;
3 double f i r s t t e s t = sq r t ( ( ( r e a l r −0.1) ∗( r e a l r −0.1) )−(p i t ch ha l f ∗ p i tch ha l f ) ) ;
4
5 KThreeVector tmp e(− f i r s t x , p i t ch ha l f , z ) ;
6 KThreeVector tmp z(− f i r s t t e s t , p i t ch ha l f , z ) ;
7 KThreeVector tmp y( f i r s t t e s t , p i t ch ha l f , z ) ;
8 KThreeVector tmp f ( f i r s t x , p i t ch ha l f , z ) ;
9

10 KThreeVector tmp g(− f i r s t x,−p i tch ha l f , z ) ;
11 KThreeVector tmp x(− f i r s t t e s t ,−p i tch ha l f , z ) ;
12 KThreeVector tmp w( f i r s t t e s t ,−p i tch ha l f , z ) ;
13 KThreeVector tmp h( f i r s t x,−p i tch ha l f , z ) ;
14
15 //one wire ge t s d iv ided in to 3 wi re s to change the d i s c r e t i z a t i o n along the wire
16 KGMeshWire∗ meshwire f i r s t p lus = new KGMeshWire(tmp e , tmp z , wire−>GetWiresDiameter ( ) ) ;
17 KGMeshWire∗ meshwire f i r s t p lus 2 = new KGMeshWire(tmp z , tmp y , wire−>GetWiresDiameter ( ) ) ;
18 KGMeshWire∗ meshwire f i r s t p lus 3 = new KGMeshWire(tmp y , tmp f , wire−>GetWiresDiameter ( ) ) ;
19
20 KGMeshWire∗ meshwire f i r s t minus1 = new KGMeshWire(tmp g , tmp x , wire−>GetWiresDiameter ( ) ) ;
21 KGMeshWire∗ meshwire f i r s t minus2 = new KGMeshWire(tmp x , tmp w, wire−>GetWiresDiameter ( ) ) ;
22 KGMeshWire∗ meshwire f i r s t minus3 = new KGMeshWire(tmp w, tmp h , wire−>GetWiresDiameter ( ) ) ;
23
24 meshcount ends =(0.1) / (0 .00475) ; // D i s c r e t i z a t i o n at the edges o f the wire
25 meshcount middle =in t ( ( ( f i r s t x+f i r s t x ) −0.2) / ( 0 . 01 ) ) ;
26 meshcount middle =in t (meshcount middle ) ;
27
28 RefineAndAddElement (meshwire f i r s t plus , meshcount ends , 1 ) ;
29 RefineAndAddElement (meshwire f i r s t p lus 2 ,meshcount middle , 1 ) ;
30 RefineAndAddElement (meshwire f i r s t p lus 3 ,meshcount ends , 1 ) ;
31
32 RefineAndAddElement (meshwire f i r s t minus 1 ,meshcount ends , 1 ) ;
33 RefineAndAddElement (meshwire f i r s t minus 2 ,meshcount middle , 1 ) ;
34 RefineAndAddElement (meshwire f i r s t minus 3 ,meshcount ends , 1 ) ;
35
36
37 double tmp(0) ;
38 tmp= pi tch ha l f+p i tch ;
39 f o r ( i n t i =0; i<Number −1; i++){
40 double tmp1(0) ;
41 tmp1 = sqr t ( ( r e a l r ∗ r e a l r )−(tmp∗tmp) ) ;
42 double t e s t= sq r t ( ( r e a l r −0.1) ∗( r e a l r −0.1)−(tmp∗tmp) ) ;
43
44
45 i f (tmp<( r e a l r −0.1) ){
46 in t meshcount ends =(0.1) / (0 .00475) ;
47 i n t meshcount middle=((tmp1+tmp1) −0.2) / ( ( 0 . 0 1 ) ) ;
48
49 KThreeVector tmp a (tmp1 ,tmp , z ) ;
50 KThreeVector tmp b( te s t , tmp , z ) ;
51 KThreeVector tmp x(− t e s t , tmp , z ) ;
52 KThreeVector tmp y(−tmp1 ,tmp , z ) ;
53 KGMeshWire∗ meshwire1 = new KGMeshWire(tmp a , tmp b , wire−>GetWiresDiameter ( ) ) ;
54 KGMeshWire∗ meshwire2 = new KGMeshWire(tmp b , tmp x , wire−>GetWiresDiameter ( ) ) ;
55 KGMeshWire∗ meshwire3 = new KGMeshWire(tmp x , tmp y , wire−>GetWiresDiameter ( ) ) ;
56 RefineAndAddElement (meshwire 1 ,meshcount ends , 1 ) ;
57 RefineAndAddElement (meshwire 2 ,meshcount middle , 1 ) ;
58 RefineAndAddElement (meshwire 3 ,meshcount ends , 1 ) ;
59
60
61 KThreeVector tmp r (tmp1,−tmp , z ) ;
62 KThreeVector tmp t ( te s t ,−tmp , z ) ;
63 KThreeVector tmp z(− t e s t ,−tmp , z ) ;
64 KThreeVector tmp u(−tmp1,−tmp , z ) ;
65 KGMeshWire∗ meshwire4 = new KGMeshWire(tmp r , tmp t , wire−>GetWiresDiameter ( ) ) ;
66 KGMeshWire∗ meshwire5 = new KGMeshWire(tmp t , tmp z , wire−>GetWiresDiameter ( ) ) ;
67 KGMeshWire∗ meshwire6 = new KGMeshWire(tmp z , tmp u , wire−>GetWiresDiameter ( ) ) ;
68 RefineAndAddElement (meshwire 4 ,meshcount ends , 1 ) ;
69 RefineAndAddElement (meshwire 5 ,meshcount middle , 1 ) ;
70 RefineAndAddElement (meshwire 6 ,meshcount ends , 1 ) ;
71
72 }
73 e l s e {
74 in t meshcount ends=(tmp1+tmp1) / (0 . 005 ) ;
75
76 KThreeVector tmp a (tmp1 ,tmp , z ) ;
77 KThreeVector tmp b(−tmp1 ,tmp , z ) ;
78 KThreeVector tmp h(tmp1,−tmp , z ) ;
79 KThreeVector tmp j (−tmp1,−tmp , z ) ;
80 KGMeshWire∗ meshwire2 = new KGMeshWire(tmp h , tmp j , wire−>GetWiresDiameter ( ) ) ;
81 KGMeshWire∗ meshwire3 = new KGMeshWire(tmp a , tmp b , wire−>GetWiresDiameter ( ) ) ;
82
83 RefineAndAddElement (meshwire 2 ,meshcount ends , 1 ) ;
84 RefineAndAddElement (meshwire 3 ,meshcount ends , 1 ) ;
85
86 }
87 tmp=tmp+pi tch ;
88 }
89 . . .

Listing 7.4: Discretization code for a wire mesh in DGeoBag
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Listing 7.5 shows the code in DGeoBag to discretize a cylinder with rectangles.

1 . . .
2 KThreeVector p 0 ;
3 KThreeVector p 1 ;
4 KThreeVector p 2 ;
5 KThreeVector p 3 ;
6
7 double th = 0 ;
8 double th l a s t = 0 ;
9

10 std : : vector< double > dz ( cy l inde r−>GetLongitudinalMeshCount ( ) , 0 ) ;
11
12 f o r ( unsigned in t i = 1 ; i <= cy l inde r−>GetAxialMeshCount ( ) ; i++ )
13 {
14 th = ( ( double ) ( i % cy l inde r−>GetAxialMeshCount ( ) ) ) / cy l inde r−>GetAxialMeshCount ( )

∗ 2 . ∗ M PI ;
15
16 p 0 [ 0 ] = p 3 [ 0 ] = cy l inder−>GetRadius ( ) ∗ cos ( th l a s t ) ;
17 p 0 [ 1 ] = p 3 [ 1 ] = −cy l inde r−>GetRadius ( ) ∗ s i n ( th l a s t ) ;
18 p 1 [ 0 ] = p 2 [ 0 ] = cy l inder−>GetRadius ( ) ∗ cos ( th ) ;
19 p 1 [ 1 ] = p 2 [ 1 ] = −cy l inde r−>GetRadius ( ) ∗ s i n ( th ) ;
20
21 D i s c r e t i z e I n t e r v a l ( ( cy l inde r−>GetP1() [ 2 ] − cy l inde r−>GetP0() [ 2 ] ) , cy l inde r−>

GetLongitudinalMeshCount ( ) , cy l inde r−>GetLongitudinalMeshPower ( ) , dz ) ;
22
23 p 0 [ 2 ] = p 1 [ 2 ] = cy l inder−>GetP0() [ 2 ] ;
24 f o r ( unsigned in t k = 0 ; k < cy l inde r−>GetLongitudinalMeshCount ( ) ; k++ )
25 {
26 p 2 [ 2 ] = p 3 [ 2 ] = p 0 [ 2 ] + dz [ k ] ;
27
28 KGMeshRectangle∗ r = new KGMeshRectangle ( p0 , p1 , p2 , p3 ) ;
29 AddElement ( r ) ;
30
31 p 0 [ 2 ] = p 1 [ 2 ] = p 2 [ 2 ] ;
32 }
33 th l a s t = th ;
34 }
35 . . .

Listing 7.5: Discretization code for a cylinder.
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D. XENON1T Sketch

Figure D.13 shows the geometrical parameters of the XENON1T for the simulation.

Figure D.13.: The XENON1T sketch for the implementation into the DARWIN module.
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E. Geometrical Parameters of the implemented Xenon1T Shapes

All the complex shapes of the XENON1T geometry, which have been impemented in
DGeoBag are shown here. The CAD drawings are created in cooperation with the CAD
workshop of the UZH.
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Figure E.14.: The Xenon1T cryostat. The geometrical parameters are shown.
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Figure E.15.: The bottom PMT array simplified with a cylinder. The geometrical param-
eters of the PMT array are shown.

(a) The cathode holder design (b) The Position of the cathode

Figure E.16.: (a) The cathode holder with all geometrical parameters. (b) The position of
the cathode holder inside the Xenon1T geometry.

(a) The protection grid holder. (b) The imported Teflon part.

Figure E.17.: (a) The protection grid holder and some Teflon reflection parts. (b) The
imported CAD drawing of a Teflon reflection part.
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(a) The position of the high voltage power supply. (b) The imported power supply and isola-
tion.

Figure E.18.: (a) The position of the high voltage power supply. (b) The imported CAD
drawing of the power supply and the isolation.

Figure E.19.: The geometrical parameters of the field shaping rings and the Teflon reflec-
tion wall. Xenon1T consists of 76 field shaping rings. The position of the
rings is also shown.
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(a) The Gate holder design (b) The Anode holder design

Figure E.20.: (a) The gate holder with all geometrical parameters. (b) The anode holder
with all geometrical parameters.

(a) The position of the Gate holder and anode holder. (b) The top assembly.

Figure E.21.: (a) The position of the Gate holder and anode holder inside the geometry.
(b) The Position of the top PMT array, the Teflon reflection part and the
protection grid holder.
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F. 7-Point Numerical Cubature

Listing 7.6 shows the implemented calculation routine for the potential of a triangle with
the 7-Point numerical cubature .

1 . . .
2 KPosit ion p = source−>GetP0() − P;
3
4 // de f i n e a c h a r a c t e r i s t i c s i z e f o r computation o f d i s t ance r a t i o
5 double sideA ( source−>GetA( ) ) ;
6 double sideB ( source−>GetB ( ) ) ;
7 double sideC ( ( source−>GetP2()−source−>GetP1() ) . Magnitude ( ) ) ;
8
9 // determine d i s t ance r a t i o

10 double d i s tanceRat ioFactor ( p . Magnitude ( ) / ( ( sideA+sideB+sideC ) /3 . ) ) ;
11
12 //Gaussian weights
13 const double w3[3 ]={270/1200. , (155 .+ sq r t ( 1 5 . ) ) /1200. ,(155.− sq r t ( 1 5 . ) ) /1200 .} ;
14
15 //
16 double w [ 7 ] ;
17 double Sum,R,R3 , c ;
18 double Phi ( 0 . ) ;
19
20 // d i s t ance r a t i o > 60 => 7−point cubature
21 i f ( d i s tanceRat ioFactor >60){
22 const double ceps 0( 1 . / ( 4 .∗KEMConstants : : Pi∗KEMConstants : : Eps 0) ) ;
23 double Area ( source−>Area ( ) ) ;
24 KEMThreeVector Q[ 7 ] ;
25
26
27 KEMThreeVector A( source−>GetP0() ) ;
28 KEMThreeVector B( source−>GetP1() ) ;
29 KEMThreeVector C( source−>GetP2() ) ;
30
31 // alpha , beta , gamma
32 in t i , j ;
33 const double c 3=1 ./3 . ;
34 const double alpha [3]={ c 3 ,0 .059715871789770 ,0 .797426985353087} ;
35 const double beta [3]={ c 3 ,0 .470142064105115 ,0 .101286507323456} ;
36 const double gamma[3]={ c 3 ,0 .470142064105115 ,0 .101286507323456} ;
37
38 //Q = Pos i t i on o f the po int charges
39 Q[0]= alpha [ 0 ] ∗A+beta [ 0 ] ∗B+gamma [ 0 ] ∗C;
40 j =1;
41 Q[1]= alpha [ j ]∗A+beta [ j ]∗B+gamma[ j ]∗C;
42 Q[2]= beta [ j ]∗A+alpha [ j ]∗B+gamma[ j ]∗C;
43 Q[3]=gamma[ j ]∗A+beta [ j ]∗B+alpha [ j ]∗C;
44 j =2;
45 Q[4]= alpha [ j ]∗A+beta [ j ]∗B+gamma[ j ]∗C;
46 Q[5]= beta [ j ]∗A+alpha [ j ]∗B+gamma[ j ]∗C;
47 Q[6]=gamma[ j ]∗A+beta [ j ]∗B+alpha [ j ]∗C;
48
49 // ”Charge c a l c u l a t i o n ” o f the po int charges . Sum of a l l charges i s equal to the uni t

charge
50 w[0]=w3 [ 0 ] ;
51 f o r ( i n t i =1; i<=3; i++)
52 w[ i ]=w3 [ 1 ] ;
53 f o r ( i n t i =4; i<=6; i++)
54 w[ i ]=w3 [ 2 ] ;
55 Sum=0. ;
56 f o r ( i n t i =0; i<=6; i++)
57 {
58 R=(P−Q[ i ] ) . Magnitude ( ) ;
59 c=1./R;
60 Sum+=w[ i ]∗ c ;
61 }
62 //phi = 1/4πε0

∫
A 1/(~P − ~Q)dA = 1/4πε0 · A

∑ng
i=1 wi/(~P − ~Qi)

63 Phi=Area∗ ceps 0∗Sum;
64
65 return Phi ;
66 . . .

Listing 7.6: The implemented code for the calculation of the triangle potential at a field
point P with the 7-point numerical cubature.
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Listing 7.7 shows the implemented calculation routine for the electric fields of a triangle
with the 7-Point numerical cubature .

1 . . .
2 double w [ 7 ] ;
3 double Sum=0;
4 double R=0;
5 double R3=0;
6 double c=0;
7 double Phi ( 0 . ) ;
8 double Area=0;
9

10 double sideA ( source−>GetA( ) ) ;
11 double sideB ( source−>GetB ( ) ) ;
12 double sideC ( ( source−>GetP2()−source−>GetP1() ) . Magnitude ( ) ) ;
13
14 const double ceps 0( 1 . / ( 4 .∗KEMConstants : : Pi∗KEMConstants : : Eps 0) ) ;
15 Area=( source−>Area ( ) ) ;
16 KEMThreeVector Q[ 7 ] ;
17 KEMThreeVector SumE(0 ,0 , 0 ) ;
18
19 KEMThreeVector A( source−>GetP0() ) ;
20 KEMThreeVector B( source−>GetP1() ) ;
21 KEMThreeVector C( source−>GetP2() ) ;
22
23 in t i , j ;
24 const double c 3=1 ./3 . ;
25 const double alpha [3]={ c 3 ,0 .059715871789770 ,0 .797426985353087} ;
26 const double beta [3]={ c 3 ,0 .470142064105115 ,0 .101286507323456} ;
27 const double gamma[3]={ c 3 ,0 .470142064105115 ,0 .101286507323456} ;
28
29 //Q = Pos i t i on o f the point charges
30 Q[0]= alpha [ 0 ] ∗A+beta [ 0 ] ∗B+gamma [ 0 ] ∗C;
31 j =1;
32 Q[1]= alpha [ j ]∗A+beta [ j ]∗B+gamma[ j ]∗C;
33 Q[2]= beta [ j ]∗A+alpha [ j ]∗B+gamma[ j ]∗C;
34 Q[3]=gamma[ j ]∗A+beta [ j ]∗B+alpha [ j ]∗C;
35 j =2;
36 Q[4]= alpha [ j ]∗A+beta [ j ]∗B+gamma[ j ]∗C;
37 Q[5]= beta [ j ]∗A+alpha [ j ]∗B+gamma[ j ]∗C;
38 Q[6]=gamma[ j ]∗A+beta [ j ]∗B+alpha [ j ]∗C;
39 // ”Charge c a l c u l a t i o n ” o f the po int charges . Sum of a l l charges i s equal to the uni t

charge
40 w[0]=w3 [ 0 ] ;
41 f o r ( i n t i =1; i<=3; i++)
42 w[ i ]=w3 [ 1 ] ;
43 f o r ( i n t i =4; i<=6; i++)
44 w[ i ]=w3 [ 2 ] ;
45 Sum=0. ;
46 double sq=0;
47 SumE. SetComponents ( 0 . , 0 . , 0 . ) ;
48 f o r ( i n t i =0; i <7; i++)
49 {
50 R=(P−Q[ i ] ) . Magnitude ( ) ;
51 sq=1./R;
52 R3=sq∗ sq∗ sq ;
53 SumE+=(w[ i ]∗R3) ∗(P−Q[ i ] ) ;
54 }
55
56
57 f i e l d =(Area∗ ceps 0)∗SumE;
58
59 return f i e l d ;
60 . . .

Listing 7.7: The implemented code for the electric field calculation of a triangle with the
7-point numerical cubature.
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90 7. Appendix

Figure F.22 shows the electric field Ez of the KATRIN experiement at x=2 m, y=0 m,
z=7 m calculated analytically with the newton-leibniz integrals. Figure F.23 shows the
electric field Ez of the KATRIN experiment at x=2 m, y=0 m, z=7 m calculated with the
7-point numerical cubature.
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Figure F.22.: The electric field Ezof the KATRIN calculated analytically along the z-axis
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Figure F.23.: The electric field Ez of KATRIN experiment calculated with the 7-point
numerical cubature along the z-axis
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G. PMT Spectra of the Amplifier PMT Test

Figure G.24.: The PMT spectrum of PMT1 with the Philipps amplifier. The noise peak,
single-photo-electron-Peak (SPE) and the second SPE peak are fitted with
Gaussian functions. The plateau between the noise peak and the SPE-peak
is not clearly understood and also fitted with a Gaussian function.

Figure G.25.: The PMT spectrum of PMT1 with the UZH amplifier. The noise peak,
single-photo-electron-Peak (SPE) and the second SPE peak are fitted with
Gaussian functions. The plateau between the noise peak and the SPE-peak
is not clearly understood and also fitted with a Gausian function.
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H. Calibration Curves of the Bell Test

Figure H.26.: The filling curve of the level meter 1. This curve is used to calibrate level
meter 1. The step comes from the installed Teflon spacer inside the capacitor.

Figure H.27.: The filling curve of the level meter 2. This curve is used to calibrate level
meter 2. The step comes from the installed Teflon spacer inside the capacitor.
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the XENON group in Zürich. I want to thank both groups for supporting me.
I thank Dr. Martin Auger for his numerous helpful advices, suggestions and for showing
me that you can learn from every mistake. With Dr. Alexander Kish I had a good time
in Naples during the DARWIN meeting. It was a pleasure to work with you. Thanks to
Dr. Ferenc Glück for helping with all the theoretical aspects for a good simulation. He is
always willingness to help and finds always a solution for an existing problem. I want to
thank Dipl.-Phys Manuel Walter, my office partner in Switzerland, from whom I learned
a lot about PMTs. Thanks to M.Sc. Thomas Joseph Corona, a Ph.D. student from the
UNC, for all the help with the simulation package KEMField. I want to thank Dipl.-Phys.
Daniel Hilk for being a very good advisor. He always looked very well after me and thanks
for proofreading my work. Also a special thanks to Andreas James, the technical assistant
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