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Chapter 1

Introduction

The determination of the nature of dark matter which is one of the most impor-
tant ingredients of the universe considering the evolution of its structure remains
among the most important questions in astrophysics. Though there are several
proposals available in the literature to solve this problem the most promising can-
didate is a Weakly Interacting Massive Particle or WIMP. The most extensively
studied candidate is the neutralino arising from a supersymmetric extension of the
standard model. However there are several other theories giving rise to appropri-
ate candidates like the model of Universal Extra Dimensions which drew a lot of
attention recently.

It is this model which is investigated in great detail in this diploma thesis
with special emphasis on the direct detection of the B(1) which is supposed to
be the lightest stable particle arising from this theory. Theoretical predictions
on its cross sections are investigated considering both spin-independent and spin-
dependent interactions. Moreover predictions on differential and total event rates
are computed as well. Finally limits on the cross sections and WIMP-nucleon
couplings are analyzed using data from the CDMS and XENON10 experiments.

Both experiments are so-called direct detection experiments which seek to mea-
sure the energy deposited when a WIMP interacts with a nucleus in the detector.

For example CDMS is an experiment using semiconductor crystals which are
cooled down to a temperature of a few millikelvin. Avoiding unwanted background
in these experiments is usually one of the most important subjects. Therefor they
are usually installed deep underground and surrounded by shields of lead and
polyethylene.

CDMS uses so-called ZIP (=Z-sensitive Ionization and Phonon) detectors in
order to discriminate between electron recoils which constitute most of the back-
ground and nuclear recoils arising from neutrons and hopefully WIMPs on an
event-by-event basis by simultaniously measuring an ionization and a phonon sig-
nal. Moreover the detectors also provide timing information which can be used to
reject surface events. These events are problematic since they yield poor ionization
collection and hence mimic nuclear recoils.

1



2 CHAPTER 1. INTRODUCTION

The used data from CDMS was obtained during the run 118 from October 11,
2003 until January 11, 2004 and the run 119 from March 25, 2004 to August 8,
2004 using two towers each with 6 detectors. The data from XENON10 was taken
between October 6, 2006 and February 14, 2007.



Chapter 2

UEDs - Theoretical
Background

In everyday life people experience the existence of only three space dimensions
and of course one time dimension. Since this seems to be so natural the question
arises why physicists consider additional dimensions at all. To understand these
thoughts it is the best to start with the first occurance of extra dimensions in the
literature which means taking a look at the work of Theodor Kaluza and Oscar
Klein1 who released their determinations intended to combine General Relativity
and Electrodynamics in the 20s of the last century only a few years after Albert
Einstein developed General Relativity.

So since General Relativity plays such a crucial role in the context of extra
dimensions this chapter is about to start with a short introduction to Special
Relativity and this intellectual masterpiece.

2.1 Special Relativity

In 1905 Albert Einstein published Special Relativity a theory based on two main
concepts:

• The special principle of relativity
All laws of physics remain the same in all inertial frames which means that
no privileged frames of reference exist.

• Invariance of the speed of light
The speed of light in a vacuum is a universal constant which is especially
independent of the motion of the source.

1In fact there even was an earlier attempt by Nordström in 1914 but this efford did not
achieve so much attention especialy because he used his own (wrong) theory of Gravitation.
Anyway Kaluza and Klein were influenced by his work.

3
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The resulting concept revolutionized physics by combining space and time into a
four-dimensional vector space the so-called Minkowski space breaking down the
idea of an absolute time. In this Minkowski space the differential of distance ds
is given by

ds2 = dt2 − d~r 2 = ηαβ dxαdxβ (2.1)

with the metric

ηαβ =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.2)

The fact that all of its components are constant reflects that the space considered
in Special Relativity is flat.

One of the most important improvements was the replacement of Galilei trans-
formations with Lorentz transformations switching from one inertial frame to an-
other one. So physical laws need to be expressed in a new form reflecting their
abidance to Lorentz invariance. In other words they have to be written as a ten-
sor equation. For example Electrodynamics which will be discussed in more detail
below is a theory which is intrinsically covariant. Other theories however are not
which means that they have to be generalized to fit in the frame work of Special
Relativity.

Consider for example a pointlike particle of mass m neglecting all forces. Then
Newton’s Law yields

m
d~v
dt

= ~0 (2.3)

which is easily generalized to

m
duα

dτ
= 0 (2.4)

where

uα =
dxα

dτ
(2.5)

is the four velocity and τ a quantity parameterizing the world line of the particle
for example the proper time in the case that it is not massless.

This equation is correct because it is covariant and yields (2.3) in the non-
relativistic limit. In fact these two conditions generally define the way theories
are made relativistic.
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In the case that forces have an impact on the particle a force ~F in (2.3) and
Fα in (2.4) has to be introduced on the right side of these equations. An example
will be given immediately.

Finding a form for Electrodynamics which is invariant under Lorentz trans-
formations is a quite easy task because the Maxwell equations are covariant by
design. This can be shown by introducing the antisymmetric field strength tensor

Fαβ = ∂αAβ − ∂βAα =


0 −EX −EY −EZ
EX 0 −BZ BY
EY BZ 0 −BX
EZ −BY BX 0

 (2.6)

with the gauge potential Aα and the components of the elecrtric field Ei and the
Magnetic Field Bi. Now the homogenous and inhomogeneous Maxwell equations
can be written as

εαβγδ∂βFγδ = 0 (2.7)

and

∂αF
αβ = 4πjβ (2.8)

respectively which are manifest covariant and where the fully antisymmetric
Levi-Cività-Pseudotensor ε has been introduced. Using this convention the equa-
tion of motion for a pointlike particle with charge q is given by

m
duα

dτ
= qFαβuβ . (2.9)

Again the validity can be checked by showing that this equation yields the known
non-relativistic result. Moreover the energy-momemtum tensor

Tαβ =
1

4π

(
FαγF

γβ +
1
4
ηαβFγδF

γδ

)
(2.10)

is of importance considering Generel Relativity because due to the mass energy
equivalence it occurs as a source term in Einstein’s field equation.

After finishing his Special Relativity Einstein continued his work trying to find
a covariant form for Newton’s theory of Gravitation which is basically given by
the equation of motion for a pointlike particle with mass m

m
d2~r

dt2
= −m∇φ(~r) (2.11)
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and the field equation for the gravitational potential φ

4φ(~r) = 4πGρ(~r) (2.12)

where the matter density ρ appears as the source of φ. These equations look very
similar to the field equation of Electrostatics and the corresponding non-relativistic
equation of motion of a charged particle given by

4φel(~r) = −4πρel(~r) and m
d2~r

dt2
= −q∇φel(~r) (2.13)

respectively. However the underlying truth is much more complicated. This can
be seen by realizing that the source ρel transforms like the 0-component of a
four-vector (the current jα) whereas ρ transforms like the 00-component of a
Lorentztensor namely the energy-momentum tensor describing the mass density.

Nevertheless Einstein succeeded in overcoming all appearing problems and
eventually published General Relativity which is described in the next section in
1916.

2.2 General Relativity

Dealing with General Relativity means to abandon the restriction of considering
solely inertial frames. Similar to Special Relativity there are some important
concepts the whole theory is based on.

• The equivalence of inertial and gravitational mass

• The principle of equivalence
There is a local inertial frame for every point in spacetime even in the pres-
ence of a gravitational field.

The last topic makes it possible to start with a theory which form is known
in the framework of Special Relativity and accordingly in a local inertial frame
to derive the general form including gravitation. The basic principle to do this is
rather easy.

Consider for example a free falling satellite in orbit with respect to the earth.
In case that this satellite laboratory with coordinates ξ is small enough that the
inhomogeneity of the earth’s gravitational field can be neglected it constitutes a
local inertial frame (Minkowski space) where the differential of distance ds is given
by

ds2 = ηαβ dξαdξβ (2.14)
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with the constant metric ηαβ given in (2.2). The changeover from this local in-
ertial frame to a different arbirtary frame (Riemann space) is accomplished by
introducing a coordinate transformation

ξα = ξα(x) (2.15)

which yields

ds2 = gµν(x)dxµdxν (2.16)

with the metric tensor

gµν(x) = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
. (2.17)

This transformation leaves its marks in the functional dependence of the metric
from the coordiantes x. So in fact this represents the mathematical form of the
gravitational field.

Even though this way of generalizing physical laws to a world where gravitation
is included is in principle rather simple in most cases the actual computations are
quite difficult and tedious. Fortunately there is another solution for this problem
provided by the so-called covariance principle which has actually already been used
to achieve physical laws in Special Relativity from their Newtonian counterparts.
But before proceeding with this two definitions have to be made.

First of all, tensors have to be introduced which are invariant under general
coordinate transformations. These so-called Riemann tensors can be easily defined
by setting

Aµ =
∂xµ

∂ξα
Aα (2.18)

where Aα denotes the familiar Lorentz tensor and Aµ the Riemann tensor. More-
over special attention has to be paid dealing with derivatives because the familiar
expression is not very helpful in the context of General Relitivity. Nevertheless
the following definition provides a suitable candidate:

DAµ

Dxν
=

dAµ

dxν
+ ΓµνκA

κ (2.19)

where the Christoffel symbols have been used which are related to the metric
tensor by

Γκλµ =
1
2
gκν

(
∂gµν
∂xλ

+
∂gλν
∂xµ

+
∂gµλ
∂xν

)
(2.20)



8 CHAPTER 2. UEDS - THEORETICAL BACKGROUND

It is quite easy to show that both (2.19) and (2.20) have the demanded transfor-
mation property. These definitions will prove to be very useful pretty soon.

Looking back promoting Newton’s laws to obey the framework of Special Rel-
ativity has been accomplished by trying to find equations which are covariant or
rather made of Lorentz tensors and yield the original law in the non-relativistic
limit.

The generalization from Special Relativity to General Relativity is quite sim-
ilar. In this case equations have to be found which are invariant with respect to
general coordinate transformations which means that they have to be established
using only Riemann tensors. Moreover these laws have to simplify to the appro-
priate equations considering Special Relativity. This last condition can be checked
by making the replacement gµν(x)→ ηµν . The just explained method is also know
as the covariance principle.

The two following examples are quite useful to show its appropriateness. The
equation of motion for a particle with mass m without considering any forces is
given in (2.4). Taking the definition of the covariant derivative into account this
is easily generalized to

m
Duµ

Dτ
= 0 (2.21)

or rather

duµ

dτ
= −Γµνλu

νuλ (2.22)

which is correct because from (2.21) it is obvious that the equation is covariant and
from (2.22) it is clear that it yields (2.4) for gµν(x)→ ηµν because the Christoffel
symbols (2.20) vanish for a constant metric. They obviously incorporate the im-
pact from the gravitational field on the particle. Anyway it should be kept in mind
that uµ denotes a Riemann tensor at this stage. Of course this can also be derived
by brute force considering a general coordinate transformation and inserting this
approach into (2.4).

The second example is of particular importance in the context of
Kaluza-Klein Theory. It is the generalization of Electrodynamics. So the Maxwell
equations and the equation of motion for a charged particle have to be promoted
converting (2.7), (2.8) and (2.9) to

εαβγδ∂βFγδ = 0 (2.23)

1√
−g

∂α

(√
−gFαβ

)
= 4πjβ (2.24)
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m
duµ

dτ
= −mΓµνλu

νuλ + qFµνuν (2.25)

where g denotes the determinante of the metric tensor. Apparently the form of
the homogenous Maxwell equations has not changed.

Up to now nothing has been said about the origin of the metric gµν . Before
coming to this point where the Einstein equations will be discussed briefly there
are three more quantities which have to be introduced in order to deal with the
core of General Relativity. These quantities are the Riemann curvature tensor,
the Ricci tensor and the scalar curvature whereof the latter two are derived from
the first one. The Riemann curvature is a tensor of fourth order which can be
written in terms of the Christoffel symbols:

Rκλµν = ∂νΓκλµ − ∂µΓκλν + ΓρλµΓκρν − ΓρλνΓκρµ (2.26)

Therefor it is clear that it is basically a functional of the metric tensor. It can
be shown that the components of this tensor vanish exactly in the case when the
considered space is flat which is its most important property. After this the Ricci
tensor and the scalar curvature can be defined by

Rµν = Rκµκν = gρκRρµκν (2.27)

and

R = Rµµ = gµνRµν (2.28)

respectively.
After these last definitions it is possible to take a look at the Einstein equations

which are differential equations for the still unknown metric gµν . It is clear that
these equations must depend on an overall energy momentum tensor Tµν because
according to the famous mass-energy equivalence

E = mc2 (2.29)

all kinds of energy contribute to the mass of the universe and therefor constitute
a source for the gravitational field. Moreover the functional dependence on the
metric cannot be just linear because the field itself carries energy. Hence higher
order terms are necessary in order to take care of self interaction. Finally it is
clear that the field equations should yield the Newtonian limit (2.12) in the case
of a static and weak gravitational field.
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The actual field equations cannot be derived. They can only be made plausible
based on the just made assumptions. However it can be shown that the following
four conditions are sufficent to completely determine the Einstein equations given
below.

• The equations should be written as tensor equations depending only on the
unknown metric gµν and the energy momentum tensor Tµν .

• The dependence on the metric should be only linear in the second derivatives
and linear and quadratic in the first derivatives.

• Overall energy momentum conservation should hold which means that the
covariant derivative of the energy momentum tensor should vanish.

• The field equations should yield the Newtonian limit considering a static
and weak gravitational field.

Using these assumptions finally leads to the famous Einstein equations

Rµν −
1
2
Rgµν = −8πGTµν . (2.30)

Their most important properties have already been discussed. Anyway it should be
pointed out that these equations do not completely determine the metric because
general gauge transformations are still possible which is similar to the case of
Electrodynamics.

Later on Einstein introduced yet another term linear in the metric in order to
obtain a(n archaic) stationary universe.

Rµν −
1
2
Rgµν + Λgµν = −8πGTµν (2.31)

introducing the so-called cosmological constant Λ. However this term is in conflict
with the Newtonian limit which constrains its value to a maximum of 10−46 km−2.
Therefor it is only of interest on cosmological scales especially considering the
expansion of the universe.

Finally it should be emphasized that these field equations give a geometrical
intepretation of the energy distribution of the universe which is a really remarkable
result.

A topic that concerned Einstein and others is the fact that the energy momen-
tum tensor is not determined by the theory but an input which must be derived
elsewhere. An example for the energy momentum tensor of the electromagnetic
field is given in (2.10).2 An attempt to come to grips with this problem undertaken
by Theodor Kaluza and Oscar Klein implementing additional space dimensions is
explained in the next chapter.

2Of course this Lorentz tensor has to be promoted to a Riemann tensor first.



2.3. KALUZA-KLEIN THEORY 11

2.3 Kaluza-Klein Theory

In the 20s of the last century only two fundamental interactions were known
namely Gravitation and Electrodynamics including their respective theoretical
frameworks. In these days the discovery of the Weak and Strong interactions was
yet to come.

Since unification of certain interactions has always been interesting especially
from a theoretical point of view it was only a matter of time until the first ap-
proaches were puplished pursueing the work done by combining Electricity and
Magnetism leading to the Maxwell equations.

So neglecting Nordström’s idea because he used the wrong theory of Gravita-
tion Kaluza was the first who tried to combine Gravitation and Electrodynamics.3

In 1919 he submitted a paper [1] about his work to Einstein which he really
appreciated. It was finally published in 1921 and contained an approach combining
the Einstein equations and Maxwell Equations by proposing an additional space
dimension.

The basic idea behind this and accordingly Klein’s approach is rather easy
to understand. To come to grips with this topic consider the Einstein equations
(2.30) in a vacuum which means setting Tµν = 0. In this case contracting with
gµν yields R = 0 which finally leads to the Einstein equations in vacuum

Rαβ = 0 . (2.32)

Now comes the important step of adding another space dimension. To do this it
should be remembered that the Ricci tensor and the scalar curvature have been
defined starting with the curvature tensor and summing over indices. So adding
another space dimension lets the sum run over the indices 0 to 4 instead of from 0
to 3. Splitting the summation into one part again summing only over 0 to 3 and
shuffling the rest to the other side of the equation obviously generates a source
term for the four dimensional part. Moreover additional equations arise from the
fifth dimension which have to be interpreted in an appropriate way.

So anticipating the result of the Kaluza-Klein Theory is that the just mentioned
generated sources indeed have the exact form of the energy momentum tensor of
the electromagnetic field assumed that the metric is interpreted in an adequate
way. Besides the additional equations yield the source free Maxwell equations and
the geodesic equation of a point like particle in an elctromagnetic field (2.25) is
recovered as well.

But in order to get a better understanding of how this beautiful theory works
it is necessary to go a bit further into detail.

So proceeding with the idea of Kaluza means considering the Ansatz

3The Kaluza-Klein theory is reviewed with a lot of historical anecdotes in [2] and [3].
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g
(5)
IJ =

(
g

(4)
µν

√
16πGAν√

16πGAµ 2φ

)
(2.33)

with the four dimensional familiar metric gµν , the gauge field from electrody-
namics Aµ, the new so-called dilaton field φ and the expanded five dimensional
metric gIJ .4 Moreover he imposed the so-called cylinder condition which means
that the metric should be independent of the fifth dimension or rather

∂5gIJ = 0 (2.34)

which is related to the fact that this dimension does not lead to any effects in ex-
isting experiments. However it should be emphasized that Kaluza did not impose
any kind of compactification which will be of importance pretty soon. Especially
because Kaluza only used the linearized aproximation of the Einstein equations
and the final equation of motion of a particle depends crucially on the new dilaton
field this idea is rather unaesthetic.

In 1926 Klein [4] published another proposal influenced by Kaluza’s ideas. The
most important difference however is a different definition of the five-dimensional
metric

g
(5)
IJ =

(
g

(4)
µν + φAµAν φAν

φAµ φ

)
(2.35)

which is a much more fruitable approach. Moreover he dropped the cylinder
condition and replaced it by compactifying the fifth dimension on a circle. This
approach will be explained in a little bit more detail in the next paragraph. In
fact it is also pointed out below that the compactification approximately yields the
cylinder condition which is the reason why the cylinder condition is used again in
the upcoming derivation. Moreover he set the dilaton field to a constant which is
a little bit tricky because this actually yields FµνFµν = 0. However this problem
will not be discussed here.

To explain the just stated arguments it is the best to start with the determi-
nation of the geodesic equation. To do this it is necessary to evalute

duI

dτ
= −ΓIJKu

JuK (2.36)

which is obviously nothing but the five dimensional generalization of (2.22). A
straight forward computation using the cylinder condition yields

4Greek indices still run from 0 to 3 whereas capital Latin indices run from 0 to 4 including
summing over the added dimension.
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duµ

dτ
= −Γµνλu

νuλ +
(
Aαu

α + u5
)
Fµβuβ (2.37)

and
du5

dτ
=
(
ΓµνλA

µ − ∂νAλ
)
uνuλ −

(
Aαu

α + u5
)
FβA

µuβ . (2.38)

Comparing (2.37) and the geodesic equation of a charged particle in a gravitational
and electromagnetic field (2.25) the similarity is really striking and it can be seen
that they are equal if the following identification is made

q = m
(
Aαu

α + u5
)

. (2.39)

Indeed a more proper analysis reveals that the right side of (2.39) is proportional
to the canonical conjugated momentum in the fifth dimension p5 and that this
momentum is conserved due to the cylinder condition which makes this identifi-
cation valid. To be more precise the following relation between p5 and the charge
q holds:

p5 =
q√

16πG
(2.40)

This is of crucial importance since it is well known that the charge q is always a
multiple of the electron charge e or rather q = ne with n ∈ Z. So (2.40) implies
that the momentum in the fifth dimension is quantized as well. This is the stage
where quantum theory emerges . . .

In quantum theory quantized momenta occur when periodic boundary condi-
tions are imposed. Dropping the convention ~ = c = 1 which is implicitely used
throughout this whole thesis and denominating the period length L the follow-
ing well known formula holds imposing periodic boundary conditions in the fifth
dimension:

p5 = n
2π~
L

with n ∈ Z (2.41)

Comparing (2.40) and (2.41) yields an estimate for L

L =
hc

e

√
16πG ≈ 0.8 · 10−30 cm (2.42)

which is obviously quite close to the Planck length

LP =

√
~G
c3
≈ 1.6 · 10−33 cm . (2.43)
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This really small value is supporting the idea of compactifying the fifth dimension
and also the non-appearance of effects related to this dimension in ordinary exper-
iments. It seems like all experiments might only see effects obtained by averaging
over the additional dimension.

Additionally it should be pointed out that the compactification together with
the just estimated extremely small period length directly yields the cylinder con-
dition. This can be seen by expanding the five dimensional metric in a Fourier
series:

gIJ(xK) =
∞∑

n=−∞
gIJ(xµ)e

inx5

L (2.44)

Considering that it has just been shown that the period length L is really small
yields that all modes with n 6= 0 can be neglected. However the special case of
n = 0 has the property that the metric does not depend on the compactified extra
dimension or rather ∂5gIJ = 0 which is nothing but the cylinder condition (2.34).
So considering quantization leads to a physical justification of the compactification
procedure and shows that this constraint is not just ”falling from the sky”.

After discussing the geodesic equation and the compactification in so much
detail a few information about the field equations are to come. As stated above
it is possible to derive these equations by using the metric (2.35) separating the
fraction related to the summation over the four usual dimensions from the rest and
interpreting the latter as a source term. This yields the Maxwell equations and
the Einstein equations with the energy momentum tensor of the electromagnetic
field as the the source. However another way is to take a closer look at the
Einstein-Hilbert action which gives raise to the vacuum equations

S[g] =
1

16πG

∫
R
√
−gd5x (2.45)

with the scalar curvature R which in this case is derived by contracting over all
five dimensions. However after a long tedious computation it is possible to write
R in a very convenient form

R = R(4) +
1
4
FµνFµν (2.46)

which shows the aspired result since one immediately recognizes the Lagrangian
of the Einstein equations and Maxwell equations. Of course varying the
Einstein-Hilbert action (2.45) using (2.46) leads to the advertised result.

Before finishing this chapter about classical Kaluza-Klein Theory it should be
pointed out that it is possible to leave the scope of Gravitation and Electrody-
namics. Looking at this unification from a more technical point of view it can
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be summarized by expanding the familiar spacetime adding another dimension
and interpreting the additional new parts of the metric as the gauge potentials.
However it is possible to expand this approach from abelian gauge theories like
Electrodynamics which obeys a U(1) symmetry to non-abelian gauge theories. So
in particular it is possible to incorporate Yang-Mills theories which is really inter-
esting because the Strong and the Weak interaction are described in this frame
work. Nevertheless this requires more extra dimensions and more complicated
geometric compactifications than the circle-compactification considered here and
it is still on a classical level. The quantization of Gravitation is still an unsolved
problem. Moreover it is problematic to obtain a chiral gauge theory which means
that fermions must be introduced in an artificial way.

However the interest in the idea of adding new dimension to space time has
grown within the last years especially due to the establishment of string theory as
the leading candidate for quantum gravity. But there are also other approaches
for theories beyond the standard model considering extra dimension like the ADD
model, the Randall-Sundrum model and Universal Extra Dimensions (UED). The
latter is of particular interest for astrophysics because it leads to a possible dark
matter candidate in a quite easy and aesthetic way. This theory and especially its
implications for dark matter will be discussed pretty soon. Of course this will also
make it necessary to leave the classical approaches and start considering quantum
field theory.

2.4 The Compactification of Extra Dimensions

Before starting with a discussion of the concept of Universal Extra Dimensions
in the next section it seems reasonable to take a closer look at the way extra
dimensions are compactified which is exceedingly well described in [5]. Thereby
a very instructive example is given revealing all of the most important aspects of
this expansion especially the generation of new particles which might constitute a
dark matter candidate.

The rest of this thesis does not deal with General Relativity anymore. Therefor
the four dimensional familiar space is considered to be a Minkowski spaceM4 not
a Riemann space. Accordingly the transformations of interest are just Lorentz
transformations.

For a short general discussion at the beginning a d-dimensional space is con-
sidered. The coordinates in M4 are labeled xµ whereas the coordinates in the
additional dimensions are labeld yi. In this space the d-dimensional action S(d)

has to be written down including all fields of interest and obeying all apropriate
symmetries, e.g. d-dimensional Lorentz invariance.

At this stage it should be pointed out that imposing d-dimensional Lorentz
invariance seems weird because the compactification constraint considered below
breaks this invariance anyway. However higher-dimensional Lorentz invariance is
necessary for many application. This can be made feasible by taking a look at the
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Figure 2.1: 5-dimensional space time with the topology M4 × S1. The extra
dimension is compactified on a circle orthogonal to the 4-dimensional Minkowski
space represented by a straight line. (Figure taken from [5].)

ultraviolet limit. In this case the particles have very small Compton wavelengths
even compared to the compactification scale and therefor the extra dimensions
seem to be uncompactified for them.

To proceed with the examination of the action the effective four dimensional
action S(4) has to be obtained. Therefor it is necessary to make a mode expansion
for all fields, substitute them into the d-dimensional action, choose an appropriate
compactifiction and integrate over this compactified space K.

So after writting S(d) the compactification has to be specified. In fact there are
a lot of possibilities. Usually a compactification of the form M4 ×K is choosen
which means that the properties of K are independent of its actual location with
respect toM4. However there are still many ways to compactify the extra dimen-
sions. In the case of only one extra dimension which is studied in more detail below
it is useful to compactify the added space on a circle meaning that space time has
the topologyM4 × S1. This example illustrated in figure 2.1 is quite easy to deal
with. Moreover it is very instructive revealing the most important properties of
extra dimensions which in fact is the reason why it is so popular as an introduction
to this topic. Important topologies in the context of two added dimensions are for
exampleM4 × T2 andM4 × S1 × S1. In the first case the compactified space has
the topology of a two-torus whereas it consists of two independent spheres in the
latter.

At this stage the just mentioned example of one extra dimension compact-
ified on a sphere with radius R is about to be discussed. So in this case the
5-dimensional space time can be described by a four-vector xµ denoting the coor-
dinates in the familiar Minkowski space and another coordinate y representing the
extra dimension. The compactification can be easily implemented by imposing a
periodic boundary condition or rather

y ↔ y + 2πR . (2.47)
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In order to discuss this kind of compactification a field has to be choosen which is
about to be examined. Obviously the easiest possibility is a complex scalar field Φ
obeying the Klein-Gordon equation in five dimensions

(∂K∂K +m2)Φ(xµ, y) = 0 (2.48)

with the Lagrangian

L =
1
2

(
∂KΦ(xµ, y)

)∗(
∂KΦ(xµ, y)

)
+

1
2
m2
∣∣∣Φ(xµ, y)

∣∣∣2 . (2.49)

Just as a reminder the capital Latin K runs from 0 to 4 as established on page 12.
The 5-dimensional action is given by

S(5) =
∫

dx4

∫ 2πR

0
dy L . (2.50)

Incorporating the boundary condition (2.47) gives rise to the mode expansion

Φ(xµ, y) =
1√
2πR

∞∑
n=−∞

φn(xµ)e
iny
R . (2.51)

Inserting this expansion in the Lagrangain (2.49) and correspondingly (2.49) in
(2.50) makes it very easy to evaluate the integration over the compactified dimen-
sion. Using the well known orthogonality relation∫ 2πR

0
dy e

i(n−m)y
R = 2πδnm (2.52)

immediately yields the effective 4-dimensional action

S(4) =
∫

dx4
∞∑

n=−∞

[
1
2

(
∂νφn(xµ)

)∗(
∂νφn(xµ)

)
+

1
2

(m2 +
n2

R2
)
∣∣∣φn(xµ)

∣∣∣2] .

(2.53)

Obviously the effective 4-dimensional theory describes nothing but an inifinite
number often called Kaluza-Klein tower of Klein-Gordon fields φ(xµ) with the
masses

m2
n = m2 +

n2

R2
. (2.54)

Taking a look at the expansion (2.51) it is evident that the additional contribution
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to the mass of the states with n 6= 0 is related to the momentum in the fifth
dimension p5:

p5 =
n

R
(2.55)

So assuming translation invariance in this dimension5 the corresponding quantized
momentum and accordingly the quantum number n is conserved which means that
the mode is stable. Upgrading this idea is of crucial importance searching for a
stable particle which might lead to a dark matter candidate.

Moreover there are some more properties of this theory which are noticable
from (2.53) and (2.54). First of all φ0(xµ) is the field with the lightest mass and
it is also the only one which is not degenerate. Therefor this zero mode which
is also called the ground state is identified with the usual 4-dimensional state.
So for example they are interpreted as the Standard Model particles whereas the
excited modes are supposed to be new particles which have not been observed yet.
However it is obvious that the accessible energy in an experiment should have a
magnitude of about ∼ R−1 in oder to excite these modes.

Another interesting feature of this theory is the fact that all modes of a certain
Kaluza-Klein tower have exactly the same quantum numbers, e.g. spin, couplings.
This is of striking difference to Supersymmetry where the new particles have dif-
ferent spins from their Standard Model counterparts. Moreover this implies that
only a few new parameters have to be introduced. To be more precise the UED
model depends on four unknown parameters: The Higgs mass mH , the compact-
ification radius R, the number of extra dimensions and the cut-off scale since it
turns out that this can only be an effective field theory. This is explained in little
bit more detail in section 2.5.

However even though the just investigated compactification seems so appealing
this cannot be the whole truth. The problem is that it is impossible to gain
a chiral gauge theory from a simple compactification on a topological smooth
space like the just investigated sphere because this theory would still contain
undesirable fermionic degrees of freedom. Fortunatelly it is possible to remove
them. Two frequently discussed choices are the restriction of fermions to branes
and the imposition of boundary conditions switching the space containing the
added dimensions from a manifold to a so-called orbifold. The latter case is of
special importance in the case of the UED model investigated here which is the
reason for discussing it in a little bit more detail.

From a mathematical point of view the correct way to introduce these bound-
ary conditions is to start with a manifold and impose an additional discrete sym-
metry. A convenient way to take a closer look at this approach is to go back to
the Klein-Gordon field from the just examined example.

5Translation invariance is actually already broken by the compactification. However a related
problem has already been discussed on page 15.
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Figure 2.2: The additional constrained y ↔ −y folds one half of the sphere defined
by y ↔ y+ 2πR on the other one yielding a line segment. (Figure taken from [5].)

In this example the topology or rather the compactification of the added dimen-
sion is defined in (2.47). Considering starting with a line segment this requirement
effectively leads to identifying its two endpoints. Therefor it is possible to restrict
the parameter y of this dimension to the interval [0, 2π).

But what if the topology of the extra dimension should just be a straight line
segment again? This goal can be achieved by imposing the additional discrete Z2

symmetry

y ↔ −y (2.56)

which yields

y ↔ 2πR− y (2.57)

if combined with (2.47). The net effect of this constraint is shown in figure 2.2.
Obviously it leads to folding one half of the circle on the other half yielding a
line segment. So the extra dimension compactified in this way gains two special
endpoints at y = 0 and y = πR. The topological space defined here is often
denoted as being S1/Z2 compactified.

The most important consequence of this construction can be understood by
taking a closer look at the mode expansion (2.51). Since the condition y ↔ −y
has been added it seems reasonable to rewrite it in terms of eigenfunctions of the
parity operator acting on the extra dimension

Φ(xµ, y) =
1√
πR

[
1√
2
φ

(+)
0 (xµ) +

∞∑
n=1

φ(+)
n (xµ) cos(

ny

R
) +

∞∑
n=1

φ(−)
n (xµ) sin(

ny

R
)

]
(2.58)
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with the new functions φ(+)
0 , φ(+)

n and φ
(−)
n being related to the formerly used

functions φn by

φ
(+)
0 = φ0 , φ(+)

n =
1√
2

(φn + φ−n) , φ(−)
n =

i√
2

(φn − φ−n) . (2.59)

As already stated this is just a rewriting of the former ansatz and therefor it is
still valid in the case of a compactification on a circle. However considering the
additional constraint (2.56) it is necessary to demand Φ to have a certain parity
in order to obtain a good parity symmetry in the fifth dimension. Taking a look
at (2.58) achieving this goal is rather easy. If Φ is taken to be even all φ(−)

n must
vanish and accordingly if Φ is taken to be odd all φ(+)

n including φ(+)
0 must vanish.

So the discrete symmetry (2.56) removes roughly half of the Kaluza-Klein modes
and moreover also the degeneracy of the excited modes.6 So as already stated
this orbifold compactification makes it possible to obtain a chiral gauge theory by
removing unwanted fermionic degrees of freedom.

After all these abstract discussions it is necessary to take a look at the so-called
UED expansion of the Standard Model which is the topic of the next section.

2.5 Universal Extra Dimensions

Within the last few years three interesting models have been proposed which have
drawn quite some attention in the particle physics community. These are the
already mentioned ADD model submitted by Arkani-Hamad, Dimopoulos and
Dvali in 1998, the Randall-Sundrum model and Universal Extra Dimensions.

The first two ideas were mainly intended to address the hierarchy problem or
rather the question why gravitation is so much weaker than the three Standard
Modelf interactions. Important properties of those models in contrast with Uni-
versal Extra Dimensions are that the Randall-Sundrum model introduces warped
extra dimensions and in the ADD model only gravity is allowed to propagate in
the extra dimensions. In other words in the latter all forces except gravity are
bound to the familiar four dimensional space called a brane in this context whereas
gravity is admitted to the whole bulk.

After all this pre-banter the concept of Universal Extra Dimensions can be
attacked. Great reviews on this topic are [6] and [7] with the later contrasting all
three introduced models. Apart from these review articles [8] and [9] have been
used for this chapter about the properties of Universal Extra Dimensions.

As expected this theory is distinguished by the fact that all Standard Model
particles are promoted to the added extra dimensions.

6In fact the degeneracy is already broken by higher order mass corrections and therefor it is
only valid at tree level which will be shortly discussed in the next section.
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At first sight this does not seem like a very appealing idea first of all because
fermions receive unwanted degrees of freedom using only a plain compactification
on a sphere. However as already addressed in section 2.4 this problem can be
avoided by imposing an orbifold compactification. In order to understand why
it is impossible to gain a chiral gauge theory without additional constraints just
consider the projection operators used in the Standard Model to obtain left-handed
and right-handed fermions

PL =
1− γ5

2
, PR =

1 + γ5

2
(2.60)

leading to

ψL = PLψ , ψR = PRψ . (2.61)

Obviously the definition of γ5 is necessary. However for example in five dimensions
γ5 becomes a part of the group structure which can be seen by promoting the
Clifford algebra {γµ, γµ} = 2gµν to five dimensions with ΓA denoting the five
dimensional generalization of the Gamma matrices. An easy definition making the
just stated argument clear is Γµ = γµ and Γ4 = iγ5. So to sumarize this argument
it is not possible to define a matrix in five dimensions with the properties of γ5

in four dimensions which in turn makes it impossible to construct appropriate
projection operators.

So consider for example the S1/Z2 compactification already discussed before.
The effective four dimensional Lagrangian of the Standard Model is easily derived
by writing down the five dimensional Lagrangian and integrating over the fifth
dimension which in fact is the same approach used in section 5.3. The rather
lenghty result can be found for example in [6]. However it should be pointed out
which kind of mode expansion is used for Standard Model fields. Considering the
result from the former section that wave functions are expected to have a certain
parity with respect to the discrete Z2 symmetry the question arises which fields
are supposed to be taken even and which ones odd. In the case of Gauge Bosons
and the Higgs Boson this choice is rather obvious. Since the zero modes which
correspond to the Standard model fields are removed from all odd fields it is clear
that all of these Standard Model particles have to be described by even wave
functions. This gives rise to the expansions

Aµ(xµ, y) =
1√
πR

[
1√
2
Aµ0 (xµ) +

∞∑
n=1

Aµn(xµ) cos(
ny

R
)

]

A5(xµ, y) =
1√
πR

∞∑
n=1

A5
n(xµ) sin(

ny

R
)

H(xµ, y) =
1√
πR

[
1√
2
H0(xµ) +

∞∑
n=1

Hn(xµ) cos(
ny

R
)

]
. (2.62)
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As already mentioned this expansion is a little bit more tricky in the case of
fermions. However in this case the ansatz

ψ(xµ, y) =
1√
πR

[
1√
2
ψ0(xµ)+

∞∑
n=1

PLψL,n(xµ) cos(
ny

R
)+

∞∑
n=1

PRψR,n(xµ) sin(
ny

R
)

]
(2.63)

is possible. In this formula ψ0 denotes the familiar Standard Model spinor chiral
in four dimensions whereas ψL and ψR turn out to be vector-like in the effective
theory. This rather complicated construction will not be explained here. However
it should be pointed out that the projection operators introduced here are the
familiar four dimensional ones defined in (2.60).

At this stage a very important property of Universal Extra Dimensions should
be pointed out which is especially interesting in the context of dark matter. It is
the conservation of Kaluza-Klein parity. The basics have been already discussed
in section 2.4. Nevertheless it is interesting to take a look at this property in more
detail.

First of all the UED model is the only theory introducing extra dimensions
giving rise to a stable particle and hence to a viable dark matter candidate. From
a theoretical point of view this can be understood as follows:

Consider a theory assuming that some particles are allowed to propagate in
the bulk whereas other particles are trapped brane fields which means that they
cannot leave the familiar four dimensional space time. Supposing that trapping
particles to the branes can be described by introducing Dirac δ-functions which is
equal to neglecting the thickness of the brane the full five dimensional action S5

is given by

S(5) =
∫

dx4

∫
dy
[
Lbulk + Lbraneδ(y)

]
(2.64)

with the five dimensional Lagrangian Lbulk and the four dimensional Lbrane for
the particles traped on the brane. For example actions of this form are used in the
ADD model mentioned above. Of course, however there are no δ-functions present
in the action describing the UED model. This lacking of δ-functions has a very
important consequence for the kinds of Kaluza-Klein modes which are allowed to
participate in an interaction.

Ignoring for example again the case of orbifolds for a moment it turns out
that only vertices with an even number of same-level excited Kaluza-Klein modes
are allowed whereas there is no restriction for the zero modes. In this context
Figure 2.3 shows some allowed and forbidden vertices of fermions and gauge fields
related to the absence of δ-functions in the Lagrangian. This result which in fact
arises from momentum conservation due to Translation invariance7 has already

7Remember that compactification on a manifold is considered in this short passage. No
additional discrete symmetries are imposed. Moreover Lorentz invariance and hence translation
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Figure 2.3: A few allowed and forbidden vertices due to the absence of δ-functions
in the Lagrangian of the UED model which can arise in models incorporating
branes. (Figure taken from [7].)

been obtained in section 4.6. To sum it up the Kaluza-Klein number is conserved
with respect to all interactions neglecting branes and orbifolds.

However as discussed before orbifolding is necessary to gain a more realistic
model. Obviously this approach breaks translation invariance explicitely by intro-
ducing for example two fixed points in the case of S1/Z2 which in fact is the only
valid compactification assuming one extra dimension.8 These fixed points give
rise to localized interactions emerging via radiative corrections which turn out to
be of crucial importance in the case of Universal Extra Dimensions as described
later in this section. Nevertheless a discrete subgroup called Kaluza-Klein parity
defined by PKK = (−1)n remains unbroken so that at least the lightest Kaluza-
Klein mode is stable. It is this candidate which is specified below that gives rise
to an important dark matter candidate.

Another implication which is not so significant considering direct detection of
dark matter but collider physics is the fact that all odd-level Kaluza-Klein modes
can only be pair-produced. Anyway it should be pointed out that this breaking
from Kaluza-Klein number conservation to Kaluza-Klein parity conservation is
due to radiative corrections which means that the former is still valid at tree
level and hence leads to loop-suppression of direct couplings to an even number
of Kaluza-Klein modes. Moreover it might be possible that renormalization gives
rise to Kaluza-Klein parity breaking. However since this is rather unlikely and
cannot be veryfied without having a full ultraviolet completion of the theory it is
always assumed that Kaluza-Klein parity is a good symmetry.

Another problem is the fact that the quantum field theory used to describe
the Standard Model is not renormalizable in more than four dimensions. This can
be noticed by observing that the dimensions of the gauge couplings are negative
in the case of added extra dimensions. This makes it necessary to introduce

invariance is supposed to be respected in the UV-limit or in other words by the short-length
physics as discussed on page 15.

8There are various possibilities considering six or more dimensions.
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Figure 2.4: The mass spectrum of the level one Kaluza-Klein particles without
(a) and with (b) considering first order radiative corrections. Asumed values are
R−1 = 500 GeV, ΛR = 20 and mH = 120 GeV. (Figure taken from [9].)

another paramter except for the compactification radius R namely the cut-off
scale Λ indicating that this is just an effective field theory. So all in all the
UED model depends on four unknown parameters: The Higgs mass mH , the
compactification radius R, the number of extra dimensions and the cut-off scale
Λ. Some more information about this problem is given immediately in the context
of mass corrections.

This sections deals with the mass spectrum of the Kaluza-Klein modes. In the
case of promoting the Standard model to five dimensions the formula for masses
of the excited modes given in (2.54) still holds at tree level:

m2
n = m2 +

n2

R2
(2.65)

(2.65) where m is again just the mass of the corresponding Standard model parti-
cle suggests a high degree of degeneracy considering the low value of R discussed
below. However it turns out that radiative corrections are really important con-
sidering this UED model.

Radiative corrections are given rise to in two different ways. First of all there
are the already mentioned corrections localized on the fix points of the orbifold.
Computing the corresponding contributions reveals that they all diverge logarith-
mic with respect to the cut-off parameter Λ.

The second kind of radiative corrections is due to loop diagramms which are
usually difficult to deal with especially in higher dimensional theories since in this
case the Standard model is not supposed to be renormalizeable as already pointed
out before. In this case though the loops include propagation in the compactified
extra dimensions leading to an exponential suppression for momenta which are
large in comparison to the scale of the extra dimension. Therefor the obtained
results in this second case are finite.
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Figure 2.5: Dependence of the Weinberg angle for the first five Kaluza-Klein modes
using appropriate values for the parameters R and ΛR. In (a) the latter is fixed
whereas the former is fixed in (b). (Figure taken from [9].)

The complete spectrum of Kaluza-Klein particles has been computed and is
given in [9]. Instead of quoting the results it is more instructive to take a look at
figure 2.4 which shows the spectrum without (a) and with (b) radiative corrections
of first order. Appropriate values given in the caption are explained hereafter. As
expected neglecting all radiative corrections yields a quite degenerated spectrum
which is broken by the incorporation of first order contributions. So higher order
terms change the spectrum in a way that will make its distinction from Super-
symmetry models rather difficult. However it should be kept in mind that this
computation is based on some assumptions which do not necessarily need to be
true though they are quite suggesting. Without examining the details it should be
mentioned that the spectrum could possibly be quite different especially insofar
that the lightest Kaluza-Klein particle is not essentially the first excited mode of
the photon. So even though an appropriate dark matter candidate could also be
given by the first Kaluza-Klein mode of a neutrino, the Higgs boson or even the
graviton this work has been focused on the photon since this is widely believed to
be the most probable candidate within the dark matter community. To underpin
this assumption it should be pointed out that gravitons would probably not anihi-
late very effective due to the weakness of gravitational interactions and hence lead
to an overclosure of the universe. Moreover consideration of the ν(1) has led to the
result that expected cross sections would probably be so high that they should
have already been detected. The corresponding computations are published in
[10].

Finally consider the identification of the lightest Kaluza-Klein particle in more
detail. It is well known that electroweak symmetry-breaking mixes the bosons
B and W3 to gain the Z and the γ. The mixing is determined by the Weinberg
angle θW given by sin2 θW = 0.23. Examining the corresponding matrix mix-
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ing the first level Kaluza-Klein modes and incorporating the first level radiative
corrections the result

(
Z(1)

γ(1)

)
=
(

1
R2 + 1

4g
2
1v

2 + δM2
1

1
4g1g2v

2

1
4g1g2v

2 1
R2 + 1

4g
2
2v

2 + δM2
2

)(
W

(1)
3

B(1)

)
(2.66)

with the U(1) and SU(2) gauge couplings g1 and g2 repectively, the Higgs vacuum
expectation value v ≈ 174 GeV and the radiative corrections δM2

1 and δM2
2 to

the B(1) and W (3) is obtained. Evaluating the already mentioned corrections given
in [9] reveals that the Weinberg angle for excited Kaluza-Klein modes is shifted
to quite small values for reasonable parameters as cognizable from figure 2.5.
Therefor according to

γ(1) = B(1) cos θ(1)
W +W

(1)
3 sin θ(1)

W (2.67)

it is an appropriate approximation to consider γ(1) as being entirely B(1) in order
to simplify the upcoming computations.

Before proceeding with considerations of the B(1) as a dark matter candidate
just a few annotations about the magnitudes of the compactification radius R and
the cutoff scale Λ. An estimate on R is given in [8]. In this paper the authors dis-
cuss their evaluation of electroweak precision observables and corrections related
to one-loop contributions from Kaluza-Klein modes. They argue that constrains
related to these modes are rather weak because as already discussed there are no
additional contributions from the UED model at tree level. Finally they place an
upper bound of

1
R

& 300 GeV (2.68)

on the compactification radius considering one added extra dimension and a bound
of

1
R

& 400 to 800 GeV (2.69)

for two extra dimensions. The reason for giving an interval in the latter case is
the fact that the result is logarithmically divergent and therefor depends on the
cutoff which is an unknown parameter as well. This problem does not occur for
five dimensions. So considering one extra dimension the bounds can be reliably
computed in the framework of the effective theory whereas this is rather difficult
assuming more extra dimensions. However it is obvious that the bounds seem to be
in a range of a few hundred GeV which makes this theory testable at the Tevatron
and the LHC. As already mentioned for example the ADD model includes trapping
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some particles on the brane which leads to tree-level corrections to electroweak
observables in turn yielding upper bounds on R in the range of a few TeV. It
is especially this pleasant property and the occurance of a viable dark matter
candidate which drew a lot of attention to the UED model in recent years.

Considering the cutoff scale a simple estimate is given in [7]. There an upper
bound on ΛR is estimated to be around 30 for five dimensions and about 10 for
six dimensions. Therefor in general the cutoff is estimate to have a magnitude of
about

Λ ∼ 10
R

. (2.70)

The last part of this section on the UED model deals with some properties of a
viable dark matter candidate.

In order to really decide if a theory gives rise to a possible dark matter candi-
date a stable particle is needed which in turn yields an appropriate value for the
dark matter relic density of our universe ΩDM . So according to [11] it should be
in the range of

0.095 < ΩDMh
2 < 0.129 (2.71)

with the Hubble expansion rate given approximately by h = 0.71.
As already discussed the particle of interest is the B(1) which is expected to be

in thermal equilibrium in the early universe and non-relativistic when it comes to
the freeze-out. In this case calculating the relic density of a particle is relatively
easy if no coannihilation processes need to be considered. Assuming the validity
of the just made assumptions it is justified to expect that the number density n
of the B(1) which is its own antiparticle is governed by the Boltzmann equation

dn
dt

+ 3Hn = −〈σv〉
(
n2 − n2

eq

)
(2.72)

with the Hubble paramter H, the relative velocity v, the annihilation cross section
σ and the Boltzmann supressed number density neq in thermal equilibrium given
by

neq = g

(
mT

2π

) 3
2

e−
m
T . (2.73)

Clearly m is the mass of the B(1), g the number of its internel degrees of freedom
and T the temperature of the universe. Moreover it should be mentioned that
〈. . .〉 in (2.72) denotes thermal averaging. As a reminder the freeze-out takes
place when the annihilation rate Γ = n〈σv〉 drops below the Hubble parameter H.
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However as pointed out and executed in [12] in the case of the UED model it
is absolutely necessary to include coannihilation processes to obtain results that
are trustworthy. As already described in detail the mass spectrum is exceedingly
degenerate at tree level. However taking a look Figure 2.4 might give reason to
the assumption that coannihilation processes could be neglected because the de-
generacy is broken by radiative corrections. Nevertheless it was already indicated
that these corrections depend on assumptions about unknown physics at the cutoff
scale so that these computations are not necessarily correct. Therefor in order to
be safe from possible mistakes it seems much more reliable to take coannihilations
into account. Moreover it is obvious from Figure 2.4 that the degeneracy is not
completely broken at least not for certain particles.

Thus the authors of [12] incorporated coannihilation processes with all other
first level Kaluza-Klein particles. This is accomplished by generalizing (2.72)
taking the occurance of other particles into account. Consider an ensemble of N
nearly degenerated particles χi with masses mi and χ1 = B(1). Then it can be
shown that the number density of the lightest of these particles is given by

dn
dt

+ 3Hn = −〈σeffv〉
(
n2 − n2

eq

)
. (2.74)

So σ in (2.74) has to be replaced by an effective cross section σeff which is given
by

σeff =
N∑

i,j=1

σij
gigj
g2
eff

(1 + ∆i)
3
2 (1 + ∆j)

3
2 e−x(∆i−∆j) (2.75)

with

geff =
N∑
i=1

gi(1 + ∆i)
3
2 e−x∆i (2.76)

and the degeneracy parameter

∆i =
mi −m1

mi
(2.77)

describing the fractional mass splitting between the particle χi and the B(1) which
is also of importance as a paramter in investigations described in chapters below.
After solving the Boltzmann equation the relic density ρDM of the possible dark
matter candidate is easily obtained by ρDM = nm1 which in turn yields ΩDM

using

ΩDM =
ρDM
ρc

(2.78)
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Figure 2.6: Relic density of the B(1) as a function of R−1 considering several
assumptions about coannihilation. “a” labels the case neglecting coannihilations
whereas “MUED” labels the one considering coannihilations with all level one
Kaluza-Klein modes. Comparison of the latter with the interval allowed by WMAP
data yields a mass range of 500− 600 GeV. (Figure taken from [12].)

with the critical density of a flat universe given by

ρ =
3H2

0

8πG
≈ 1.054 · 10−5h

2GeV
cm3

. (2.79)

The results from [12] can be seen in figure 2.6 which shows the relic density
of the B(1) as a function of R−1 and as already explained this is quite similar
to the uncorrected mass of the particle. The two most interesting lines are
those labeled “a” and “MUED” with the former representing the case where all
coannihilation processes are neglected and the latter the one where coannihilation
with all other level one Kaluza-Klein modes is allowed. In this case the particle
spectrum computed in [9] and shown in Figure 2.4 was used.

Obviously taking coannihilations into account leads to a decrease in the ex-
pected mass range which is obtained by the intersection of the appropriate line
and the horizontal bound representing the WMAP restrictions for the dark matter
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density given in (2.71). So it is obvious that the B(1) with a mass in the range of
about 500 - 600 Gev indeed provides a possible dark matter candidate. Lighter
masses would lead to over-annihilating and hence to under-producing of the relic
abundance of dark matter whereas heavier values would give rise to more dark
matter than observed. However it should be kept in mind that this result was
obtained assuming that only the B(1) contributes to dark matter whereas it is
possible and even very likely that the dark matter is generated by more than one
particle. In this case the B(1) would be even lighter. Moreover there are also
other possible mechanisms which could produce dark matter apart from the ther-
mal production discussed here like gravitational entropy injection. However the
500 - 600 Gev interval will be used as a benchmark here.

In a later chapter it will be shown that current experiments are just starting
to probe this interesting mass range. So considering previous annotations it looks
like the UED model is about to be testable pretty soon using direct detection
experiments like the one described here as well as colliders. Therefor and due to
the fact that the theory is quite aestethic and rather simple it is really justified
that it has drawn so much attention recently.

The following chapters will deal with considerations about the direct detection
of the B(1).



Chapter 3

Cross sections of the B(1) and
nuclei

After this extensive discussion about general properties of the UED model this
and the following chapters are about to deal with considerations regarding direct
detection with earth bound detectors like those used by the CDMS and XENON10
collaboration.

Obviously one of the most important properties in this context is the cross
section of the WIMP candidate considered and the used target nuclei. Therefor
this chapter is devoted to theoretical predictions on these cross sections. Even
though as already stated the focus is set on the B(1) as the dark matter candidate
most of the following methods are completely general and independent of the kind
of WIMP and target nuclei.

Taking a closer look at the mentioned cross sections it is essential to have a
certain idea about some basic nuclear physics. Great reviews especially focussing
on direct dark matter detection are given in [13] and [14].

So first of all the question arises whether the cross sections are actually ex-
pected to be high enough to be detectable. Without going into the details at this
stage the answer to this question is probably ”yes”. This can be understood by
realizing that the considered dark mattar candidate has to have a certain coupling
to ordinary matter. Of course this interaction is expected to be quite small but not
neglectable since otherwise there would not have occured enough annihilation in
the early universe and the abundance would have to significantly exceed the mea-
sured value given for example in (2.71). To conclude it is a well known fact from
quantum field theory that certain Feynman diagramms contributing for example
to pair annihilation are related to scattering amplitudes by the so-called crossing
symmetry. Therefor a non-vanishing pair annihilation cross section from dark mat-
ter particles to quarks gives rise to a non-vanishing dark matter candidate-quark
scattering cross section. This simple argument is quite encouraging.

In order to attack the problem of cross sections three steps have to be accom-
plished which all have their own subtlety.

31
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First of all the corresponding Feynman amplitudes at the particle physics level
have to be computed. Of course this means that a theoretically motivated La-
grangian is available describing the interaction of the considered WIMP and the
quarks and gluons which constitute the nucleons and hence the nuclei. Obtain-
ing an effective four dimensional Lagrangian in the framework of UEDs has been
decribed extensively in the previous chapter. Even though the number of newly
introduced parameters in this model is quite small compared for example to Su-
persymmetry all of these models generally have large uncertainties which are in
fact of crucial importance to the predicions for expected event rates.

Moreover it should be mentioned that these considerations usually need to
incorporate interactions with internal quark loops in the nuclei which means that
the couplings to all quarks and gluons need to be taken into account.

Besides this step usually only deals with the zero-momentum transfer limit.
Unfortunatelly this assumption is not sufficient which is one of the reasons for
introducing form factors later on.

The second step is about leaving the quark-gluon content of the nucleons be-
hind. In order to obtain WIMP-nucleon cross sections the matrix elements of the
quark and gluon operators sandwiched between nucleon states are needed. These
so-called hadronic matrix elements can be provided by physicist investigating ap-
propriate scattering processes.

As expected the next step deals with the upgrade from the nucleon to the
nucleus level. The way this is done is similar to the former step sandwiching the
nucleon operators obtained before between two nucleon states. This effectively
yields a suppression of the cross sections incorporated by introducing a form factor
which also takes care of finite momentum transfer as mentiond before.

The first two steps will be explained in this chapter whereas the third step is
the main subject of the next one.

An important simplification when dealing with the direct detection of dark
matter arises from the fact that these interactions happen in the non-relativistic
limit which is appropriate for halo velocities with a magnitude of about 10−3c.
This limit is discussed in great detail in [15] where an effective WIMP-nucleon La-
grangian is considered. So the first two steps of the just explained accomplishment
are studied. The authors argue that in the non-relativistic limit the interaction of
a WIMP and a nucleon can be effectively described by a Lagrangian of the form

Lint = 4χ†χ
(
fpη
†
pηp + fnη

†
nηn

)
+16
√

2GFχ†
~σ

2
χ

(
apη
†
p

~σ

2
ηp + anη

†
n

~σ

2
ηn

)
+O(

q

mp,W
)

(3.1)

where χ denotes the WIMP spinor and ηn and ηp denote the two-component Weyl
spinors of the neutron and proton respectively. MoreoverGF = 1.16637 · 10−5GeV−2

refers to Fermi’s constant and mp to the proton mass. All in all the whole pro-
cess can be parameterized using only five quantities namely the Wimp mass mW
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and the spin-independent (SI) WIMP-nucleon couplings fp and fn and the spin-
dependent (SD) WIMP-nucleon couplings ap and an. So obviously only a scalar
and an axial-vector interaction remain whereas all other parts can either be ne-
glected or rewritten and incorporated in one of the two forms just mentioned.1

This result is really remarkable considering that it has been derived using
only very general assumptions like general Lorentz invariance of the interaction
Lagrangian. Especially it should be pointed out that no constraints were imposed
considering the framework of the theory so for example (3.1) holds for the non-
relativistic limit of UED and Supersymmetry models as well.

But in order to take a look at the cross sections relevant to the investigations
made here it is more convenient to go back to the quark level. Of course for a
discussion of the UED model the interaction of the B(1) and the quarks has to be
considered. The interaction Lagrangian for this example is given in [15], too:

Lint = −1
4

(βq + γq)B
†µ
1 B1µqq −

i

4
αqB

†
1µB1νε

0µνρqγργ5q (3.2)

with

αq = 2g2
1mB(1)

 Y 2
qL

m2

q
(1)
L

−m2
B(1)

+
Y 2
qR

m2

q
(1)
R

−m2
B(1)

 (3.3)

βq = 2Eqg2
1

Y 2
qL

m2

q
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+m2
B(1)

(m2

q
(1)
L

−m2
B(1))2

+ Y 2
qR

m2
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+m2
B(1)
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R
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 (3.4)

γq = g1
mq

2m2
H

(3.5)

In (3.3), (3.4) and (3.5) m
q
(1)
L

and m
q
(1)
R

denote the masses of the first Kaluza-Klein
modes of the left- and right-chiral quarks and g1 the hypercharge coupling defined
by

g1 =
e

cos θW
=
√

4πα
cos θW

≈ 0.34537 (3.6)

where the Weinberg angle θW ≈ 28.741◦ and the Sommerfeld fine-structure con-
stant α ≈ 1

137.036 is used. Moreover the Higgs mass is abreviated mH and mq

obviously represents the masses of the Standard model quarks and YqL and YqR
their hypercharges distinguishing between right-handed and left-handed particles.
In the used convention the hypercharge is given by

1Even though this result seems so appealing it should be kept in mind that a possible sup-
pression of the four used couplings relative to other occuring couplings has been prohibited which
seems reasonable but is not completely secure.
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Figure 3.1: Feynman diagram contributing to the B(1)-quark scattering at tree
level via Higgs boson exchange. (Figure taken from [10].)

YqL,R = Q− IzL,R (3.7)

with the charges of the quarks Q in times of the elementary charge e and the
z-components of their isospin IzL,R where again the subscript L,R denotes the
chirality of the quark considered. A summary of the used values is given in ta-
ble 3.1.

Further evaluation of the interaction Lagangian (3.2) reveals as shown in [10]
and [17] that scattering of a B(1) of a quark at tree level can occur via exchange of
a Higgs boson H and a first level Kaluza-Klein quark q(1). The Feynman diagram
corresponding to the former interaction is given in figure 3.1 and those two related
to the latter are given in figure 3.2.

Evaluating these three amplitudes in the non-relativistic limit indeed leads to
the occurance of only two types of interaction one spin-independent and the other
one spin-dependent as predicted. Direct translation from the quark to the nucleus
level but considering only the case of zero-momentum transfer yields the results
which are about to be discussed right now given in this form in [6]. So first of all
the total cross section is given by

quark mq in GeV Q in times of e IzL IzR YL YR

u 0.00225 2
3

1
2 0 1

6
2
3

d 0.005 −1
3 −1

2 0 1
6 −1

3
s 0.095 −1

3 −1
2 0 1

6 −1
3

c 1.25 2
3

1
2 0 1

6
2
3

b 4.2 −1
3 −1

2 0 1
6 −1

3
t 173 2

3
1
2 0 1

6
2
3

Table 3.1: Summary of quark properties used for computing cross sections from
[16].
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Figure 3.2: Feynman diagrams contributing to the B(1)-quark scattering at tree
level via exchange of a level one Kaluza-Klein quark. (Figure taken from [10].)

σ = σSI + σSD (3.8)

where σSI denotes the spin-independent and σSD the spin-dependent part of the
cross section.

The spin-independent part is given by

σSI =
4
π
µ2
T

(
Zfp + (A− Z)fn

)2
(3.9)

with the reduced mass

µT =
mB(1)m2

T

mB(1) +mT
(3.10)

mT being the mass of the target nuclei and Z and A representing its atomic number
and atomic mass respectively. The translation to the nucleus level2 is obvious since
(3.9) amounts to summing all amplitudes coherently over all nucleons in the target
nucleus. However (3.9) only incorporates the zero-momentum transfer limit which
is not sufficent for general considerations. This will be explained soon.

The WIMP-nucleon couplings on their parts can be evaluated using

fp,n =
∑

q=u,d,s

f
(p,n)
Tq

aq
mp,n

mq
+

2
27
fp,nTG

∑
q=c,b,t

aq
mp,n

mq
(3.11)

with the proton and neutron masses mp ≈ 0.9383 GeV and mn = 0.9396 GeV and
the WIMP-quark couplings aq given by

2This is the third step necessary for computing WIMP-nucleus cross sections mentioned before.
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quark u d s

f
(p)
Tq

0.020± 0.004 0.026± 0.005 0.118± 0.062

f
(n)
Tq

0.014± 0.003 0.036± 0.008 0.118± 0.062

Table 3.2: Hadronic matrix elements for the light quarks u, d and s necessary for
the computation of WIMP-nucleon cross sections. (Values taken from [6].)

aq =


mqg21

(
Y 2
qR+Y 2

qL

)(
m2

q(1)
+m2

B(1)

)
4m

B(1)

(
m2

B(1)
−m2

q(1)

)2 + mqg21
8m

B(1)m
2
H

, q = u, d, s

mqg21
8m

B(1)m
2
H

, q = c, b, t

(3.12)

where a possible mass difference between the left- and right-chiral quarks has
already been neglected. Obviously both types of exchanges contribute to the
spin-independent interaction.

The mentioned translation from the quark to the nucleon level is hidden in the
just introduced parameters f (p,n)

Tq
and fp,nTG. The former is defined by the matrix

elements of the quark operators sandwiched between two nucleon states.

f
(p,n)
Tq

=
mq

mn
〈n|qq|n〉 (3.13)

These hadronic matrix elements need to be determined not only for the u and d
valence quarks constituting the nucleons but also for the s quark which contributes
significantly to the cross section. Their values are usually determined experimen-
tally from π-nucleon interactions however burdened with significant uncertainty.
Current values are given in table 3.2. There are two interesting observations tak-
ing a closer look at these values. First of all it looks like the contribution from
the seaquark s dominates reflecting the mass dependence of the spin-independent
interaction. Moreover there does not seem to be a great difference between these
matrix elements for protons and neutrons. In other words it looks like at least
an approximate isospin invariance holds and therefor fn ≈ fp. In this case it is
obvious from (3.9) that the spin-independent cross section scales ∼ A2 advocating
the use of heavy target nuclei.

The heavier quarks c, b and t only lead to contributions included in fp,nTG arising
from gluon loops which can be evaluated using

fp,nTG = 1− f (p,n)
Tu

− f (p,n)
Td

− f (p,n)
Ts

(3.14)

A few more important annotations have to be made before showing the results of
these computations.
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First of all an assumption about the masses of the level one Kaluza-Klein
quarks has to be made since their values are at most vaguely known. It is a
common procedure to assume a quite high degree of degeneracy of these quark
modes and introduce the so-called degeneracy parameter ∆

∆ =
mq(1) −mB(1)

mB(1)

(3.15)

to impose a relation between these assumed to be totally degenerate level one
quark masses and the mass of the B(1).

In fact this parameter and the Higgs mass mH are considered as additional pa-
rameters apart from the WIMP mass mB(1) evaluating the spin-independent cross
section σSI . They enter the computation in (3.12) determining the WIMP-quark
coupling. Obviously the occurance of a factor (m2

B(1) −m2
q(1)

)2 in the denomina-
tor in (3.12) considering the light quarks leads to a striking enhancement of the
WIMP-quark coupling in the case that ∆ is extremly small. Such a degeneracy is
usually not well motivated but it might be possible especially considering theories
like the UED model where a general high degree of degeneracy occurs naturally.
In the computations executed here ∆ is varied inside an interval from 0.01 to
0.5 which seems quite reasonable taking the high degeneracy of the model into
account but omiting unexpected resonances. The other mentioned parameter the
Higgs boson mass is varied from 114.4 to 200 GeV.

Moreover it is a useful procedure to normalize the cross sections obtained from
(3.9) σSI to cross sections on a nucleon σp,nSI . This is of special importance consid-
ering comparisons between different target nuclei. So evaluating (3.9) assuming
that the target solely consists of a proton or a neutron yields

σp,nSI =
4
π
µp,nf

2
p,n (3.16)

with

µp,n =
mB(1)mp,n

mB(1) +mp,n
. (3.17)

Comparing this result to the original expression (3.9) directly yields the relation

σp,nSI =
f2
p,n(

Zfp + (A− Z)fn
)2

µ2
p,n

µ2
T

σSI (3.18)

which reduces to

σp,nSI =
1
A2

µ2
p,n

µ2
T

σSI (3.19)
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Figure 3.3: Spin-independent B(1)-neutron cross sections for a Higgs mass of
mH = 120 GeV and various values of the degeneracy parameter ∆ in the
σSI vs. mB(1)-plane. Within this thesis the highest curve in a plot always belongs
to the first value listed in it. So for example the upper blue curve belongs to
∆ = 0.01. The cross sections increase significantly for low masses and are enhanced
for small degeneracy parameters.

assuming that isospin invariance of the interaction holds. Obviously there is only a
slight difference between normalizing to a neutron and a proton. So here the former
case is chosen. Considering very heavy WIMP masses assuming mB(1) � mT

equation (3.19) even yields

σp,nSI =
1
A4
σSI (3.20)

emphasizing the expected enhancement of a signal using heavy target nuclei. Eval-
uating all of these formulae yields the result shown in figure 3.3 which represents
the most common way these cross sections are displayed namely for a fixed Higgs
mass and various values of the degeneracy parameter. Similar plots using different
values of the Higgs mass can be found in section A.1 of the apendix.

Moreover it is instructive to show these plots the other way around using a
fixed value for ∆ and various values for mH . It is obvious from figure 3.4 that the
dependence on the Higg mass is less severe than the dependence on ∆ especially
for small values of ∆ which can be realized by taking a look at A.2 showing similar
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Figure 3.4: Spin-independent B(1)-neutron cross sections for a degeneracy
paramter given by ∆ = 0.15 and various values of the Higgs mass mH in the
σSI vs. mB(1)-plane. Comparing the scale of the y-axis with the corresponding
scale in Figure 3.3 it is obvious that the dependence of σSI on mH is much less
severe than the dependence on ∆.

plots for different values of the degeneracy parameter.
A third plot considering the spin-independent Wimp-neutron cross section is

shown in figure 3.5 where the σSI vs. mh plane is used incorporating a fixed
WIMP mass of 500 GeV and various values for ∆. This WIMP mass is chosen in
accordance with the relic density computations as explained on page 30. Again it
is obvious that the dependence on the Higgs mass is only slight especially for low
values of ∆.

However as already mentioned before the presented accomplishment must be
modified by taking the finiteness of the used target nucleus and details of its
structure into account. This eventually leads to the multiplication of σSI with the
square of a yet to define form factor F depending on the target nucleus. Therefor
the substitution

σSI → σSIF
2 (3.21)

has to be implemented. Details about form factors are given in the next chapter.
Finally before proceeding with the spin-dependent part of the cross section

σSD it is interesting to know that the whole framework dealing with the com-
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Figure 3.5: Spin-independent B(1)-neutron cross sections for a WIMP mass given
by mB(1) = 500 GeV and various values of ∆ in the σSI vs. mH -plane.

putation of spin-independent cross sections presented here is completely general
and not even dependent of the kind of theory considered except for the expression
determining the WIMP-quark couplings given for the case of the UED model in
(3.12). So particularly the ansatz for the spin-independent cross section σSI given
in (3.9) and the corresponding WIMP-nucleon couplings fp,n given in (3.11) are
model independent. As an example in [18] the authors compare the possible dis-
tinguishing of three different possible extensions of the Standard model namely
Supersymmetry, Universal Extra Dimensions and Little Higgs Models using di-
rect detection methods all based on (3.9) and (3.11). However the ansatz for the
WIMP-quark coupling is different in each case.

After this extensive discussion of the spin-independent cross section σSI the
rest of this chapter is devoted to the spin-dependent cross section σSD. Like in
the spin-independent case the result arises from the evaluation of the Feynman
diagrams shown in figure 3.2. The Higgs exchange contributes only to the scalar
interaction which means that the Feynman diagram shown in figure 3.1 does not
need to be considered here. Thus this type of interaction is also independent of
the Higgs mass. The result which is only valid in the zero-momentum transfer
limit as well is given by

σSD =
2

3π
µ2
T g

4
1

Λ2J(J + 1)
(m2

B(1) −m2
q(1)

)2
(3.22)
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with

Λ =
ap〈Sp〉+ an〈Sn〉

J
(3.23)

where J denotes the total nuclear spin and 〈Sp,n〉 the expectation values of the
proton and neutron spins within the nucleus. Since these last quantities have to
be computed using nuclear structure calculations which is usually accomplished
in connection with the analysis of form factors a discussions of these quantities is
deferred to the next chapter. ap and an are the WIMP-proton and WIMP-neutron
couplings respectively containing details of the UED model and the quark spin
content ot the nucleons.

What makes the investigation of spin-dependent cross sections comparatively
difficult is the fact that in this case the WIMP does not just couple to the number
of nucleons in the nucleus but to their spins. So even though the interaction
with the nucleus is coherent as in the spin-independent case in the sense that the
scattering amplitudes are still summed the strength of the interaction vanishes for
paired nucleons in the same energy state since the sign of the interaction amplitude
switches together with the nucleon spin. If their energy states are different the
effective interaction rate is highly suppressed but still finite. Nevertheless this
means that only nuclei with an odd number of nucleons yield a significant cross
section and that other nuclei can be neglected. The WIMP-nucleon couplings are
given by

ap,n =
∑

q=u,d,s

(Y 2
qL + Y 2

qR)∆p,nq (3.24)

where the parameters ∆p,nq represent the translation from the quark to the nu-
cleon level. An important difference to the spin-independent case is that these
couplings are generally not even approximately equal and that they may even
vary by several orders of magnitude. Similar to the quantities f (p,n)

Tq
defined in

(3.13) the ∆p,nq’s are given by the matrix element of the quark axial-vector current
or rather

sp,nµ ∆p,nq =
1
2
〈n|qγµγ5q|n〉 (3.25)

with the nucleon spin sp,nµ . Obviously the quantity ∆p,nq parameterizes the contri-
bution of each quark q to the total spin of the nucleon n. The corresponding val-
ues are experimentally determined from investigations of polarized lepton-nucleon
deep inelastic scattering. Current values are given in table 3.3. Especially compar-
ing the errors of these values to those for the parameters f (p,n)

Tq
given in table 3.2

shows that they cannot be measured to a great precision and hence that they are
a large source of uncertainty in the calculations.
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Inserting the values from Table 3.3 and the hypercharges given in Table 3.1
into (3.24) yields

ap = 0.281
an = −0.139 . (3.26)

Obviously the WIMP-nucleon couplings in the spin-dependent case are indepen-
dent of the model parameters ∆ and mH which is totally different from the spin-
independent case cp. (3.11) with (3.12). However the expression (3.22) for the
spin-dependent cross section σSD is directly dependent on ∆ via the mass of the
level one Kaluza-Klein quarks. Therefor it is clear that this formula is model
dependet. This should be contrasted to the spin-independent case where it was
pointed out that the expression (3.9) yielding σSI is model independent and for
example valid in the case of an UED and supersymmetric model as well.

However the normalization to a nucleon analogue to (3.20) is again model
independent. To accomplish this normalization (3.22) has to be evaluated for a
single nucleon. In this case J = 1

2 holds and the nucleon spin expectation values
are given by 〈Sp〉 = 1

2 and 〈Sn〉 = 0 whether a proton is considered or by 〈Sp〉 = 0
and 〈Sn〉 = 1

2 in the case of a neutron. Using these values directly yields

σp,nSD =
1

2π
g4

1

µ2
p,na

2
p,n

(m2
B(1) −m2

q(1)
)2

. (3.27)

Comparing this result to (3.22) gives rise to the normalization

σp,nSD =
3
4
µ2
p,n

µ2
T

J

J + 1
1

〈Sp,n〉2
σSD (3.28)

which is analogue to (3.19) and as already mentioned model independent as well.
However as already mentioned another important difference to the spin-independent

case can be realized by evaluating (3.27) for a proton and a neutron which is shown
in figure 3.6 and figure 3.7 respectively: Obviously there is a large difference be-
tween both cases which in fact is not really surprising since the WIMP-proton and
WIMP-neutron couplings given in (3.26) differ a lot. This should be contrasted

quark u d s
∆pq 0.78± 0.02 −0.48± 0.02 −0.15± 0.07
∆nq −0.48± 0.02 0.78± 0.02 −0.15± 0.07

Table 3.3: Matrix elements of the quark axial-vector current for the light quarks
u, d and s necessary for the computation of WIMP-nucleon cross sections. The
values corresponding to the proton and neutron are connected by flavor isospin
rotation. (Values taken from [6].)
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Figure 3.6: Spin-dependent B(1)-proton cross sections for various values of ∆ in
the σSD vs. mB(1)-plane. As argued in the text there is no dependence on the
Higgs mass mH as in the spin-independent case.

to the spin-independent case where it was pointed out that the corresponding
couplings can usually be assumed to be almost equal.

Moreover a general comparison between spin-dependent and spin-independent
cross sections considering scattering off individual nucleons reveals that the latter
are generally supressed to the former. This can be understood by comparing (3.27)
and (3.16) yielding

σp,nSD
σp,nSI

=
1
8
g4

1

a2
p,n

f2
p,n

1
(m2

B(1) −m2
q(1)

)2
. (3.29)

So obviously the high degree of degeneracy or rather the small value of ∆ is the
main reason for this difference of the magnitudes of both types of interaction.
However it should be kept in mind that the spin-independent scattering from a
heavier nucleus benefits from coherent enhancement implemented by the ∼ A2

scaling of the cross section. Thus experiments are usually assumed to be much
more sensitive to spin-independent interactions.

Moreover it is clear that a form factor has to be introduced in the spin-
dependent case as well in order to incorporate the possibility of finite momentum
transfer. This is done similarly to the spin-independent case by substituting

σSD → σSDF
2 (3.30)
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Figure 3.7: Spin-dependent B(1)-neutron cross sections for various values of ∆
in the σSD vs. mB(1)-plane. Obviously there is a large difference between the
spin-dependent scattering from a neutron and a proton as shown in figure 3.6.

with an appropriate form factor F . However determining these form factors is
much more complicated in the spin-dependent case involving extensive investiga-
tions of nuclear shell models. This will be explained in some detail in the next
chapter.

To finish the analysis of cross sections there are two more short topics to be
discussed in this chapter.

First of all a short overview of the target nuclei considered is useful at this
stage. Since a huge of the workgroup at the institute was involved in the XENON10
experiment using liquid xenon as the target described shortly for example in [19]
and [20] both the CDMS and the XENON10 experiments are considered. There-
for germanium, silicon and xenon are used as target materials in the upcoming
computations. The most important properties of these nuclei and their naturally
occuring isotopes are given in table 3.4. Obviously there are only four isotopes
yielding a spin-dependent interaction namely 29Si, 73Ge, 129Xe and 131Xe. Since
the natural abundances of the two isotopes used by the CDMS collaboration are
exceedingly small this experiment has usually been considered to be neglectable
analyzing spin-dependent interactions. However this is definitively not the case
which will be shown later.

Finally a short comment on the possibility to distinguish the UED model from
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experiment element Z A abundance mT in u J
CDMS silicon 14 28 0.922297 27.9769271 0

29 0.046832 28.9764949 1
2

30 0.030872 29.9737707 0
germanium 32 70 0.2084 69.9242497 0

72 0.2754 71.9220789 0
73 0.0773 72.9234626 9

2
74 0.3628 73.9211774 0
76 0.0761 75.9214016 0

XENON10 xenon 54 124 0.0009 123.9058942 0
126 0.0009 125.904281 0
128 0.0192 127.9035312 0
129 0.2644 128.9047801 1

2
130 0.0408 129.9035094 0
131 0.2118 130.905072 3

2
132 0.2689 131.904144 0
134 0.1044 133.905395 0
136 0.0877 135.907214 0

Table 3.4: Isotopes used in the detectors of the CDMS and XENON10 collab-
orations with their most important properties for this work. (Data taken from
[21].)

Supersymmetry which is by far the most extensively studied extension of the
Standard Model. The authors of [18] argue that a potential distinction depends
on the range of a measured cross section. Without going into details it is their
main result that spin-independent cross sections from supersymmetric particles
can usually be larger than those of particles arising from UED. So quite large
cross sections would strongly disfavour the UED model whereas no conclusion
can be drawn from the observation of small cross sections. However it should
be kept in mind that a high degree of degeneracy or rather a small value of ∆
could significantly raise the spin-independent cross section from the UED model as
well. Therefor this can only be one hint for the underlying theory and additional
information for example from collider experiments is of crucial importance.



Chapter 4

Form factors

As described in the previous chapter it is necessary to introduce form factors to
modify the cross sections in order to incorporate non-zero momentum transfer
which is inevitable considering heavy WIMPs of a few 10’s of GeV or more. To
be more precise the structure of the nucleon has to be taken into account when
the momentum transfer q given by

q =
√

2mTER (4.1)

with the recoil energy ER yields a corresponding de Broglie wave length λ = h
q

which is no longer large compared to the effective nuclear radius rn. These form
factors should be normalized to 1 for zero momentum transfer and smaller than
1 otherwise. Great reviews dealing with form factors and related nuclear shell
model calculations necessary in the spin-dependent case are given in [13], [22] and
[23].

Without going into the details of the underlying nuclear physics it can be
shown that both kinds of form factors can be written in a similar form ensuring
the normalization constraint namely

F 2
SI(q) =

SSI(q)
SSI(0)

and F 2
SD(q) =

SSD(q)
SSD(0)

(4.2)

with

SSI(q) =
∑
L even

|〈J ||CL(q)||J〉|2 ' |〈J ||C0(q)||J〉|2 (4.3)

and

SSD(q) =
∑
L odd

(
|〈J ||T el5L (q)||J〉|2 + |〈J ||L5

L(q)||J〉|2
)

(4.4)

46
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where the double vertical lines denote the reduced matrix elements of the respec-
tive operators. In (4.4) T el5L and L5

L denote the transverse electric and longitudinal
multipole projections of the axial vector current respectively. CL in (4.3) repre-
sents the so-called coulomb projection. The explicit forms of these operators can
be found in any of the just mentioned review articles. The simplification in (4.3)
is justified because the contribution from L = 0 dominates so that the rest can be
neglected.

Since the form given in (4.2) will not be needed in the spin-independent case
the subscript of S will be dropped in the following considerations. Therefor S
always denotes the spin-dependent case from now on.

The following two sections deal with both types of form factors seperately
starting with the much simpler spin-independent case.

4.1 Spin-independent form factors

As mentioned before the spin-independent case is rather easy to treat since then
the WIMPs couple only to the number of nucleons in the nucleus. A short intro-
duction to this topic can be found in [24].

So considering the first Born approximation the form factor FSI is just given
by the Fourier transformation of the mass density distribution ρ which in turn
is usually assumed to be proportional to the charge density distribution. This is
necessary because the latter is known to a much higher accuracy from low-energy
elastic lepton scattering which in turn is observed to be isotropic justifying the
ansatz ρ(~r) = ρ(r) yielding FSI(~q) = FSI(q). So FSI can be computed using

FSI(q) =
∫
ρ(r)ei~q·~rd3r =

4π
q

∫ ∞
0

r sin(qr)ρ(r)dr . (4.5)

A lot of different density distributions have been proposed in the literature. Ac-
cording to [24] the most realistic one is the Fermi distribution given by

ρ(r) = ρ0
1

1 + e
r−c
a

. (4.6)

However a proposal originally made by Helm in [25] half a century ago is usually
preferred because its Fourier transformation can be evaluated analytically whereas
the ansatz (4.6) demands numerical evaluation of (4.5). Moreover it turns out
that both forms yield quite similar results. Helm considered a folded density
distribution of the form

ρ(~r) =
∫
ρ0(~r′) ρ1(~r − ~r′)d3r′ . (4.7)

Observing that the scattering depends mainly on the charge distribution near the
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Figure 4.1: Spin-independent form factors of 28Si, 73Ge and 131Xe. Obviously the
latter drops down much faster than the other form factors.

surface and only slightly on the distribution inside the nucleus he decided to let ρ0

define the radius of the nucleus and ρ1 the surface thickness yielding a damping
of the form factor. Assuming a spherical symmetric distribution he chose

ρ0(r) =

{
3

4πr3n
, r < rn

0 , r > rn
(4.8)

and

ρ1(r) =
1

(2πs2)
3
2

e−
(qs)2

2 (4.9)

with the effective nuclear radius rn and the nuclear skin thickness s. Inserting this
ansatz into (4.5) and performing the integration yields

FSI(qrn) = 3
j1(qrn)
qrn

e−
(qs)2

2 ' 3
sin(qrn)− qrn cos(qrn)

(qrn)3
e−

(qs)2

2 (4.10)

where j1 denotes the spherical Bessel function of index 1. Common values for the
used parameters taken from [24] are s = 1 fm and
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rn =

√
c2 +

7
3
π2a2 − 5s2 (4.11)

with a = 0.52 fm and

c = 1.23 3
√
A− 0.60 fm . (4.12)

The just explained analysis highlights an important difference from the spin-
dependent case considered in the next section: The spin-independent form factors
FSI are almost independent of the used target nuclei except for the values of their
atomic masses A. In particular there is no dependence on the spin-independent
WIMP-nucleon couplings fp and fn which turns out to be a great benefit deter-
mining cross section limits.

Finally figure 4.1 shows a comparison of spin-independent form factors for one
silicon, one germanium and one xenon isotope. Obviously the form factor from
the xenon isotope drops down much faster than the form factors from the silicon
and the germanium isotopes partly compensating the xenon benefit from the ∼ A2

scaling. However considering really low thresholds the use of xenon seems to be
more advantageous.

4.2 Spin-dependent form factors

Computing form factors in the spin-dependent case is considerably more compli-
cated because the spin structure varies enormously between different target nuclei.
Therefor they have to be computed separately for every single target isotope using
extensive nuclear shell model calculations.

Considering zero momentum transfer (4.4) can be evaluated explicitely since
most contributions to the sum vanish. The result is given by

S(0) =
2J + 1
π

J(J + 1)Λ2 (4.13)

with Λ given in (3.23). Obviously knowledge of the expectation values of the
proton and neutron spins within the nucleus 〈Sp〉 and 〈Sn〉 as well as of the WIMP
nucleon couplings ap and an is necessary.

At finite momentum transfer it is inevitable to consider more complicated ap-
proaches. The applied formalism is in fact a generalization of the one accomplished
for the investigation of weak and electromagnetic semi-leptonic interactions in nu-
clei. It is a common procedure to switch from the proton-neutron representation
to the isospin representation. This is implemented by writing the isoscalar and



50 CHAPTER 4. FORM FACTORS

isovector spin couplings a0 and a1 in terms of the WIMP-proton and WIMP-
neutron couplings ap and an.

a0 = ap + an

a1 = ap − an . (4.14)

Using this translation (4.4) can be written in the form

S(q) = a2
0S00(q) + a2

1S11(q) + a0a1S01(q) (4.15)

with the spin structure functions S00, S11 and S01 representing an isoscalar, isovec-
tor and interference term respectively.

Considering the dependence of the WIMP-nucleon couplings it can be seen
that the form of S(q) is determined solely by the ratio ap

an
whereas its magnitude

is proportional to a2
p+a2

n. Since according to (4.2) the squared form factor is given
by (4.15) normalized to 1 for q = 0 it is clear that F 2 is solely determined by the
ratio ap

an
. Knowledge of the absolute value of neither one of the WIMP-nucleon

couplings is required.
Moreover it should already be noted at this stage that evaluating (4.15) at

q = 0 can be very problematic since S(0) can reach 0 for certain values of apan leading
to a singularity in the expression (4.2) for F 2. Fortunately there is no problem
using the WIMP-nucleon couplings from the UED model given in (3.26). However
this problem occurs determining limits on WIMP-nucleon couplings as explained in
a later chapter. It can partly be solved by using (4.13) in the denominator of (4.2)
instead of evaluating (4.15) at q = 0. It should be kept in mind that in practice
this substitution leads to a slight violation of the normalization constraint since
evaluating (4.15) using fitted functions as explained below only approximately
yields (4.13). Anyway this accomplishment makes it possible to avoid singularities.
Nevertheless other difficulties especially in the case of the two xenon isotopes 129Xe
and 131Xe remain. A detailed discussion can be found in the appropriate chapter.

As already mentioned both introduced quantities 〈Sp〉 and 〈Sn〉 as well as the
three spin structure functions have to be determined evaluating (4.4) using nuclear
shell models. Usually the results for the spin structure functions are presented as
plots accompanied by analytic functions fitted to the curves. Mostly polynomial
and exponential functions are applied.

Unfortunately it turns out that the results depend sensitively on the nuclear
structure assumed. This is especially problematic for heavy nuclei since many
nuclear states have to be considered. However the situation improves thanks to
advances in computer power and storage.

In order to test the accuracy of the accomplished determinations it is useful
to calculate some nuclear observables and compare the obtained values with mea-
surements from experiments. A very convenient observable in this context is the
nuclear magnetic moment given by
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µ = gsn〈Sn〉+ gln〈Ln〉+ gsp〈Sp〉+ glp〈Lp〉 (4.16)

with the free particle g-factors

gsn = −3.826 gln = 0 gsp = 5.586 glp = 1 (4.17)

given in nuclear magnetons and the expectation values of the angular momentum
of the nucleons Lp,n in the nucleus. The suitability is obvious since µ contains 〈Sp〉
and 〈Sn〉. Therefor the magnetic moment provides an appropriate benchmark to
judge the validity of the considered shell model.

After this introduction the rest of this section focusses on appropriate results
for the four isotopes of interest 29Si, 73Ge, 129Xe and 131Xe. For most isotopes used
by dark matter experiments more than one paper has been puplished on computing
spin structure functions. An extensive summary of all available publictions on this
topic is given in [22] and [23]. As already mentioned problems occured considering
certain values for the WIMP-nucleon couplings. Since these issues were not so
significant for 29Si and 73Ge only the respective puplications accepted as being
the most adequate by the community are considered. However in the case of
xenon it seems appropriate to consider several possibilities.1

The results using 29Si puplished in [26] in 1993 were obtained performing
nuclear shell model calculations in large model spaces. The calculations were
rather straight-forward since a well-defined and extensively tested Hamiltonian
describing the nucleus was available. The spin structure functions in this and all
other papers are not given as functions of the transfered momentum q but of the
quantity

y =
(
bq

2

)2

(4.18)

with the so-called oscillation parameter b given by

b = 6
√
A fm ≈ 1.75 fm . (4.19)

After finishing the numerical shell model computations exponential functions were
fitted to the three spin structure functions yielding

S00(y) = 0.00818 e−4.428y

S11(y) = 0.00818 · 1.06 e−6.264y

S01(y) = 0.00818 · (−2.06) e−5.413y (4.20)

1Even though it turns out that none of the different nuclear shell models yields good results
for all WIMP-nucleon couplings.
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Figure 4.2: Spin structure functions of 29Si as published in [26] The fits are valid
up to y < 1.5.

valid for y < 1.5 which corresponds to a maximum recoil energy of ER = 140.86 keV
which is well above the interesting region of the CDMS experiment with an upper
analysis limit of 100 keV. The fits are shown in figure 4.2.

Apart from that there are two interesting annotations in this paper. First
of all the authors argue that serious issues occur in the case that ap � an or
equivalently a0 ' a1 since then S00 and S11 cancel against S01. This is exactly
the problem mentioned before in this section and investigated further in a later
chapter. None of the other papers contains any hint to similar problems with the
authors’ calculations even though it turns out that the issues using 29Si are almost
negligible whereas they get really severe in the case of xenon. However according
to the authors this problem is not related to the general computation but to the
accuracy of the exponential fits. Using the full result instead of the fits should
yield more convenient structure functions in this case. So since the fits seem to be
quite reasonable and the magnetic moment µ given in table 4.1 is in quite good
agreement with experimental data other even more recent approaches considering
this isotope are discarded.

The second remark worth mentioning is the authors’ comment regarding un-
certainties in these calculations. To be more precise they compared uncertainties
in the WIMP-nucleon couplings arising from the determination of the parameters
∆p,nq which are quite large to those due to the difficult modeling of nuclear shell
processes. They argue that the uncertainties due to the former are usually much
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experiment isotope method 〈Sp〉 〈Sn〉 µ µexp

CDMS 29Si — −0.002 0.13 −0.50 −0.555
73Ge — 0.030 0.378 −0.920 −0.879

XENON10 129Xe Bonn A 0.028 0.359 −0.983 (−0.634) −0.788
129Xe Nijmegen II 0.0128 0.300 −0.701 (−0.379)
131Xe Bonn A −0.009 −0.227 0.980 (0.637) 0.692
131Xe Nijmegen II −0.012 −0.217 0.979 (0.347)
131Xe QTDA −0.041 −0.236 0.70

Table 4.1: Summary of the expectation values of the proton and neutron spins
within the nucleus 〈Sp〉 and 〈Sn〉 as well as the magnetic moments µ computed
using nuclear shell models. All models relevant for this work are listed. If several
models are considered for one isotope they are labeled appropriately. In the cases
of the Bonn A and the Nijmegen II methods for the xenon isotopes two magnetic
moments are given in the associated paper. As explained in the text the values in
parenthesis belong to the use of effective g-factors. The last column presents the
respective measured magnetic moments. Of course good agreement of the values
in the last two columns indicates a reliable nuclear model. (Values taken from
[22].)

larger than those of the latter. So even though the ∆p,nq’s are measured to a much
better precision today it should be kept in mind that they still play a crucial role
considering uncertainties.2

Even though the former paper also addressed modeling the nucleus of 73Ge
[27] using a hybrid model published in 1994 is commonly considered to be more
adequate especially because the authors did not have to introduce a quenching
factor to bring their computed value of the magnetic moment µ in good agreement
with the measured value. As cognizable from table 4.1 the achieved agreement
makes the computations look reliable. The oscillation parameter is defined in the
same way as in [26] and yields

b = 6
√
A fm ≈ 2.04 fm (4.21)

in the case of 73Ge. The three spin strucure functions were fitted using sixth-order

2The authors assume an error of ±0.08 on all ∆p,nq’s which should be compared to those
given in table 3.3.
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Figure 4.3: Spin structure functions of 73Ge as published in [27].

polynomials which finally led to

S00(y) = 0.1606− 1.1052y + 3.2320y2 − 4.9245y3

+ 4.1229y4 − 1.8016y5 + 0.3211y6

S11(y) = 0.1164− 0.9228y + 2.9753y2 − 4.87093

+ 4.3099y4 − 1.9661y5 + 0.3624y6

S01(y) = − 0.2736 + 2.0374y − 6.2803y2 + 9.9426y3

− 8.5710y4 + 3.8310y5 − 0.6948y6 (4.22)

The authors do not mention an upper limit on the validity of these fits shown
in figure 4.3. They just state that they should be useful “over the full range of
relevant momenta”.

Considering both xenon isotopes 129Xe and 131Xe the most recent computa-
tions even though ten years old are given in [28]. The authors accomplished these
and two other nuclear shell model calculations which however are not of interest
here using two different Hamiltonians describing the nuclei. These Hamiltonians
are based on nucleon-nucleon potentials one named Bonn A the other one Ni-
jmegen II which is the reason to use the terms Bonn A method and Nijmegen II
method to distinguish them from each other.

In this paper the oscillation parameter is defined slightly different from the
two cases before namely
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129Xe
Bonn A Nijmegen II

k Ck for S00 Ck for S01 Ck for S11 Ck for S00 Ck for S01 Ck for S11

0 0.0713238 −0.12166 −2.05825 0.046489 −0.0853786 −1.28214
1 −0.344779 0.644351 1.80756 −0.225507 0.453434 1.09276
2 0.755895 −1.52732 −1.27746 0.499045 −1.06546 −0.712949
3 −0.933448 2.02061 0.654589 −0.622439 1.3867 0.314894
4 0.690061 −1.57689 −0.221971 0.46361 −1.0594 −0.0835104
5 −0.302476 0.723976 0.0454635 −0.20375 0.47576 0.0105933
6 0.0765282 −0.190399 −0.00425694 0.0510851 −0.122077 0.000233709
7 −0.0103169 0.0263823 −0.000136779 −0.00670516 0.0164292 −0.000243292
8 0.000573919 −0.00148593 0.00004396 0.00035659 −0.000894498 0.0000221666
9 0.0 0.0 2.11016 0.0 0.0 1.32136

131Xe
Bonn A Nijmegen II

k Ck for S00 Ck for S01 Ck for S11 Ck for S00 Ck for S01 Ck for S11

0 0.0296421 −0.0545474 0.0250994 0.0277344 −0.0497844 0.0223447
1 −0.133427 0.271757 −0.137716 −0.124487 0.247247 −0.122063
2 0.377987 −0.723023 0.366609 0.328287 −0.632306 0.319493
3 −0.579614 1.0545 −0.53851 −0.481399 0.896416 −0.466949
4 0.578896 −0.971333 0.492545 0.475646 −0.816445 0.428767
5 −0.345562 0.538422 −0.269903 −0.285177 0.452352 −0.236789
6 0.115952 −0.168988 0.0836943 0.0968193 −0.142686 0.0740837
7 −0.0201178 0.027416 −0.0133959 −0.0170957 0.0233463 −0.0119668
8 0.00141793 −0.00180527 0.000868668 0.00123738 −0.00156293 0.000787042
9 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.2: Coefficients used in (4.25) fitting the spin structure functions for 129Xe
and 131Xe. The Bonn A as well as the Nijmegen II method is considered. (Values
taken from [28].)

b =

√
41.467

~ω
fm = 2.29 fm (4.23)

where ~ω is given by

~ω = 45A−
1
3 − 25A−

2
3 MeV . (4.24)
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Figure 4.4: Spin structure functions of 129Xe as published in [28] using the Bonn A
method.

Figure 4.5: Spin structure functions of 129Xe as published in [28] using the Ni-
jmegen II method.
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Figure 4.6: Spin structure functions of 131Xe as published in [28] using the Bonn A
method.

Figure 4.7: Spin structure functions of 131Xe as published in [28] using the Ni-
jmegen II method.
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The result from (4.23) is valid for both isotopes up to the quoted accuracy. The
fits were performed using eigth-order polynomials multiplied by a damping factor
given by e−2y and introducing another singular pole term in the case of 129Xe
necessary to handle the so called Goldberger-Trieman term arising from L5

L in
(4.4). So the fitted spin structure functions valid according to the authors up to
y = 10 have the form

Sij(y) =
( 8∑
k=0

Cky
k +

C9

1 + y

)
e−2y (4.25)

with the corresponding coefficients given in table 4.2 and the plots shown in the
figures 4.4, 4.5, 4.6 and 4.7. In order to obtain a better agreement with the
experimentally determined magnetic moment the authors introduced effective g-
factors given by

gsn = −2.87 gln = −0.1 gsp = 4.18 glp = 1.1 (4.26)

which should be compared to (4.17) yielding an effective magnetic moment.3 Ta-
ble 4.1 contains the magnetic moments computed the usual way and using effec-
tive g-factors as well with the latter given in parenthesis. Obviously the Bonn A
method yields a better agreement with the experimental value of µ considering the
quenched results which is the reason for adopting this method throughout most
parts of the upcoming analysis.

However there is another approach available for 131Xe published in [29] which
though from 1991 and hence using a less accurate model of the nucleus reproduces
the magnetic moment with a higher precision as evident from table 4.1. Therefor
the authors of [28] admit that it is not clear which calculation should be pref-
ered. In this work the more recent computations are prefered. However due to the
mentioned problems in the accomplishment of setting limits on WIMP-nucleon
couplings this approach using the Quasiparticle Tamm-Dancoff approximation
(QTDA) and henceforth called QTDA method is considered, too, but only for
the computations aimed at setting limits.4

Unfortunately in [29] there is only a plot available showing the spin structure
functions but no fitted analytic functions are given. However a table including
some of the corresponding function values is given in the already mentioned review
article [23]. It is reproduced in table 4.3. In order to obtain analytic spin structure
functions functions of the form

3However according to the authors no quenching should be applied to the WIMP-nucleon
couplings.

4Admittedly as already mentioned this approach does not solve the problem either.
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Figure 4.8: Spin structure functions of 131Xe as published in [29] using the QTDA
method.

q2 S00 S11 S01

0 0.04 0.020 −0.056
0.0025 0.0215 0.009 −0.028
0.005 0.014 0.006 −0.019
0.01 0.01 0.004 −0.013
0.015 0.009 0.003 −0.01
0.02 0.008 0.0027 −0.009
0.025 0.0075 0.0025 −0.008
0.03 0.0066 0.0023 −0.007
0.04 0.005 0.0019 −0.005
0.05 0.0035 0.0015 −0.003
0.06 0.0017 0.001 −0.001

131Xe – QTDA
k Ck for S00 Ck for S01 Ck for S11

0 0.040652 −0.056981 0.020277
1 −0.29594 0.47334 −0.19368
2 1.5088 −2.7468 1.1657
3 −3.9086 8.2959 −3.6222
4 6.0746 −14.528 6.452
5 −5.7049 14.975 −6.7166
6 3.1674 −8.9254 4.0253
7 −0.95147 2.8295 −1.2806
8 0.11845 −0.36729 0.16692

Table 4.3: Left: Function values for the spin structure functions for 131Xe com-
puted using the QTDA method considering the dependence on the squared mo-
mentum transfer q2. (Values taken from [23].) Right: Coefficients obtained by
fitting (4.27) to the values from the left table.
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Figure 4.9: Squared spin-dependent form factors for 129Xe and 131Xe using the
WIMP-nucleon couplings from the UED model given in (3.26). Obviously there
is no big difference in any of these formfactors up to about 30 keV recoil energy
except for the computation for 131Xe using the QTDA method.

Sij(y) =
( 8∑
k=0

Cky
k

)
e−2y (4.27)

are fitted to these values in a least square sense. So they are similar to (4.25) but
neglecting the pole term. However tests including this term did not yield severe
differences. The result of the fitting procedure is shown in figure 4.8 whereas the
obtained coefficients are given in table 4.3. It should be mentioned that again
definition (4.23) is used for the oscillation parameter.

Figure 4.9 shows a comparison of spin-dependent squared xenon formfactors
for both considered isotopes and all explained methods using the WIMP-nucleon
couplings from the UED model given in (3.26). Substituting formula (4.13) for
the denominator in the definition of F 2 has not been accomplished in order to
respect the normalization constraint.

Finally the figures 4.10, 4.11 and 4.12 show all form factors for all targets
used in the following computations. In the case of xenon the Bonn A method
is applied for the spin-dependent form factors. In figure 4.10 an upper limit on
the validity of the spin-dependent form factor is shown whereas there is no limit
in figure 4.11 and figure 4.12. This is due to the fact that there is no limit
given in the paper considering 73Ge and that the limit in the case of both xenon
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Figure 4.10: Squared spin-independent and spin-dependent form factors for all
isotopes in natural silicon. The WIMP-nucleon couplings given in (3.26) are used
for computing the spin-dependent form factors. ERlim

denotes the upper limit of
the validity of the fits to the spin structure functions and hence the validity of the
corresponding spin-dependent form factor.

isotopes given by y = 10 is well beyond the scale shown. However the gap for
the spin-dependent form factor of 129Xe between approximately 420 and 520 keV
arising from negative values implies that this limit might be considered as being
optimistically high. Nevertheless the CDMS experiment only analyzes events up
to a recoil energy of 100 keV whereas the XENON10 experiment only uses data up
to 26.9 keV. Therefor it looks like using the given form factors is quite convenient
at least for the WIMP-nucleon couplings of the UED model.

Besides in principle it should be possible to compute F 2 for any values of
the WIMP-nucleon couplings ap and an by inserting the obtained spin structure
functions in (4.15) regarding the translation (4.14) and finally evaluating (4.2).
However this turns out to be difficult for certain parameters.

Moreover it should be pointed out that the main difference from the spin-
independent case apart from the fact that all target nuclei must be considered
separately using very complicated nuclear shell models is that the form factors
themselves depend on the WIMP-nucleon couplings. This will turn out to compli-
cate the calculations of limits on cross sections and these couplings significantly.
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Figure 4.11: Squared spin-independent and spin-dependent form factors for all
isotopes in natural germanium. WIMP-nucleon couplings taken from (3.26).

Figure 4.12: Squared spin-independent and spin-dependent form factors for all
isotopes in natural xenon. WIMP-nucleon couplings taken from (3.26).



Chapter 5

Event rates from B(1)-nuclei
scattering

After these extensive investigations of the spin-independent and spin-dependent
B(1)-nuclei zero-momentum transfer cross sections and appropriate form factors
to include the finite-momentum transfer all necessary information are available to
compute theoretical predictions for expected event rates. The standard reference
for this procedure is [24] which gives an excellent summary of this topic.

To come to grips with this problem it is necessary to make certain assumptions
about the dark matter halo. It is a common procedure to assume an isothermal
and isotropic sphere of WIMP gas obeying a yet to define velocity dispersion. Un-
fortunately reliability of this assumption is not secured at all. However detailed
analysis shows that the uncertainties in modelizing the halo are rather small com-
pared for example to theoretical uncertainties arising from calculations of the
WIMP-nucleon cross sections.

However before actually proceeding with this issue it is convenient to discuss
two other short topics first because they are important for the following calcula-
tions.

The first one is the velocity of the earth with respect to the galactic rest frame
vE which is its relative velocity to the motionless dark matter halo introduced
above at the same time. In fact there are three contributions to this velocity
namely the galactic rotation velocity ~vr, the velocity of the sun with respect to the
moving galactic disc ~vs which can be measured by investigating its motion relative
to nearby stars and finally the velocity of the earth arising from its motion around
the sun ~vorb. So it can be written as

~vE = ~vr + ~vs + ~vorb . (5.1)

Using galactic coordinates the first two contributions are given by

63
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Figure 5.1: Motion of the earth around the sun. The galactic plane is perpendic-
ular to the surface of the paper containing the vector denoting the velocity of the
sun. The angle θ between the earth orbital plane and the galactic plane has to be
taken into account to obtain the projection of the earth’s velocity in the direction
of the sun’s velocity which yields its contribution to the dominant y-coordinate of
~vE . (Figure with some modifications taken from [30].)

~vr =

 0
220
0

 km
s

and ~vs =

 9
12
7

 km
s

. (5.2)

Since the y-coordinate of ~vr is so large this component dominates and the others
can be neglected. The last contribution is determined by the orbital velocity of the
earth around the sun given by vorb = 29.79 km/s. However as just mentioned only
the y-component is of interested here. Therefor taking the angle between the earth
orbital plane and the galactic plane into account which is given by θ = 59.575◦

the velocity of the earth in the galactic frame is given by

vE(t) = vr + vs + vorb cos θ cos
(

2π
t− t0
T

)
(5.3)

where the subscript y has been droped. t0 denotes the day in a year corresponding
to the 2nd June so t0 = 152.5 and T denotes the number of days in a year so
T = 365.25. Evaluating this expression yields

vE(t) = 232 + 15.09 cos
(

2π
t− 152.5
365.25

)
km
s

(5.4)
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which is illustrated in figure 5.1. Obviously this oscillation leads to a modulation
of the mean velocity ∼ ±6.5%. It should be pointed out that the mean velocity of
232 km/s is burdened with a quite high degree of uncertainty of about ±30 km/s
whereas the 15.09 km/s amplitude of the modulation has negligible uncertainty.
Moreover note that the modulation is not exactly sinusoidal.

In order to investigate effects caused by this annual modulation which is ac-
complished in the next chapter t is taken as a free parameter. However to compare
theoretical predictions to the results of measurements from CDMS and XENON10
it is more useful to define a mean earth velocity 〈vE〉.

In the case of the CDMS experiment all data of the runs 118 and 119 were
available which made it possible to compute a live time weighted mean by

〈vE〉 =

∑
n

vE(tn) ln∑
n

ln
= 232.2

km
s

(5.5)

where the index n runs over all detected events and tn and ln denote the event time
and the live time of the nth event respectively. The result which is almost equal to
the mean of vE averaged over a year given by 232 km/s is plausible considering the
fact that run 118 lasted from October 11, 2003 until January 11, 2004 as stated
in [31] whereas run 119 took data between March 25, 2004 and August 8, 2004 as
stated in [32].

Considering the XENON10 experiment only the dates of the beginning and the
end of the last run were available. According two [20] data were aquired between
October 6, 2006 and February 14, 2007. Hence an average velocity was obtained
by evaluating

〈vE〉 =
1
trun

∫
trun

vE(t) dt =
1

131.25

(∫ 365.25

279.5
vE(t) dt+

∫ 45.5

0
vE(t) dt

)
= 220.1

km
s

.

(5.6)

Obviously trun = 131.25 denotes the duration of the run while 279.5 and 45.5
represent the day in the year of its beginning and its ending. The just obtained
results are summarized in figure 5.2.

The second topic is a short discussion of the local dark matter density ρW
which is of importance in the upcoming computations. Several groups have tried to
restrict its value. An example is given in [34]. The authors started by constructing
a large variety of models based on some fundamental ingredients like a bar or an
asymmetric bulge, a disk with certain properties and isothermal cold dark matter
and MACHO halos with finite radii and ellipsoidal density profiles. Then several
parameters like the bulge mass and the halo radii were varied. Finally all models
were rejected which did not give rise to certain measured values of for example
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Figure 5.2: Sinusodial dependence of the earth velocity with respect to the mo-
tionless dark matter halo vE on the day in the year. Besides the mean velocities
of both considered experiments are shown.

the galactocentric distance of 7.0 kpc to 9.0 kpc or the local rotation speed of
200 km/s to 240 km/s. Afterwards the local densities of the remaining viable
models were investigated. Finally the authors came to the conclusion that the
total local dark matter density is expected to be in the range of

0.3
GeV
cm3

< ρW < 0.7
GeV
cm3

. (5.7)

Since only the amount of non-baryonic dark matter is of interest here and a certain
fraction of MACHOS lowers the density ρW = 0.3 GeV/cm3 is considered as the
dark matter density throughout all computations.1 Even though it should be kept
in mind that this value is burdened with considerable uncertainty and model-
dependence other groups achieve similar results. Another important remark is
that it is very likely that more than one particle constitute the non-baryonic
dark matter which would further lower ρW . Finally it is important to know that
there are several estimates considering the local dark matter density ρW = mW n0

yielding similar results whereas neither the WIMP mass mW nor the particle
number density n0 are separately known.

After these annotations on the earth velocity with respect to the dark matter

1However remember that flattening of the halo leads to increasing values pf ρW .
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halo and the local halo density proceeding with calculations of the expected event
rates is rather easy. So considering the dark matter halo one has to assume a
certain velocity distribution. Usually a distribution of the form

f(~x,~v,~vE) ∼ e−
1
2mW (~v+~vE)2+mWφ(~x)

kBT (5.8)

with the velocity of the WIMPs ~v in the earth rest frame which is the target rest
frame at the same time and the just introduced velocity of the earth with respect
to the motionless galactic halo ~vE is considered. Moreover mW and T denote the
WIMP mass and temperature and kB not surprisingly the Boltzmann constant.
Of course the WIMP will be identified with the B(1) below yielding mW = mB(1) .
However since the way event rates are computed is completely general this identi-
fication will be imposed later. Apart from that the velocity distribution contains
the gravitational potential φ(~x) but since this position dependent part is fixed at
a certain location it can be incorporated in the normalization. Hence introducing
the so-called characteristic velocity v0 which is usually assumed to be equal to the
galactic rotation velocity yieding v0 = vr = 220 km/s by

1
2
mW v

2
0 = kBT (5.9)

(5.8) reduces to the well known Maxwell-Boltzmann distribution

f(~v,~vE) ∼ e
− (~v+~vE)2

v20 . (5.10)

One important annotation has to be made before continuing the investigations. As
obvious from (5.10) the velocity distribution is isotropic in the galactic rest frame
considering the galactocentric WIMP velocity ~v + ~vE . However this distribution
does not extract to infinity. Rather a cut-off which is also isotropic in the galactic
rest frame has to be introduced in order to take care of the fact that WIMPs
with a high velocity and accordingly high kinetic energy are able to escape the
gravitational potential so that they would not contribute to the dark matter halo.
This cut-off is defined by

|~v + ~vE | < vesc (5.11)

with the so-called escape velocity vesc. A recent value for this quantity is given
in [33]. The collaboration states a median likelihood of 544 km/s and a 90%
confidence interval of 498 km/s < vesc < 608 km/s. In the following computations
vesc = 544 km/s is used which is significantly lower than earlier estimates that
were mostly around 600 km/s or even higher so close to the upper limit of the
new results. However it should be mentioned that theoretical predictions were
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Figure 5.3: Dependence of vmax on the scattering angle in the galactic rest frame
for the 2nd June and the 2nd December. Depending on θ vmax varies enormeously.

computed using vesc = 600 km/s before this recent paper was brought to attention
and differences were only slight. This is due to the fact that vesc ' 2.5 v0 and hence
its actual value only influences WIMPs with high velocities contributing to the
Maxwell tail. Keeping in mind that due to its definition in (5.9) v0 also corresponds
to the most probable velocity it is clear that these particles give rise to a exiguous
contribution to the expected spectrum computed below.

Since the maximum allowed WIMP velocity in the rest frame of the earth-
borne target vmax is needed below (5.11) should be further investigated. The
result is given by

vmax(θ, t) =
√
v2
esc − v2

E(t) (1− cos2 θ)− vE(t) cos θ (5.12)

with vE given in (5.4) and θ denoting the angle between ~v and ~vE in this short
section. So θ corresponds to the scattering angle in the galactic rest frame and not
in the center of mass frame. Figure 5.3 displays (5.12) as a function of θ for the 2nd

June (t = t0 = 152.5) and the 2nd December (t = 335.1) which according to (5.4)
and figure 5.2 correspond to the days in a year with the highest and lowest value
of vE . Obviously the dependence on the day in a year is only slight whereas the
maximum possible velocity of a WIMP interacting with a target nucleus severly
depends on the scattering angle θ.

In order to use vmax in the computations below considering the CDMS and
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XENON10 experiment it is useful to define a mean maximum velocity 〈vmax〉
similar to 〈vE〉. This is accomplished by substituting vE(t) in (5.12) by 〈vE〉 given
in (5.5) in the case of CDMS and (5.6) in the case of XENON10. Afterwards an
averaging over the scattering angle is excecuted so that 〈vmax〉 is definded by

〈vmax〉 =
1
π

∫ π

0

(√
v2
esc − 〈vE〉2 (1− cos2 θ)− 〈vE〉 cos θ

)
dθ (5.13)

leading to 〈vmax〉 = 518.3 km/s for the CDMS experiment and 〈vmax〉 = 521.0 km/s
for the XENON10 experiment.

In order to actually adress the problem of event rates it is necessary to take
a short look at the kinematics which is very instructive at the same time since
it yields an idea about the energies involved in the scattering processes. This
can be accomplished by considering simple Newtonian mechanics. Obviously this
assumption is valid since only WIMPs with a velocity up to vesc are considered. So
assuming the WIMP-nuclei interaction to be a simple scattering process applying
energy and momentum conservation directly yields

ER =
1
2
Er(1− cos θ) (5.14)

with the WIMP energy E, the recoil energy ER and the so-called kinematic factor

r =
4mWmT

(mW +mT )2
. (5.15)

Moreover it is important to know that in this context θ denotes the scattering
angle in the centre-of-mass frame. Since the non-relativistic limit is considered E
is simply given by

E =
1
2
mW v

2 . (5.16)

So what is the magnitude of the expected recoil energy? This can be estimated
by making some appropriate assumptions about the WIMP mass and its velocity.
Obvioulsy a mass of mW = 500 GeV consistent with the results from relic density
computations shown in figure 2.6 and a velocity of v = v0 = 220 km/s seems quite
reasonable. Evaluating (5.16) yields an energy carried by the WIMP of about
E = 135 keV. Considering scattering from a 73Ge nuclei with mT = 68 GeV
yields a kinematic factor of r = 0.4 and hence according to (5.14) an expected
recoil energy of about ER ' Er = 57 keV. Obviously the expected recoil energy
range is of order ∼ 10 keV and even smaller for lighter WIMPs.

According to (5.14) and (5.16) the maximum recoil energy ERmax is given by

ERmax =
1
2
mW v

2
maxr (5.17)
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Figure 5.4: Dependence of 〈ERmax〉 on the WIMP mass for 28Si, 73Ge and 131Xe.
Obviously it is increasing rapidly with mW finally converging against 2〈vmax〉2mT .
Of course even though the x-axis is labeled mB(1) due to the fact that the UED
model is considered in the actual computations below these results are clearly
model independent.

with vmax given in (5.12). Introducing an averaged maximum recoil energy by
substituting vmax with 〈vmax〉 yields the result shown in figure 5.4 where the
WIMP mass dependence of 〈ERmax〉 is compared for one silicon, one germanium
and one xenon isotope. It should be kept in mind that this energy has been
computed by using the averaged earth velocity and additionally averaging over
the angle of incidence in the galactic rest frame meaning that there is a fraction
of WIMPS which can give rise to a higher maximum recoil energy especially those
which hit the detector in a head-on collision. It will be discussed below that this
might be important for WIMPS with low masses.

After tantalizing the reader for such a long time the event rates are about to
be computed in the upcomig paragraph without further interruptions.

The WIMP density dn in the halo can be written as

dn =
n0

k1
f(~v,~vE)d3v (5.18)

with the velocity distribution f(~v,~vE) given in (5.10). Besides n0 denotes the
mean dark matter partcle density given by
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n0 =
ρW
mW

(5.19)

obeying

n0 =
∫ vmax

0
dn (5.20)

with ρ = 0.3 GeV/cm3 while k1 denotes the normalization constant. This constant
is obviously given by

k1 =
∫
|~v|<vmax(θ)

f(~v,~vE)d3v =
∫ vmax(θ)

0
dv v2

∫
dΩv e

− (~v+~vE)2

v20 (5.21)

which is rather complicated to evaluate because vmax defined in (5.12) is a function
of θ^(~v,~vE). However remembering that the velocity distribution is isotropic in
the galactic rest frame and the corresponding definition of the cut-off given in
(5.11) it is possible to avoid this difficult integration because obviously k1 can also
be computed evaluating

k1 =
∫
|~v+~vE |<vesc

f(~v,~vE)d3|~v + ~vE | =
∫ vesc

0
d|~v + ~vE | |~v + ~vE |2

∫
dΩv e

− (~v+~vE)2

v20 .

(5.22)

Since vesc is constant it is easy to evaluate this integral which leads to

k1 = k0

[
erf
(
vesc
v0

)
− 2√

π

vesc
v0

e
− v

2
esc
v20

]
(5.23)

where k0 is defined in the same way as k1 but with the integration evaluated for
vesc =∞ which leads to

k0 =
√
π π v3

0 . (5.24)

Besides erf denotes the so-called error function defined as

erf(x) =
2√
π

∫ x

0
du e−u

2
. (5.25)

The fact that (5.21) and (5.22) yield the same results which has been explicitely
tested is in principle also clear since the particle density should be independent of
the earth velocity.
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The differential event rate dR considering zero-momentum transfer is defined
as

dR =
N0

Au
σ v dn (5.26)

which has to be multiplied by the appropriate form factors discussed extensively in
the last chapter to incorporate the finite-momentum transfer. N0 = 6.022 · 1026kg−1

denotes the Avogadro constant while Au represents the atomic mass in u which
in fact is quite similar to A. Theoretical predictions for the cross sections have
already been extensively described. Inserting (5.18) in (5.26) dR can be rewritten
in the form

dR = R0
k0

k1

1
2πv4

0

v f(~v,~vE)d3v (5.27)

with

R0 =
2√
π

N0

Au

ρW
mW

σ v0 (5.28)

which in fact is the total event rate assuming vE = 0, vesc =∞ and integrating over
recoil energies from ER = 0 to ER = ∞. However in the following computations
it is only used as a convenient abbreviation.

Taking a look at (5.14) and assuming isotropic scattering in the center of mass
frame it can be assumed that recoils are uniformly distributed in ER over the
range from 0 to the maximum recoil energy given by E r. Thus the differential
event rate with respect to the recoil energy is given by

dR
dER

=
∫ Emax

Emin

1
Er

dR(E) =
1
E0r

∫ vmax

vmin

v2
0

v2
dR(v) (5.29)

with the θ-dependent maximum velocity vmax given in (5.12) and E0 defined as
the energy carried by a WIMP with velocity v0

E0 =
1
2
mW v

2
0 . (5.30)

Moreover vmin is defined as the minimum velocity leading to a certain recoil energy
ER which yields

vmin =
√

2Emin
mW

=
√
ER
E0r

v0 (5.31)

since Emin = ER
r . Inserting (5.27) into (5.29) leads to
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dR
dER

=
R0

E0r

k0

k1

1
2πv2

0

∫ vmax

vmin

1
v
f(~v,~vE)d3v . (5.32)

Unfortunately the occuring integration cannot be simplified similar to the way
computing the normalization constant k1. Therefor the θ-dependence of vmax has
to be carefully regarded. Nevertheless evaluation of the occuring integral finally
yields the rather complicated result

dR
dER

=
R0

E0r

k0

k1

[√
π

4
v0

vE

[
erf
(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
− e
− v

2
esc
v20

]
(5.33)

which energy dependence is approximately exponentially decreasing. This be-
haviour is evident from considering vE = 0 and vesc =∞ which yields

dR
dER

|vesc=∞vE=0 =
R0

E0r
e
ER
E0r (5.34)

It should be kept in mind that this expression depends on the day in the year via
vE which will be further discussed below.

Since R0 is proportional to σ the differential rate is proportional to σ as well
which is the only part of (5.33) depending on the kind of interaction and hence
being related to the assumed UED model described in former chapters. Therefor
and especially for latter purposes considering limit computations it is convenient
to define dR

dER
|σ denoting the whole expression given in (5.33) except for the cross

section σ. Using this abbreviation the spin-independent and if applicable the spin-
dependent differential event rates including the form factors for finite-momentum
transfer are given by

dR
dER

|SI = σSI
dR

dER
|σ F 2

SI (5.35)

dR
dER

|SD = σSD
dR

dER
|σ F 2

SD . (5.36)

Hence the total differential event rate for scattering from a certain nuclei can be
computed using

dR
dER

|total =
dR

dER
|SI +

dR
dER

|SD = σSI
dR

dER
|σ F 2

SI + σSD
dR

dER
|σ F 2

SD . (5.37)

Finally if the considered target consists of more than one element which is the
case in both experiments since only natural silicon, germanium and xenon is used
the respective abundances f have to be taken into account. Admittedly this is



74 CHAPTER 5. EVENT RATES FROM B(1)-NUCLEI SCATTERING

not really of crucial importance in the spin-independent case where all isotopes
contribute since they are all quite similar considering a certain detector. So even
though this accomplishment is much more import in the spin-dependent case and
for example in the spin-independent case using a NaI target it should be incorpo-
rated for convenience. Marking the total differential event rates given by (5.37)
with another label i to distinguish between different isotopes the total differential
event rate for a whole target is given by

dR
dER

|targettotal =
∑
i

fi
dR

dER
|itotal . (5.38)

Now the differential event rates can be evaluated. Just as a reminder the spin-
dependent form factors are evaluated without substituting (4.13) in the denomina-
tor of (4.2) defining F 2. The averaged earth velocities 〈vE〉 for both experiments
are given in (5.5) and (5.6) for the CDMS and XENON10 experiment respec-
tively. Moreover generally used values are v0 = 220 km/s, vesc = 544 km/s and
ρW = 0.3 GeV/cm3. The abundances used to evaluate (5.38) are given in table 3.4.

Besides some more information about the experiments is given in table 5.1 like
the energy interval considered for the analysis, the minimal WIMP mass yield-
ing recoil energies above the threshold, the exposure of the respective runs and
the corresponding efficiencies. qmin and qmax denote the lower and upper limit of
the energy interval considered for the analysis. So the former denotes the energy
threshold. Moreover mWmin labels the minimal WIMP masses yielding recoil en-
ergies above the threshold. They are computed using (5.17) incorporating 〈vmax〉
and setting 〈ERmax〉 = qmin. Moreover it is important to know that the exposure
given for the XENON10 experiment already contains the (constant) efficiency
which is the reason for setting the efficiency factor in the upcoming computations
to 1. Setting the efficiency to 0.4 for CDMS is due to the fact that the estimation
of its actual energy dependence has not been finished yet. Experience from earlier
analysis shows that the constant value 0.4 is a reasonable assumption for most en-
ergies except for those close to the threshold where its value is significantly lower.
After the efficency is computed properly the scripts incorporating its value should
be run again.

As a first example figure 5.5 shows spin-independent differential event rates

experiment target qmin qmax mWmin exposure efficiency
in keV in keV in GeV in kg · days

CDMS Si 20 100 15 43.1 0.4
Ge 7 100 11 102.9 0.4

XENON10 Xe 4.5 26.9 11 136.1 1

Table 5.1: Basic facts about the CDMS and XENON10 experiments. See text
above for details. Some values are taken from [32] for CDMS and from [20] for
XENON10.
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Figure 5.5: Spin-independent differential event rates for B(1)-73Ge scattering. All
important parameters like the used Higgs mass mH and degeneracy parameter
∆ are given. Since the differential event rates depend only slightly on the Higgs
mass the value mH = 120 GeV is used throughout the whole analysis. Obviously
higher WIMP masses yield lower differential event rates. Moreover the almost
exponentially decreasing is evident.

from B(1)-73Ge scattering obtained by evaluating (5.35)2 using the values
mH = 120 GeV and ∆ = 0.15 and a semilogarithmic y-axis. Each curve is re-
lated to different WIMP masses given in the upper box which also contains the
corresponding averaged maximum recoil energies 〈ERmax〉 computed using (5.17)
and displayed in figure 5.4. As already explained before the highest (blue) curve
belongs to the first value in the list of WIMP masses which is mB(1) = 30 GeV.
Each curve is trunctated at the just mentioned averaged maximum recoil energy.
However as already mentioned it should be kept in mind that it is very likely that
a certain scattering process can give rise to a higher recoil energy especially in
a head-on collision. But since the differential rates are decreasing approximately
exponential this cut-off is actually only important for low WIMP masses. This is
due to the fact that the range directly behind the threshold given for each kind of
detector in table 5.1 clearly contributes the most important part to the spectrum.

In conjunction with this first example figure 5.6 shows the corresponding spin-
dependent differential event rates computed with (5.36)2 using the same degen-

2So the corresponding abundance factor is not included.
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Figure 5.6: Spin-dependent differential event rates for B(1)-73Ge scattering. All
important parameters like the used Higgs mass mH and degeneracy parameter
∆ are given. Obviously higher WIMP masses yield lower differential event rates.
Moreover the almost exponentially decreasing is evident.

eracy parameter as before namely ∆ = 0.15.3 The obtained rates are smaller
compared to the corresponding spin-independent rates approximately by a factor
of 10. So since the spin-independent rates dominate scattering from a single iso-
tope it is clear that considering the whole silicon, germanium and xenon targets
spin-dependent scattering contributes only negligible to the total differential event
rate. This is clear since only a few isotopes contribute to this kind of interaction.

Figure 5.7 shows total differential event rates for certain silicon, germanium
and xenon isotopes computed using (5.37) and a WIMP mass ofmB(1) = 1000 GeV.
Obviously the use of xenon targets seem to be more promising considering low re-
coil energies due to the ∼ A2 scaling of the spin-independent cross sections whereas
it is less advantageous for higher recoil energies since the spin-independent form-
factors of xenon isotopes drop down much faster than those of silicon and ger-
manium isotopes as evident from figure 4.1. And as already explained it is the
spin-independent contribution which dominates the interaction.

Plots showing the total differential events rates obtained by evaluating (5.38)
summing over all occuring isotopes in the respective detectors and incorporating
the abundance factors can be found in the figures 5.8, 5.9 and 5.10 for silicon,
germanium and xenon targets. The used parameters are still mH = 120 GeV and

3As already explained the spin-dependent results are independent from the Higgs mass.
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Figure 5.7: Comparison of differential event rates scattering from 28Si, 73Ge and
131Xe.

Figure 5.8: Differential event rates for B(1)-Si scattering.
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Figure 5.9: Differential event rates for B(1)-Ge scattering.

Figure 5.10: Differential event rates for B(1)-Xe scattering.
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∆ = 0.15.4 The given values of 〈ERmax〉 correspond to the heaviest used isotopes
so according to table 3.4 to 30Si, 76Ge and 136Xe. Except for very small WIMP
masses up to about 50 GeV this always corresponds to the maximum value of
〈ERmax〉 for the whole target. Really striking is the bend down at the end of each
curve. This is related to the fact that isotopes with similar masses as present in
each detector also have similar but not exactly the same averaged maximum recoil
energy 〈ERmax〉. Consider for example a WIMP with a mass of mB(1) = 500 GeV
and a silicon target where the three occuring isotopes 28Si, 29Si and 30Si give rise
to values of 140.7 keV, 145.3 keV and 149.7 keV for 〈ERmax〉. Taking a look at
table 3.4 it is clear that 28Si contributes by far the most important part to the
differential event rate since its abundance is about 92 %. So recoil energies of more
than 140.7 keV can only arise from the other two isotopes with almost negligible
abundance. Of course, however these effects are not observable especially because
they are calculated using averaged recoil energy cut-offs. In reality the behaviour
at the cut-off is expected to be smeared out due to measured recoils with different
scattering angels and at different days in a year which leads to a damping near
the calculated cut-off. Nevertheless this uncertainty about the cut-off behaviour is
not really of crucial importance except for really low WIMP masses due to reasons
already stated.

Moreover as already explained these plots are almost identical to those ob-
tained by considering only the spin-independent contribution neglecting spin-
dependent scattering which is the reason not to show them here. In contrast
showing contributions arising only from spin-dependent interactions is clearly of
interest. So plots similar to the figures 5.8, 5.9 and 5.10 but using only spin-
dependent contributions can be found in B.2. In the case of silicon and germanium
this amounts to evaluating (5.36) and multiplying by the appropriate abundance
of 29Si and 73Ge. In the case of xenon there are two isotopes which are sensitive
to spin-dependent interactions meaning that (5.38) has to be used but neglecting
the spin-independent contribution to dR

dER
|total.

After having discussed the differential event rates the next step is obviously
the computation of the total event rates. Therefor the differential event rates
have to be integrated. The lower limit for these integrations is clearly given by
the threshold qmin whereas the upper limit is chosen to be the minimum of the
upper analysis limit qmax and the averaged maximum recoil energy 〈ERmax〉 with
the latter being computed for every isotope separately. This means that

R =
∫ min

(
qmax,〈ERmax 〉

)
qmin

dER
dR

dER
|targettotal (5.39)

with the differential event rate given in (5.38) has to be evaluated. Again it is
clear that only results for very small WIMP masses depend on the actual value of

4Similar plots for various values of ∆ considerng scattering from germanium can be found in
section B.1 of the appendix.
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Figure 5.11: Comparison of total event rates scattering from 28Si, 73Ge and 131Xe.

Figure 5.12: Total event rates for B(1)-Si scattering.
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Figure 5.13: Total event rates for B(1)-Ge scattering.

Figure 5.14: Total event rates for B(1)-Xe scattering.
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the upper limit.
But before considering rates from the whole targets a short comparison of total

event rates obtained by considering only single isotopes is shown in figure 5.11. No
abundance factors are incorporated here. Therefor this figure is closely related to
figure 5.7 since the results in the former for a WIMP mass of mB(1) = 1000 GeV
are obtained by integrating over the corresponding curves in the latter. Remember
that according to table 5.1 the recoil energy interval considered for the analysis
of germanium is 7 − 100 GeV whereas the corresponding interval for xenon is
4.5 − 26.9 GeV. So even though according to figure 5.7 the differential event
rate from the xenon isotope lies clearly above the differential event rate from the
germanium isotope for low energies it looks like the larger interval considered for
germanium can almost completely compensate the lower germanium rates despite
the exponential drop-down. Nevertheless it must be admitted that the xenon
isotope is achieving slightly better results. However in any case it is clear that the
results from the silicon target are far behind.

At this stage the total event rates for whole targets are about to be studied.
In practice it is more convenient to show plots distinguishing between the spin-
independent and the spin-dependent case. The obtained total event rates for
∆ = 0.15 and mH = 120 GeV as functions of the WIMP mass mB(1) are shown in
the figures 5.12, 5.13 and 5.14 for silicon, germanium and xenon targets.5

Obviously the total rate drops down significanlty for higher WIMP masses
which makes it more difficult to detect corresponding WIMPs in an experiment.
Moreover the rates arising from spin-independent interactions are usually about a
factor of 10 or even 100 higher than the spin-dependent counterparts which again
makes the contribution of the latter almost negligible.

There are two more useful annotations considering the low mass behaviour
of the total event rates. First of all the cut-off at low masses is due to the fact
that WIMPs with lower masses would not give rise to recoil energies above the
threshold. The corresponding minimum masses mWmin for each target are given
in table 5.1.

The second remark is about the cause of the bend of the curves at low masses
In order to investigate this issue figure 5.15 shows the differential event rates
for the lowest five masses yielding recoil energies above the threshold considering
scattering from 130Xe.6 It is obvious that for these low masses the total event
rates significantly depend not only on the threshold but also on the maximum
recoil energy. In contrast, for high masses the maximum recoil energy is so high
that the total event rate does not significantly depend on it either because it
exceeds the energy interval considered or because the differential event rate drops
down very fast. Apart from the maximum recoil energy the fact that differential
event rates for different masses have a point of intersection also contributes to the

5Similar to the case of differential event rates the corresponding plots using various values of
∆ and considering scattering from germanium can be found in B.3.

6Only integers have been used.
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Figure 5.15: Differential event rates for the lowest five masses yielding recoil ener-
gies above the threshold using only integers for the masses and considering scat-
tering from 130Xe.

bend. For example the area under the upper blue curve between the vertical red
line representing the threshold and the vertical blue line representing the averaged
maximum recoil energy for the corresponding WIMP mass is smaller than the area
under the green curve between the vertical red and green lines. Hence the total
rate for a WIMP mass of mB(1) = 11 GeV is smaller than for a WIMP mass
of mB(1) = 12 GeV. As cognizable from the plot the intersection points of two
adjacent rates move to higher recoil energies for higher WIMP masses. This also
contributes to the fact that except for low WIMP masses the total rate always
decreases with increasing WIMP masses. However as already stated this bend
should not be taken too serious due to the mentioned uncertainties of the cut-off
behaviour of the differential rates. Moreover this bend disappears if a detector
has a very low threshold close to 0 keV because then the part of the differential
event rate directly above the threshold dominates by far. This is shown in a plot
in B.4 where a threshold of 0.1 keV is assumed.



Chapter 6

Annual modulation

As explained in the previous chapter the differential and total event rates depend
on the day in a year via the velocity vE due to the earth’s motion around the
sun. However this time dependence was neglected by replacing vE with appropri-
ate averaged values given in (5.5) for the CDMS and in (5.6) for the XENON10
experiment. The main topic of this chapter is a short investigation of annual mod-
ulation effects which are related to this time dependence. Therefor the averaged
values are replaced by the general expression (5.4).

To start with the investigation of this topic it is the best to take a look at
the figures 6.1, 6.2 and 6.3 where each shows two differential event rate curves
considering scattering from 73Ge and the standard parameters ∆ = 0.15 and
mH = 120 GeV.1 The difference in these plots is the considered WIMP mass
which is chosen to be 30 GeV in the first, 200 GeV in the second and 1000 GeV
in the third figure. The two curves belong to two different days in a year namely
the blue one labeled 152.5th day to June 2nd and the red one labeled 335.1th day
to December 2nd which are related to the maximum and the minimum value of vE
in a year respectively. Obviously both curves have a point of intersection called
crossover recoil energy ERcross . In other words the differential event rates at high
energies are always in phase with the motion of the earth around the sun whereas a
phase reversal occurs for low recoil energies. Note that the y-axis scales differently
in each plot whereas the x-axis remains the same. Therefor it is easy to see that
ERcross is increasing with the Wimp mass.

To further investigate the consequences remember that the threshold of the
germanium detectors is set to 7 keV. So considering a low WIMP mass like 30 GeV
it is clear from figure 6.1 that the differential event rate on June 2nd is higher than
the corresponding rate on December 2nd for the whole considered energy range.
Consequently roughly speaking the total event rates obtained by integration are
always higher in summer compared to those in winter. So the total event rate is in
phase with the earth velocity as well peaking in summer. But as already observed

1Note that the investigated crossover recoil energy is independent of the cross section and so
it is especially independent of ∆ and mH .
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Figure 6.1: Differential Event rates for June 2nd and December 2nd considering
mB(1) = 30 GeV.

Figure 6.2: Similar to figure 6.1 but using mB(1) = 200 GeV.
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Figure 6.3: Similar to figure 6.1 but using mB(1) = 1000 GeV.

Figure 6.4: Time dependence of the total event rate considering mB(1) = 30 GeV.
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Figure 6.5: Similar to figure 6.4 but using mB(1) = 200 GeV.

Figure 6.6: Similar to figure 6.4 but using mB(1) = 1000 GeV.
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the crossover recoil energy increases to higher values with increasing WIMP masses.
So it is clear that the recoil energy interval between the threshold and ERcross yields
a higher contribution to the total event rate in winter whereas the interval between
ERcross and the end of the analysis region still gives rise to higher contributions
of the total event rate in summer.2 Hence the total event rate considered as a
function of the day in a year peaks in summer for low WIMP masses but under-
goes a phase reversal with increasing WIMP masses. This behaviour can be seen
in the figures 6.4, 6.5 and 6.6 which show the time dependence of the total event
rate for the same three masses and parameters used in the figures 6.1, 6.2 and 6.3.
The actual mass interval where the phase reversal takes place depends on each
isotope and the considered energy intervals. For example considering 73Ge the
phase reversal occurs at a WIMP mass of about ' 175 GeV whereas it already
occurs approximately at ' 60 GeV using 131Xe. In the case of silicon no phase
reversal can be observed up to a WIMP mass of 1200 GeV which is mostly due to
its high threshold of 20 keV.

Even though the just discussed mass interval where the phase reversal takes
place clearly depends not only on the WIMP mass and the target mass but also on
the theoretical framework considered. However the actual value of the crossover
recoil energy is independent of the WIMP model, the form factor and even the
local halo density ρW which makes it a really interesting quantity. To understand
the just stated properties just take a look at the way it can be computed:

0 !=
dR

dER
|t0 −

dR
dER

|t1 (6.1)

=
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− e
− v

2
esc
v20

]

with the formulae for the differential event rates taken from (5.33) and t0 denoting
June 2nd whereas t1 denotes December 2nd. Plots of the term on the right side
of this equation as a function of the recoil energy considering scattering from
73Ge can be found in figure 6.7 for various masses.3 The target properties only
enter the formula via the mT -dependence of vmin given in (5.31). Computing of
its respective roots is rather easy since the curves are obviously negative for low
recoil energies as expected and increase monotonously to positive values until they
reach a maximum and decrease asymptotically towards 0.

Figure 6.8 shows the result of the whole computation for one silicon, one
germanium and one xenon isotope considered to be the target. Obviously the

2Of course it is possible that ERcross exceeds the energy interval used in the analysis.
3Even though the masses are labeled mB(1) the results shown in these figures are independent

of the WIMP model.
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Figure 6.7: Computing the crossover recoil energy.

Figure 6.8: Mass dependence of the crossover recoil energy for 28Si, 73Ge and
131Xe.



90 CHAPTER 6. ANNUAL MODULATION

crossover recoil energy is a monotonically increasing function of the WIMP mass.
Therefor an observation of an annual modulation signal can be used to constrain
the WIMP mass. Consider for example an observed annually modulated signal
with a peak in June in an energy range ER1 − ER2 . Hence it is clear that the
cross over recoil energy must be below ER1 or otherwise a peak in December
would have been observed. Since it turned out that the crossover recoil energy is
monotonically increasing function of the WIMP mass this in turn directly places
an upper limit on the WIMP mass. For example if CDMS would observe such a
signal in their germanium detectors in energy bins close to the threshold of 7 keV
an upper limit of about 40 GeV could be set for the WIMP mass. Of course a
direct measurement of ERcross itself would direcctly determine the WIMP mass.

However the expected modulation is very small so that excellent energy reso-
lution and a really long exposure would be necessary in order to have a chance to
potentially detect it at all. The authors of [35] estimated the required exposures
for several experiments. For example considering the germanium detectors used
by CDMS they argue that an exposure of about 80 kg ·years would be required as-
suming perfect energy resolution which leads to the conclusion that observing the
annual modulation is not very likely with this experiment. Considering large scale
liquid xenon detectors as in XENON10 their results are much more encouraging
but only for a very narrow WIMP mass range of about 100− 150 GeV for which
they estimated a necessary exposure of about 25 kg · years making it possible to
detect the annual modulation within a single year of continous running. However
outside of this narrow interval the situation gets even worse than in the case of
CDMS. So annual modulation is not very likely to be detected by neither CDMS
nor XENON10 if the dark matter is really made up of the B(1) which is expected
to have a mass of about 500−600 GeV. Of course the obtained results have to be
modified considering different halo models with different velocity distributions.

To finish the topic of annual modulation the figures 6.9 and 6.10 show differ-
ential event rates for a WIMP mass of mB(1) = 500 GeV and the ususal values for
the parameters ∆ and mH considering scattering from 73Ge. What distinguishes
these two plots from all other plots showing differential event rates before is that
here the recoil energy ER is fixed and the dependence of the day in a year is in-
vestigated. The crossover recoil energy for this combination of WIMP and target
mass is given by 44.5 keV. Needless to say that from the phase of the curves it is
clear that figure 6.9 shows results obtained by using a recoil energy below the cross
over recoil energy namely ER = 22.2 keV whereas a recoil energy above given by
ER = 66.6 keV is used in figure 6.10.

As a final investigation which however is not really related to the annual mod-
ulation effect figure 6.11 explores the dependence of differential event rates on
the characteristic velocity of the velocity distribution v0. Throughout this whole
analysis its value was set to v0 = 220 km/s but its value is burdened with a high
degree of uncertainty. Therefor the differential event rate is plotted for five differ-
ent values of v0 from 220 km/s to 270 km/s. Scattering from 29Si and a WIMP
mass of mB(1) = 500 GeV is considered. Obviously there is a point of intersection
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Figure 6.9: Computing the crossover recoil energy.

Figure 6.10: Mass dependence of the crossover recoil energy for 28Si, 73Ge and
131Xe.
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Figure 6.11: Dependence of the differential event rate on v0 considering a WIMP
mass of mB(1) = 500 GeV and scattering from 29Si.

near ER = 50 keV. However more important is the observation that the differ-
ential event rates only depend very slightly on v0 for low recoil energies. Re-
membering that this is the by far most important energy range it seems that the
uncertainties are not so crucial even though they are quite large.



Chapter 7

Limits on cross sections and
WIMP-nucleon couplings

In the previous chapters the UED model was used in order to determinine pre-
dictions for the spin-independent and spin-dependent WIMP-nucleon coulings fp,n
and ap,n and hence for the respective cross sections σSI and σSD. Unfortunately to
this day no experiment except for the widely doubted DAMA has ever claimed to
have detected dark matter neither in direct detection experiments discussed here
nor accomplishing different approaches. Hence it is not possible to compare any
kind of measured signal to theoretical predictions. Even though this is of course
disappointing and the community is eagerly waiting for a positive result it is at
least possible to compute upper limits on the mentioned quantities. As already
mentioned the parameter space considering direct detection can be described by
the four WIMP-nucleon coulings and the WIMP mass. So in this chapter these
quantities are assumed to be a priori unknown.

Setting limits it is usually assumed that one of the two types of interaction
dominates by far so that the other one can be neglected. Similar to the discussions
of cross sections and form factors the spin-independent case is the one considered
first since it is much easier and even straight forward to deal with. The spin-
dependent case considered afterwards turns out to be much more complicated.

7.1 Limits on spin-independent cross sections

Computing limits on the WIMP-nucleon cross sections in the spin-independent
case is comparatively simple for two reasons.

First of all there is no relationship between the actual cross section and the
form factors which is different in the spin-dependent case where not only the spin-
dependent cross section depends on the WIMP-nucleon couplings but also the
corresponding form factors. Therefor investigating spin-independent interactions
it is possible to compute limits on the cross sections from target nuclei without
even considering the properties of the WIMP-nucleon couplings fp and fn.

93
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The second reason concerns the normalization from cross section limits con-
sidering target nuclei to the limits from scattering of single nucleons. As already
mentioned in the chapter on cross sections it is appropriate for most dark mat-
ter candidates to assume that the interaction is isospin-independent which means
that fp ≈ fn yielding the simple normalization given in (3.19). Even though this
normalization is used throughout this whole chapter it is useful to think about
the consequences if the just made assumption does not hold. This is discussed for
example in [36]. Consider for example the extreme case that fp = −fn. From (3.9)
it is clear that this would result in a strongly suppression of the spin-independent
interaction with the advantegeous ∼ A2 scaling from the isospin-independent case
switching to a ∼ (N−Z)2 scaling. Of course this would be disastrous especially for
experiments with comparatively low target masses where N ≈ Z. So taking a look
at table 3.4 reveals that for example 73Ge would end up with only 9 nucleons effec-
tively participating in the interaction whereas 131Xe would still constitute at least
23 effective nucleons. Hence the sensitivity of these targets would be suppressed by
factors of approximately 66 and 32 respectively. For the general case of arbitrary
WIMP-nucleon couplings an analysis similar to the approach presented for spin-
dependent interactions constraining fp and fn would be necessary which however
would be still less complicated due to the almost target-independent form factors.
Nevertheless as already mentioned the simple case assuming isospin-independent
interactions is investigated here.

So how are cross section limits computed? In order to answer this question
the arrangement is made to start by calculating limits for every target isotope
seperately and combining them afterwards. The general procedure is rather sim-
ple. First of all the number of events N has to be considered. It can be calculated
by multiplying the total event rate with the respective abundance factor f given
in table 3.4 as well as the exposure exp and efficiency eff given in table 5.1. So
using the expression for the spin-independent differential event rate considering
scattering from only one single isotope given in (5.35) and directly replacing σSI
by the cross section normalized to a neutron given in (3.19) yields1

N = f · exp · eff · σnSI A2 µ
2
T

µ2
n

∫ min
(

qmax,〈ERmax 〉
)

qmin

dR
dER

|σ F 2
SI dER . (7.1)

All factors in front of the integral are clearly independent of the recoil energy.
However in the general case the efficiency is also energy dependent which has to
be taken into account. (7.1) directly yields an expression for the cross section. N
clearly has to be estimated by analyzing data from the respective experiments.
After this is done the corresponding normalized cross section can be computed
using

1Of course normalizing to scattering from a proton would yield almost exactly the same results.
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σnSI =
N

f · exp · eff · A2 µ2
T
µ2
n

∫ min
(

qmax,〈ERmax 〉
)

qmin

dR
dER
|σ F 2

SI dER
. (7.2)

which can also be used to set constrains on it. It is important to note that the
denominator of 7.2 is constant for a given WIMP mass. Thus the obtained limits
for all isotopes can be combined by considering that (7.2) yields results which are
in fact overestimated by a factor of 1/f . From now on a label lim is added to the
obtained limits. Since clearly

σnSI |lim ∼
1
f

(7.3)

holds for all isotopes it is a common procedure to define this constant of pro-
portionality to be the overall limit. Therefor adding another label i to the cross
sections and abundance factors in order to distinguish between the different iso-
topes and considering that obviously∑

i

fi = 1 (7.4)

holds the final limit can be computed using

1
σnSI |limtotal

=
∑
i

1
σnSI |limi

. (7.5)

The last open issue is the estimation of the number of events N . In order to
approach this problem it is the best way to start with the simplest example con-
sidering that no events were observed which is the case for the silicon target as
evident fom table 7.1. Since direct detection experiments always deal with a very
small number of observed events it is a common assumption that this process
obeys a Poisson statistic with the familiar probability distribution

experiment target detected ER of detected expected µ from FC method
events events in keV events

CDMS Si 0 — 0 0 . . . 2.44
Ge 1 64.0 1 0 . . . 3.36

XENON10 Xe 10 4.5, 15.4, 16.7, 16.9, 7 0 . . . 9.50
19.6, 20.2, 23.7, 24.0,

25.4, 26.2

Table 7.1: Expected and detected events from the CDMS and XENON10 exper-
iments. Values are taken from [31] for CDMS and from [20] for XENON10. The
last column shows the Poisson signal mean µ used in the Feldman & Cousins
method taken from [37].
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P (k|µ) =
µk

k!
e−µ (7.6)

where µ denotes the expectation value. Usually a 90 % confidence limit is given
on the cross sections. In the case that no events were observed or rather k = 0
this is easily evaluated.

P (0|λ) = e−µ
!= 1− 0.9 (7.7)

directly yields µ = ln 10 ≈ 2.30 which henceforth is used as the number of events
N in (7.2). To summarize this procedure using N = ln 10 in (7.2) yields a 90 %
upper confidence limit on the cross section.

Nevertheless usually a small number of events is detected and moreover es-
timations on the occuring background should be included in the computations
if possible. Therefor more advanced analysis techniques are necessary. In the
following two different approaches are investigated which are called the Feld-
man & Cousins method presented in [37] and the Maximum Gap method from
Steve Yellin published in [38].

The Feldman & Cousins method is distinguished from other classical ap-
proaches of setting limits especially by the fact that the decision whether upper
limits or two-sided confidence intervals should be computed is not made by the
person doing the analysis but rather intrinsically by the procedure itself. This is
very promising because the authors of [37] showed that the obtained limits are not
really confidence intervals if the choice is based on the data obtained. Moreover
this method avoids the possible occurance of unphysical or empty intervals. In
order to briefly explain the method consider a Poisson process with an unknown
expectation value µ and a background with known mean b

P (k|µ) =
(µ+ b)k

k!
e−(µ+b) . (7.8)

The used procedure amounts to the accomplishment of a certain ordering principle.
So considering the fixed background b and a fixed value of µ the corresponding
propability (7.8) is computed for several observed events k starting from k = 0.
Hence the ratio

R =
P (k|µ)

P (k|µbest)
(7.9)

is computed for all k with P (k|µbest) denoting the use of that value of µ which
gives rise to the maximum possible value of P (k|µ). This parameter R defines the
ordering principle. So the value of n with the highest corresponding value of R is
the first value put into the acceptance region. Thus values of n are added to this



7.1. LIMITS ON SPIN-INDEPENDENT CROSS SECTIONS 97

region in decreasing order of R until the sum of P (k|µ) finally meets or exceeds
the considered confidence level which is 90 % in this case.

Fortunatelly the authors were so kind to provide some tables with prepared
results for certain confidence levels including 90 %. Therefor having observed a
certain number of events and estimated the number of expected background events
the only thing to do is take a look at these tables and find the already computed
confidence level for the signal mean µ. The results considering the CDMS and
XENON10 experiments can be found in table 7.1. Obviously it turns out that
all limits are upper limits and not central confidence intervals as it was expected.
Hence the given upper values have to be inserted into (7.2) so for exampleN = 2.44
for silicon. So the modification in the case where the pure Poisson approach is
valid as well since no events are detected the Feldman & Cousins method amounts
to replace N = 2.30 by N = 2.44. A disadvantage of this method is that it
only incorporates the pure number of events and not their energy distribution.
Moreover apart from the normalization even the expected shape of the event dis-
tribution is known. The Maximum Gap method incorporates these information
finally yielding more stringent limits.

The Maximum Gap method can be used to compute cross section limits in
a slightly different way. Unlike the Feldman & Cousins method it is also ap-
plicable if there is a certain unknown background contaminating the data. The
basic procedure is to find a certain energy range yielding an especially stringent
limit. Therefor an interval has to be chosen where the sum of the signal and the
background is particularly small. However this is not done manually which would
be very subjective since for example low energy ranges are usually dominated by
background signals which would result in a weaker upper limit but included in the
procedure. It works as follows:

The unbinned data is considered and for every interval between two adjacent
measured events the expected number of events is computed which is clearly given
by (7.1) but with the the integration limits replaced by the recoil energies of these
two events. Since the cross section is unknown this means that the right side of
the equation without considering σnSI has to be evaluated. Of course the upper
and lower analysis limits serve as integration limits as well. So for example taking
a look at the germanium data given in table 7.1 it is clear that two intervals have
to be considered namely 7−64 keV and 64−100keV. Moreover there is obviously
only one interval in the silicon case and eleven considering xenon. It should be self-
evident that these integrations might have to be cut-off at the averaged maximum
recoil energy. After executing all these computations the one with the highest
resulting number of expected events labeled x is chosen which defines the so-
called Maximum Gap. It is this interval which is used to compute the upper limit.
Remember that the actual expected number of events in the Maximum Gap is
still not known since the obtained result still has to be multiplied with the cross
section so it would be more precise to write x(σnSI). However the author of [38]
derived a formula for the propability C0 that the maximum gap is smaller than a
certain value of x. It is only dependent on x and µ with the latter clearly being
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obtained by integrating over the whole energy range:

C0(x, µ) =
m∑
k=0

=
(kx− µ)k−1e−kx

k!

(
k(x− 1)− µ

)
(7.10)

m denotes the greatest integer ≤ µ
x . Therefor a 90 % confidence level can be

obtained increasing σnSI until C0 = 0.9. An interesting case occurs when no events
are detected so for example considering the silicon detectors. Then x = µ gives
rise to

C0(µ, µ) = 1− eµ . (7.11)

Demanding C0 = 0.9 directly yields µ = ln 10 ≈ 2.30 which is nothing but the
pure Poisson limit. This has been used to check the correctness of the Maximum
Gap code.

To summarize some of the properties of this method it is clear that it is not
very sensitive to the boundaries of the whole energy range considered. Moreover
it does not use any kind of binning. Besides it uses information about the shape
of the event distribution and it is possible to include unknown background which
is different from the Feldman & Cousins method which only incorporates the
actual number of events and requires information about the expected background.
Therefor the obtained results are usually more stringent. Finally it is important
to know that this method is excellent to compute upper limits but it cannot be
used to analyze a positive WIMP search signal.

As an annotation the author also published a generalization of the Maximum
Gap method in the same paper called Optimum Interval method. This procedure
is similar to the Maximum Gap method however not only empty intervals are con-
sidered but intervals with an arbitrary number of events. For example in the case
of germanium there are three different intervals namely the two already mentioned
7 − 64 keV and 64 − 100 keV containing no event at all and the whole analysis
range from 7− 100 keV containing one event. Unfortunately these investigations
do not yield an analytic formula to compute a limit similar to (7.10). Instead
Monte Carlo methods are needed to evaluate occuring functions. Fortunately re-
sulting tables and several routines are published on the internet [39]. This method
was used to compute spin-independent cross section limits as well. The results
can be found in C.1. However since they totally agree with the results obtained
using the Maximum Gap method considering silicon and germanium only the lat-
ter is accomplished in the spin-dependent case described in the next chapter. The
reason for the bend around 50 GeV using xenon is unfortunately not known.

Finally the results of the computations for each target after using (7.5) includ-
ing the Feldman & Cousins method as well as the Maxmum Gap method can be
found in the figures 7.1, 7.2 and 7.3. Since the ansatz for the cross section (3.9) is
model-independent these limits are clearly model-independent as well. However
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Figure 7.1: Spin-independent cross section limits from silicon detectors used by
CDMS.

Figure 7.2: Spin-independent cross section limits from germanium detectors used
by CDMS.
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Figure 7.3: Spin-independent cross section limits from XENON10.

Figure 7.4: Comparison of all spin-independent cross section limits using the Max-
imum Gap method and theoretical predictions using mH = 120 GeV.
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experiment target mW in GeV σSI in pb
CDMS Si 66 4.17 · 10−6

Ge 48 1.72 · 10−7

XENON10 Xe 33 4.31 · 10−8

Table 7.2: Minimum spin-independent cross section limits computed using the
Maximum Gap method and the corresponding WIMP masses.

it should be kept in mind that computing limits for the CDMS experiment a
constant efficiency of 0.4 is used which is definitely to high for small recoil energies.
Thus these limits surely are a little bit to restrictive.

As expected the results from the Maximum Gap method yield more stringent
results in each case. The slightest difference can be observed in the case of Si
which is no surprise since as already explained in this case the only difference
between both methods is the use of N = 2.30 for the Maximum Gap method and
N = 2.44 for the Feldman & Cousins method.

As another annotation the limits at low masses become significantly larger due
to the fact that WIMPs with such masses hardly lead to events with recoil ener-
gies above the threshold. Hence the cross sections have to increase significantly
to account for the observed signal. Moreover limits in this mass region also de-
pend comparatively severe on the parameters of the velocity distribution used to
describe the WIMPs.

For a better comparison between the three used targets and with theoretical
predictions figure 7.4 shows all maximum gap limits and the predictions for a Higgs
mass of mH = 120 GeV already given in figure 3.3 in one plot. Obviously the
xenon target from XENON10 yields the strongest limits. Besides it is encouraging
that this experiment just starts to probe the paramter space for 500 GeV WIMPs
which accoring to the explained relic density computations is the preferred mass
region for dark matter arising from Universal Extra Dimensions.

Before proceeding with the spin-dependent case table 7.2 summarizes the min-
imum cross section limits obtained using the Maximum Gap method and the
corresponding masses.

7.2 Limits on spin-dependent WIMP-nucleon couplings
and cross sections

Since it turned out that spin-independent cross sections are expected to dominate
WIMP-nuclei interactions the question arises why it should be useful to deal with
this problem at all. The first reason is of course that any information concern-
ing WIMP-nucleon couplings would help to identify the nature of the WIMP so
especially whether it turns out to be a Kaluza-Klein particle, a particle proposed
by Supersymmetry or maybe something completely different. Furthermore it is
possible that the spin-independent interaction is strongly suppressed which has
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already been addressed in the former section. Of course in this case any analysis
based on spin-independent cross sections would be useless.

As an annotation before starting with the actual computations it should be
mentioned that the power of any experiment to yield limits on WIMP-nucleon
interactions strongly depends on the kind of target material via the corresponding
form factors and spin expectation values. So of course even-even nuclei are def-
initely not useful in this context since their spin-dependent sensitivity is clearly
negligible though in general not completely vanishing. The four isotopes with spin-
dependent sensitivity 29Si, 73Ge, 129Xe and 131Xe used here are all odd-neutron
isotopes which is evident from table 3.4. Hence they yield quite strong limits on
the WIMP-neutron interactions whereas those considering WIMP-proton interac-
tions are really weak. It will turn out that the fact that no odd-proton isotope
is used here leads to the result that it is only slightly possible to diminish the
parameter space combining the respective limits. Hence the combination with
the results from the analysis of at least one odd-proton isotope would be really
advantageous. However this will be explained in more detail below.

As evident from table 3.4 the natural abundance of the target isotopes con-
tributing to spin-dependent interactions is rather low in the case of the CDMS
experiment which is the reason for the fact that the corresponding limits were
often considered to be negligible. However it turns out that the data is so clean
and background free enough to compensate for the low abundances. In contrast
the abundances of the two appropriate xenon isotopes are significantly higher and
thus clearly yield iinteresting results..

So as alreay pointed out a few times before the spin-dependent case is rather
difficult to deal with.

First of all this is due to the fact that the cross sections and the form factors
cannot be handled seperately since they are both dependent on the unknown
WIMP-nucleon couplings ap and an which in turn can differ by several order of
magnitude. Therefor in principle a 3-dimensional parameter space consisting of the
WIMP mass and the WIMP-nucleon couplings must be considered. Remember the
spin-independent case where after certain reasonable assumptions it was possible
to consider a 2-dimensional parameter space using only the WIMP mass and the
cross section. In particular it was not necessary to work with the WIMP-nucleon
couplings directly. However this problem is a little bit tricky to deal with but it
can be solved satisfactorily.

The second problem turns out to be much more severe. It is related to the
fact that all form factors computed using the spin structure functions extensively
discussed before do not yield reasonable results for all values of the WIMP-nucleon
couplings ap and an. This problem can be diminished but not solved properly and
discomfort about the obtained results remains.

Besides it should be clear that since the ansatz for the spin-dependent cross
section given in (3.22) depends on ∆ via mq(1) it is only valid for the discussed
UED model and hence the results considering for example neutralino-nucleon scat-
tering in a supersymmetric framework have to be computed separately. This
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should be contrasted to the spin-independent case where (3.9) gave rise to model-
independent results.

In order do accomplish all upcoming computations in an adequate the problem
with the form factors should be considered first since it leads to a slight modifica-
tion of the form factors which actually has already been addressed on page 50. So
taking a look at the definition of the form factors (4.2) with (4.15) and (4.14) it
is obvious that its nominator and denominator are quadrics considering the func-
tional dependence on the WIMP-nucleon couplings. Therefor it turns out to be
very useful to consider polar coordinates in the subspace containing ap and an:

ap = r sin θ
an = r cos θ (7.12)

Clearly pure proton coupling is obtained by setting θ = 90◦ whereas the case of
pure neutron coupling is given by setting θ = 0◦. Inserting this ansatz in (4.15)
yields

S(q) = r2
(

(sin θ+ cos θ)2 S00(q) + (sin θ− cos θ)2 S11(q)− cos(2θ)S01(q)
)

(7.13)

which in turn leads to

F 2
SD(q) =

(sin θ + cos θ)2 S00(q) + (sin θ − cos θ)2 S11(q)− cos(2θ)S01(q)
(sin θ + cos θ)2 S00(0) + (sin θ − cos θ)2 S11(0)− cos(2θ)S01(0)

(7.14)

an expression depending only on the polar angle θ. So in order to investigate the
behaviour of these form factors the next step is to scan over the polar angle theta
from 0◦ − 360◦ and see what happens.

The results for the case of 129Xe using the Nijmegen II method can be found
in C.2. However any of the considered isotopes 29Si, 73Ge, 129Xe and 131Xe and
using any method in the case of the xenon isotopes yields similar outcomes. They
are postponed to the appendix because it seems reasonable to show quite a few
plots to illuminate the occuring problem. These plots show the respective spin-
dependent form factors for θ = 0◦ so pure neutron coupling and some angles
around θ = 90◦. It is quite obvious that there are severe issues for some angles in
the latter case. What is already quite obvious is the occurance of two problems.
First of all the denominator S(0) can get very close to 0 making F 2 increase
dramatically. This problem can be avoided as explained below but apart from
that also the general shape of the form factor gets strange e.g. it sometimes
increases immediately considering finite momentum-transfer and it can even get
negative sometimes which considering the given example is the case for θ = 93◦.
Of course this behaviour is totally absurd. It should be mentioned that the same
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problems occur with a phase shift of θ = 180◦ and that there are no noticeable
problems at other angles. These issues seem to be related to the fact that all
considered isotopes are odd-neutron isotopes. This idea can be underpinned by
taking a look at an odd-proton isotope like 127I with spin structure functions taking
from [28]. In this case the same problems occur but for angles around θ = 180◦.
Finally it should be mentioned that in the case of 131Xe the QTDA method which
is prefered by some authors indeed yields a more reasonable form factor for pure
WIMP nucleon coupling than the Bonn A method and the Nijmegen II method
but negative results for angles over a 15◦ range from 95◦ − 110◦.

In order to avoid dividing by values close to 0 take a look at the product of
the zero-momentum transfer cross section σSD given in (3.22) and F 2

SD:

σSD F
2
SD =

2
3π
µ2
T g

4
1

Λ2J(J + 1)
(m2

B(1) −m2
q(1)

)2

S(q)
S(0)

(7.15)

Obviously the expression (4.13) for S(0) rewritten in the form

J(J + 1)
π

Λ2 1
S(0)

=
1

2J + 1
(7.16)

turns out to be very useful here since now (7.15) can be written as

σSD F
2
SD =

2
3
µ2
T g

4
1

1
(m2

B(1) −m2
q(1)

)2

1
2J + 1

S(q) . (7.17)

To check the validity of this substitution figure 7.5 shows a comparison of both
sides of equation (7.16) with S(0) obtained by evaluating (4.15) at zero-momentum
transfer for 131Xe using the Bonn A method.2 Obviously the substitution seems
appropriate for all angles of θ except for the troublesome angles just mentioned.
So it can be used as an adequate way to avoid problems related to dividing by
values close to zero.

However as already mentioned this does not solve all of the problems since
not only the denominator of F 2 which has just been removed is troublesome but
also the numerator yielding its shape. This is shown in C.3 where the energy
dependence of the differential event rates for 129Xe using the Nijmegen II method
and a WIMP mass of 50 GeV for the same angles of θ used in C.2 can be found.
Admittedly actually the factor R0 is missing but since it is clearly independent
of the recoil energy this only effects the magnitude of the plots but not their
general shape which is clearly inherited from the corresponding form factors. From
these plots in the appendix it is quite obvious that the energy dependence of the
differential rate shows some strange behaviour in the mentioned angle intervals
even after substituting the denominator S(0). Without showing the plots for
other isotopes it should be mentioned that this behaviour is worst for the two

2Needless to say that the results from all other isotopes look very similar.
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Figure 7.5: Test of the substitution (7.16) in the case of 131Xe using the Bonn A
method.“function with singularities” clearly denotes the left side of the equation
whereas “constant approximation” denotes the right one. As expected the substi-
tution looks adequate for all angles except those around 90◦ and 270◦.

xenon isotopes especially because as cognizable from the given example the rate
drops down significantly at energies slightly above the threshold which naturally
contribute the most important part to the total event rate. In the case of silicon
and germanium the form factors look a little bit wierd for the mentioned angles
as well however the deformation is much less significant.

Keeping these issues in mind the rest of the computation is similar to the spin-
independent case and in principle straight forward. The procedure is extensively
described in [40]. First of all the number of events has to be considered which is
calculated in the same way as in the spin-independent case. The result comparable
to (7.1) which is obtained by multiplying the total event rate given in (5.36)
with the exposure, the efficency and the appropriate abundence factor in order to
consider only one single isotope taking (7.17) into account is

N = f ·exp·eff · 2
3
µ2
T g

4
1

1
(m2

B(1) −m2
q(1)

)2

1
2J + 1

∫ min
(

qmax,〈ERmax 〉
)

qmin

dR
dER

|σ S(q) dER

(7.18)

with the unknown coefficents ap and an contained in S(q). Since the latter is a
quadric considering the functional dependence on the former coefficients N can
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be written in the form

N = Aa2
p + 2B apan + C a2

n (7.19)

with the values A, B and C which are constant for a given WIMP mass which
will be assumed at the moment:

A = f · exp · eff · 2
3
µ2
T g

4
1

1
(m2

B(1) −m2
q(1)

)2

1
2J + 1

·
∫ min

(
qmax,〈ERmax 〉

)
qmin

dR
dER

|σ
(
S00(q) + S11(q) + S01(q)

)
dER

B = f · exp · eff · 2
3
µ2
T g

4
1

1
(m2

B(1) −m2
q(1)

)2

1
2J + 1

·
∫ min

(
qmax,〈ERmax 〉

)
qmin

dR
dER

|σ
(
S00(q) + S11(q)− S01(q)

)
dER

C = f · exp · eff · 2
3
µ2
T g

4
1

1
(m2

B(1) −m2
q(1)

)2

1
2J + 1

·
∫ min

(
qmax,〈ERmax 〉

)
qmin

dR
dER

|σ
(
S00(q)− S11(q)

)
dER . (7.20)

In order to get a certain idea about the different types of solutions which are
possible it is appropriate to remember that the quadric (7.19) describes a conic in
the ap vs. an-plane. However since there are no linear terms in ap or an this is not
the general form of a second degree polynomial and only three different types of
solutions are possible which are furthermore all centered at the origin. These are
ellipses, hyperbolas and two parallel straight lines3 which can be written in the
following forms respectively:

x2

a2
+
y2

b2
= 1 ,

x2

a2
− y2

b2
= 1 , x2 = a2 (7.21)

where all cross terms leading to a rotation in the x vs. y-plane have been sur-
pressed. However from taking a look at (7.19) rotations definitely occur. The
actual type of conic is clearly determined by the relative magnitudes of the coeffi-
cients A, B and C which crucially depend on the WIMP mass and the structure
functions. Mathematically the shape can be determined by computing

D := det
(
B C
A B

)
= B2 −AC . (7.22)

D < 0 corresponds to an ellipse whereas D = 0 correponds to two parallel straight
3Two parallel straight lines are in fact called a degenerate conic.
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lines and D > 0 to a hyperbola. Considering all isotopes for the masses discussed
below negative values were obtained so that the only occuring shape is an ellipse.
Hence the eigenvectors of the matrix given in (7.22) yield the direction of the
major axis and the inverse eigenvalues their lengths.

However it turns out to be much more appropriate to use the polar coordinates
introduced in (7.12) which gives rise to

N = r2
(
A sin2 θ + 2B sin θ cos θ + C cos2 θ

)
. (7.23)

This in turn can be rewritten as

r2 =
N(

A sin2 θ + 2B sin θ cos θ + C cos2 θ
) (7.24)

which should be compared to (7.2). The most important difference between these
two expressions apart from the troublesome form factors determining A, B and C
is that even for a fixed WIMP mass the right side of (7.24) is clearly not constant
due to the dependence on θ.

So computing limits on the WIMP-nucleon couplings is accomplished as fol-
lows: For any WIMP mass of interest perform a scan over the angle θ from 0◦−360◦

which leads to a constant denominator in (7.24). Hence a limit on r2 can be
computed in exactly the same way as in the spin-independent case using the Feld-
man & Cousins method as well as the Maximum Gap method. Thus since the
determinante D given in (7.22) yielded negative values each time the results are
expected to be ellipses in the ap vs. an plane for each considered WIMP mass. So
the ap-an parameter space is restricted to the inner region of these ellipses. If a
WIMP signal would be observed this analysis would yield two concentric ellipses
with the obtained band representing the permitted region and its thickness being
defined by the uncertainty in the observed signal.

Of course for a proper analysis it is necessary to scan over a reasonable interval
of WIMP masses as well starting with the minimal WIMP masses yielding recoil
energies above the threshold given in table 5.1. Since ellipses are obtained for each
fixed WIMP mass the result is clearly a closed surface shaped as a tube considering
the full 3-dimensional parameter space.4 However a more useful form is to only
consider the ellipses for a few fixed WIMP masses since it is difficult to extract
proper results from 3-dimensional plots. Several plots showing the obtained results
can be found below after the discussion of another though less exact method to
compute limits in the ap vs. an plane.

But before proceeding with the description of this method a short insertion.
Apart from the computation of limits on WIMP-nucleon couplings for a given
WIMP mass it is quite interesting to calculate limits on the WIMP-neutron cross

4A plot like this can be found in C.6 but for neutralino-nucleon scattering. The reason to
consider this model as well is discussed later on.
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sections considering coupling solely to neutrons which means setting ap = 0 and
the other way around setting an = 0 to compute cross section limits for pure
WIMP-proton coupling. However this can be achieved rather easily by remem-
bering that the former case is equivalent to setting θ = 0◦ yielding an = r and
the latter to setting θ = 90◦ yielding ap = r. Hence the computed limits on r2

for θ = 0◦ and θ = 90◦ directly yield the important limits on pure WIMP-nucleon
couplings which can be converted to corresponding cross section limits using the
normalization given in (3.27). It is important to note that the obtained limits on
the pure WIMP-nucleon cross sections are model independent which is evident
from (3.27).

Since obtained results considering pure coupling to protons differ very much
from the corresponding results considering pure coupling to neutrons both cases
have to be shown separately. This is accomplished in the figures 7.6 and 7.7 for
silicon, in 7.8 and 7.9 for germanium and 7.10 and 7.11 for xenon using the Bonn A
method with the results from both xenon isotopes combined using (7.5). As
expected the limits considering pure coupling to neutrons are much more stringent
than the limits related to pure coupling to protons with a difference of about a
factor of 100− 1000. General annotations about the shape of the curves and the
comparison of the Feldman & Cousins method and Maximum Gap method can be
found in the corresponding discussion of limits on spin-independent cross sections.

Of course in order to accomplish a comparison between these computed limits
and theoretical predictions it is useful to plot all results in two figures one for the
coupling to neutrons and another one for the coupling to protons. The theoretical
predictions are taken from the figures 3.7 and 3.6 respecively. Moreover similar
to the spin-independent case the results considering the Maximum Gap method
are used for the comparisons. They can be found in the figures 7.12 and 7.13
respectively. Obviously the XENON10 experiment yields the most stringent limits
on these cross sections in both cases. However the results from germanium targets
are quite good as well despite of the low abundance of 73Ge. However they are
weaker approximately by a factor of 10. An important observation is the fact
that even considering the results from XENON10 and pure coupling to neutrons
the limits are about a factor of 100 to high to probe the interesting parameter
space for WIMP masses of 500 GeV. Before proceeding an important annotation
has to be made considering the spin-dependent limits assuming pure coupling
to protons or rather θ = 90◦. Taking a look at the corresponding differential
event rate for 129Xe using the Nijmegen II potential given in C.3 indicates that
this curve is to high due to the mentioned form factor problems. Of course this
leads to a lower upper limit on the corresponding cross section. An appropriate
form factor would certainly yield less stringent results. Since the cross section
limits corresponding to this kind of interaction are generally less interesting since
odd-proton isotopes naturally yield better results this does not seem to be a real
problem. However they are a crucial input to the other method used to compute
limits in the ap vs. an plane just mentioned which is described below. This will
turn out to be an important problem of this procedure.
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experiment target method mW in GeV σSI in pb mW in GeV σSI in pb
CDMS Si — 66 1.02 98 787.77

Ge — 46 0.06 50 4.98
XENON10 Xe Bonn A 28 0.005 32 0.63

Nijmegen II 30 0.007 32 1.94

Table 7.3: Minimum spin-dependent cross section limits computed using the Maxi-
mum Gap method and the corresponding WIMP masses considering pure coupling
to neutrons and protons.

To finish the analysis of cross sections the figures 7.16 and 7.17 show a compar-
ison of the respective cross sections obtained from XENON10 accomplishing the
Maximu Gap method for three cases using the Nijmegen II and the Bonn A method
for both isotopes and the Bonn A method for 129Xe and the QTDA method for
131Xe. Obviously the obtained results differ about a factor of ∼ 2 in the case of
pure coupling to neutrons and a about a factor of ∼ 6 considering pure coupling
to protons. Since the former results are clearly more important since they yield
more stringent results the difference between using different structure functions is
not so severe. Nevertheless it should be kept in mind.

Finally table 7.3 shows the obtained minimum spin-dependent cross section
limits obtained using the Maximum Gap method and the corresponding masses.

At this stage the already mentioned other method to calculate limits on the
WIMP-nucleon couplings should be presented. It was published in [41] by Tovey
et al. which is the reason to call it Tovey method abbreviatoryly. Since the paper
considered the theoretical framework of supersymmetry it is the best to explain it
using this model as well. So the interaction of interest in this case is the scattering
of neutralinos from target nuclei. The corresponding spin-dependent cross section
at zero-momentum transfer is given by

σSD = 4G2
F µ

2
T CA (7.25)

introducing the so called enhancement factor CA defined as

CA =
8
π

Λ2J(J + 1) (7.26)

with Λ given in (3.23).
As an annotation before proceeding it should be noted that all collabora-

tions involved in dark matter experiments usually compute and puplish limits on
the WIMP-nucleon couplings accomplishing this supersymmetric framework which
was the reason to calculate these limits as well. They are given in C.6. However
switching between both frameworks is rather easy because it simply amounts to
the substitution
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Susy ←→ UED

G2
F ←→ 1

48
g4

1

(m2
B(1) −m2

q(1)
)2

(7.27)

which is evident from comparing (7.25) to (3.22).
In order to continue the discussion of the Tovey method the enhancement

factor can be written as

CA =
8
π

(
|ap〈Sp〉| ± |an〈Sn〉|

)2 J + 1
J

=
(√

CpA ±
√
CnA

)2
(7.28)

where the relative sign inside the square is given by the sign of ap〈Sp〉
an〈Sn〉 and the

proton and neutron contributions are defined as

CpA =
8
π

(
ap〈Sp〉

)2J + 1
J

CnA =
8
π

(
an〈Sn〉

)2J + 1
J

. (7.29)

Using these definitions the contributions of both nucleons to the cross section
(7.25) can be separated similarly using

σpA = 4G2
F µ

2
T C

p
A

σnA = 4G2
F µ

2
T C

n
A (7.30)

yielding

σSD =
(√

σpA ±
√
σnA

)2
. (7.31)

Note that the quantities σpA and σnA are nothing but convenient auxiliary quantities
which however do not represent measurable cross sections. Hence (7.28) and (7.25)
can be evaluated for single nucleons leading to

Cp =
6
π
a2
p

Cn =
6
π
a2
n (7.32)

and thus to
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σp = σpA
µ2
p

µ2
T

Cp
CpA

σn = σnA
µ2
n

µ2
T

Cn
CpA

(7.33)

Now comes an approximation which obviously is not necessary accomplishing the
θ scan explained before. Since as already mentioned the quantities introduced in
(7.30) are not measurable quantities the authors made the assumptions

σpA ≈ σSD and σnA ≈ σSD (7.34)

independently which together with the renamings σp → σAp and σn → σAn in this
case leads to

σAp = σA
µ2
p

µ2
T

Cp
CpA

σAn = σA
µ2
n

µ2
T

Cn
CpA

(7.35)

So the quantities σAp and σAn denote the WIMP-nucleon cross sections assuming
that it is dominated by the proton and neutron contribution respectively. Com-
paring (7.33) and (7.35) directly yields the two relations

σp
σAp

=
σpA
σSD

and
σn
σAn

=
σnA
σSD

(7.36)

Expressing σp and σn in terms of the WIMP-nucleon couplings and neglecting the
difference between the proton and neutron mass inserting (7.36) into (7.31) leads
to the final result given by ap√

σAp

± an√
σAn

2

=
π

24G2
Fµ

2
n

(7.37)

which can be translated to the UED framework using (7.27): ap√
σAp

± an√
σAn

2

=
2π(m2

B(1) −m2
q(1)

)2

g4
1µ

2
n

(7.38)

Note that the sign in the brackets of both equations is given by the sign of 〈Sp〉〈Sn〉 .
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According to their definition limits on σAp and σAn are set by the already discussed
cross section limits considering pure coupling to protons and neutrons respectively.
Since (7.27) and (7.38) actually define two parallel lines it is clear that the exterior
of these two lines is excluded. Taking a closer look at the definitions of these lines
it is clear that the method only puts straight lines through the points of pure
coupling in the ap vs. an plane. Moreover their slope m is given by

m = − sign
(
〈Sp〉
〈Sn〉

)√
σAp
σAn
≈ −〈Sn〉
〈Sp〉

(7.39)

The authors argue that the last “≈” holds exactly. In fact it can be derived
by using the expression (3.28) assuming that the obtained cross section limit is
equal for pure proton and pure neutron coupling. However it is not which is clear
due to the accomplishment of different form factors in each case. Nevertheless
using a form factor which is constant with respect to the couplings leads to their
result. This is accomplished for example by the Zeplin-II collaboration as stated
in [42]. According to this paper they used a form factor arising from higgsino
interactions which is particularly small so that the resulting limits are expected
to be conservative.

Finally it should be mentioned that it seems that all collaborations searching
for dark matter using direct detection use the just explained Tovey method.

After this extensive discussion it is time to take a look at the final results of the
computation of setting limits on the WIMP-nucleon couplings. The figures 7.18,
7.19, 7.20 and 7.21 show these results for a fixed WIMP mass of mB(1) = 50 GeV
and a degeneracy parameter of ∆ = 0.15 for all odd-nucleon targets. Moreover
the theoretical predictions given in (3.26) are included in these plots as well.

The θ scan and the Tovey method combined with the Feldman & Cousins
method as well as the Maximum Gap method are used. Again the results ob-
tained by the Maximum Gap method are more stringent than those using the
Feldman & Cousins method. Moreover it is clear that the CDMS limits are a
little bit to severe due to the accomplishment of an efficiency of 0.4. Especially
from the silicon results it is obvious that the limits from the Tovey method and
the θ scan are equal in the cases of pure nucleon coupling as expected. Moreover
it is obvious that 29Si is the only isotope where the lines determined by the Tovey
method have a positive slope. This can be explained by taking a look at the spin
expectation values given in table 4.1.

The general orientation of the obtained ellipses or rather parallel lines is also
clear. Since all isotopes have an unpaired neutron limits on ap are much weaker
than on an. Hence the allowed regions are almost aligned with the ap-axis. This
alignment is not exact since each isotope has only a little but nevertheless not
a vanishing sensitivity to pure WIMP-proton coupling. Note that allowing non-
vanishing values of both an and ap the limits on each can be considerably weak-
ened. Consider for example the shown limits computed using 73Ge. Assuming
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ap = 0 sets an upper limit on the WIMP-neutron coupling of an ≈ 1. How-
ever if the WIMP-proton coupling is considered to be for example ap = −10 the
corresponding limit on an is approximately doubled.

An important annotation is that the angles of θ leading to unphysical form
factors determine the length of the ellipses. This is particularly obvious from both
xenon isotopes where the ellipses are degenerate to quadrangles. As a reminder
in these cases the problems with the form factors are really significant. In general
the problematic angle intervals though small dominate a huge part of the ellipses
near the “apexes”. So taking up the position that the form factors are not reliable
there limits for these angles must be rejected which means rejecting a huge part
of the ellipses. Especially a combination with odd proton isotopes would be very
useful here because then only a certain angle interval would be necessary to yield
a combined result.

However before taking a look at combined limits from all isotopes figure 7.22
shows ellipses using the θ scan and the Maximum Gap method for a WIMP mass
of mB(1) = 50 GeV and several values of ∆ using 73Ge. Obviously the limits get
weaker increasing the degeneracy parameter.

Combined limits using the same configuration as in the last plot can be found
in figure 7.23.5 The overlap of all ellipses marked red clearly yields the region in
the ap vs. an plane allowed by all isotopes. Obviously the limits are determined by
the results from 73Ge and 129Xe. Even though the orientation of these ellipses is
only slight with respect to each other it is sufficent to cut off the “apexs” yielding
an overall result which is more reliable. However as already stated a combination
with an odd-proton isotope would be even more desirable. Moreover it looks like
that considering the used degeneracy parameter ∆ = 0.15 a B(1) with a mass of
50 GeV can be excluded.

A comparison of the Bonn A and the Nijmegen II method is shown in C.5.

5Combined limits for different values of ∆ can be found in C.4.
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Figure 7.6: Spin-dependent cross section limits from 29Si considering pure coupling
to neutrons.

Figure 7.7: Spin-dependent cross section limits from 29Si considering pure coupling
to protons.
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Figure 7.8: Spin-dependent cross section limits from 73Ge considering pure cou-
pling to neutrons.

Figure 7.9: Spin-dependent cross section limits from 73Ge considering pure cou-
pling to protons.
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Figure 7.10: Spin-dependent cross section limits from 129Xe and 131Xe considering
pure coupling to neutrons.

Figure 7.11: Spin-dependent cross section limits from 129Xe and 131Xe considering
pure coupling to protons.
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Figure 7.12: Comparison of all spin-dependent cross section limits using the Max-
imum Gap method and theoretical predictions considering pure coupling to neu-
trons.

Figure 7.13: Comparison of all spin-dependent cross section limits using the Max-
imum Gap method and theoretical predictions considering pure coupling to pro-
tons.
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Figure 7.14: Comparison of spin-dependent cross section limits from XENON10
using the Maximum Gap method and different spin structure functions considering
pure coupling to neutrons.

Figure 7.15: Plot similar to figure 7.16 but considering pure coupling to protons.
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Figure 7.16: Comparison of spin-dependent cross section limits from XENON10
using the Maximum Gap method and different spin structure functions considering
pure coupling to neutrons.

Figure 7.17: Plot similar to figure 7.16 but considering pure coupling to protons.
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Figure 7.18: Limits on WIMP-nucleon couplings from 29Si using ∆ = 0.15 and a
WIMP mass of mB(1) = 50 GeV.

Figure 7.19: Limits on WIMP-nucleon couplings from 73Ge using ∆ = 0.15 and a
WIMP mass of mB(1) = 50 GeV.
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Figure 7.20: Limits on WIMP-nucleon couplings from 129Xe using ∆ = 0.15 and
a WIMP mass of mB(1) = 50 GeV.

Figure 7.21: Limits on WIMP-nucleon couplings from 131Xe using ∆ = 0.15 and
a WIMP mass of mB(1) = 50 GeV.
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Figure 7.22: Limits on WIMP-nucleon couplings from 73Ge using a WIMP mass of
mB(1) = 50 GeV and comparing different values of ∆. The accomplished method
is a combination of θ scan and Maximum Gap method.

Figure 7.23: Combined limits on WIMP-nucleon couplings using ∆ = 0.15 and a
WIMP mass of mB(1) = 50 GeV.



Chapter 8

Conclusion

In this diploma thesis theoretical predictions from Universal Extra Dimensions
and limits on cross sections and WIMP-nucleon couplings were presented. It was
shown that in the spin-independent case the considered experiments in partic-
ular XENON10 are just starting to probe the parameter space of WIMPs with
masses predicted by relic density computations which is a really encouraging re-
sult. However much higher exposures are necessary in order to test the interesting
spin-dependent parameter space. In this context it is important to know that the
CDMS collaboration is already analyzing data from a more recent WIMP search
run with five towers and thus with a much higher exposure.

Nevertheless the presented analysis will also have to be redone after the cor-
responding efficiency is estimated properly. This will change the accomplished
constant value of 0.4 to an energy dependent efficiency leading to less stringent
limits.

However another important result is that models for the spin-dependent form
factors available in the literature are not reliable for certain parameters. This is
especially problematic if there are unphysical form factors for pure WIMP-nucleon
couplings. Consider the Tovey method which is used by almost all experiments
which basically puts a straight line through the points of pure Wimp nucleon cou-
plings. Then how reliable is a limit depending on two points in parameter space
from which one is really questionable? Surely using alternative form factors as dis-
cussed considering the ZEPLIN-II results is a possibility to avoid these problems.
However this is of course undesirable. So new calculations of the spin structure
functions are necessary in order to properly investigate the whole parameter space.

In any case the introduced θ scan should be preferred to the Tovey method.
First of all this is due to the fact that no additional simplifying assumptions have
to be made. Moreover due to unphysical form factors only the lengths of the
occuring ellipses are uncertain. However using the Tovey method might lead to
wrong slopes of the constraining parallel lines and hence to a wrong shape of the
whole allowed region. Obviously the problem with the lengthes of the ellipses can
be easily avoided combining the results presented here with other results from

123



124 CHAPTER 8. CONCLUSION

odd-proton isotopes. However this clearly cannot compensate wrong slopes of the
parallel lines.



Appendix A

Spin-independent cross sections

A.1 Spin-independent cross sections for fixed mH

In this part of the appendix some plots showing spin-independent B(1)-neutron
cross sections for fixed values of the Higgs mass can be found. These figures are
similar to figure 3.3 so an appropriate description of these plots can be found
there. Obviously the dependence of the Higgs mass is rather weak.
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A.2 Spin-independent cross sections for fixed ∆

The plots in this part of the appendix are related to those from A.1 but with a
fixed value of ∆ instead of a fixed Higgs mass. So they are similar to Figure 3.4. Of
course more information about them can be found in the corresponding chapter.
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Appendix B

Event rates

B.1 Differential event rates for various values of ∆

The three plots in this part of the appendix show differential event rates consid-
ering scattering from germanium for ∆ = 0.01, ∆ = 0.07 and ∆ = 0.30. These
figures are similar to figure 5.9 so an appropriate description of these plots can
be found there. As expected the magnitude of the rates depends crucially on the
degeneracy parameter.
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B.2. SPIN-DEPENDENT DIFFERENTIAL EVENT RATES 133

B.2 Spin-dependent differential event rates

In this section spin-dependent differential event rates considering scattering from
silicon, germanium and xenon can be found. Abundance factors are included.
These figures correspond to the figures 5.8, 5.9 and 5.10 whereas both types of
interaction are incorporated in the latter. Note that the rates shown here are
much lower than in the related figures just mentioned.
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B.3 Total event rates for various values of ∆

The following three plots show total event rates considering scattering from germa-
nium for ∆ = 0.01, ∆ = 0.07 and ∆ = 0.30. These figures are similar to figure 5.13
so an appropriate description of these plots can be found there. As expected the
magnitude of the rates depends crucially on the degeneracy parameter.
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B.4 Total event rates for negligible threshold

This plot shows spin-independent and spin-dependent total event rates considering
scattering from 73Ge using the usual parameters ∆ = 0.15 and mH = 120 GeV
and a really low threshold of only 0.01 keV. This negligible threshold leads to the
disappearence of the bend at low masses as shown for example in the corresponding
figure 5.13.



Appendix C

Limits on cross sections and
WIMP-nucleon couplings

C.1 Limits on spin-independent cross sections using
the Optimum Interval method

This section shows results from the computations of spin-independent cross section
limits for silicon, germanium and xenon using the Feldman & Cousins, Maximum
Gap and Optimum Interval method. In fact the two former results are already
shown in the figures 7.1, 7.2 and 7.3. In the case of silicon and germanium it is
really difficult to see the curves from the Optimum Interval method because they
are almost totally equal to the ones obtained using the Maximum Gap method.
As an annotaion the reason for the bend at a WIMP mass of around 50 GeV
unfortunately could not be revealed. However since the Maximum Gap method
and the Optimum Interval method clearly lead to very similar results only the
former is used in the spin-dependent case.
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C.2. θ SCAN FOR THE SPIN-DEPENDENT FORM FACTOR OF 129XE USING THE NIJMEGEN II METHOD141

C.2 θ scan for the spin-dependent form factor of 129Xe
using the Nijmegen II method

The figures in this section show some spin-dependent form factors of 129Xe using
the Nijmegen II method obtained by evaluating (7.14) for different angles θ. In
the first one on this side θ = 0◦ was used which yields a quite reasonable result.
The others show angles around θ = 90◦. The occuring problems scaning over θ in
this region are obvious. A more detailed discussion can be found on page 103.
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C.3 θ scan for the spin-dependent differential event
rates of 129Xe using the Nijmegen II method

In this section of the appendix some spin-dependent differential event rates omit-
ting the energy independent factor R0 for 129Xe using the Nijmegen II method for
the same angles θ used in C.2 except 0◦ can be found. Obviously there are still is-
sues considering angles around 90◦ however this interval seems to be smaller. The
recoil energy interval used in the analysis is marked. A more detailed discussion
can be found on page 104.
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C.4. COMBINED LIMITS ON WIMP-NUCLEON COUPLINGS FOR DIFFERENT ∆S151

C.4 Combined limits on WIMP-nucleon couplings for
different ∆s

The three figures in this section show combined limits on WIMP-nucleon couplings
from all isotopes using mB(1) = 50 GeV and different values of ∆. The accom-
plished method is a combination of the θ scan and the Maximum Gap Method.
The figures are similar to the plot shown in figure 7.23.
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C.5. COMPARISON OF LIMITS ON WIMP-NUCLEON COUPLINGS FROM THE XENON ISOTOPES USING THE BONN A AND THE NIJMEGEN II METHOD153

C.5 Comparison of limits on WIMP-nucleon couplings
from the xenon isotopes using the Bonn A and the
Nijmegen II method

The plot below shows a comparison of limits on the WIMP-nucleon coulings from
129Xe and 131Xe using mB(1) = 50 GeV and ∆ = 0.15. Obviously the ellipses are
rotated with respect to each other.
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C.6 Supersymmetry

This section shows two limit plots for WIMP-nucleon couplings based on a super-
symmetric model where the neutralino constitutes the WIMP. So the cross section
is determined by (7.25). The first plot on this side is particularly interesting since
it shows the allowed region in the 3-dimensional parameter space of the WIMP-
nucleon couplings and the WIMP mass. The second one shows combined limits
similar to figure 7.23.
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Laura danken, insbesondere auch dafür, dass ich in Zürich meine Doktorarbeit
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