

Physik-Institut

Prospects for keV-DM searches with the GERDA experiment

Roman Hiller for the GERDA collaboration

GERDA concept

GERDA experiment

- LNGS, Italy, 3500 m.w.e.
- 7 enriched + 3 natural coaxial type det.
- since Dec. 2015: Phase II
 - added 30 enriched BEGe type det.
 - $\rightarrow {\sim}36\,\text{kg}$ total
 - LAr veto

Eur. Phys. J. C 73 (2013) 2330

n+ electrode

$\mathbf{0} uetaeta$ - the main mission

- Search for lepton number violation and study ν properties
- $\mathcal{O}(10)$ candidate isotopes with forbidden β -decay but allowed $2\nu\beta\beta$
- $2\nu\beta\beta$ in ⁷⁶Ge

$$T_{1/2} = 1.926 \pm 0.095 imes 10^{21} \, {
m yr}$$

Eur. Phys. J. C 75 (2015) 416

- $0\nu\beta\beta$ signature = peak at endpoint of $2\nu\beta\beta$ spectrum

keV Dark Matter

- Sub-GeV DM via "super weak" coupling \rightarrow Super-WIMP
- Well studied (hardly detectable) fermions (sterile ν , gravitino)
- Bosons in some cases detectable via axio-electric effect

Candidates:

- Pseudo-scalar Super-WIMPs (Axion-like particles)
- Vector Super-WIMPs (Hidden photon)

Pospelov et. al. Phys. Rev. D 78, 115012

Rates

- σ proportional to photoelectric effect σ_{pe}
- Using estimates of the local DM density, the expected rates are:

Signature

- Analogous to photoeffect: complete absorption in atom with emission of monoenergetic electron
- Peak of single-site events at the mass of the Super-WIMP

Existing limits

- limits in 10-100 keV region XMASS, XENON100, EDELWEISS, MAJORANA
- Several indirect constrains

What about GERDA?

- Sensitivity $\sim \sqrt{\frac{M\cdot t}{\sigma_E\cdot Bl}}$
- ...but GERDA has higher energy threshold 175 keV (DAQ)
- Cross section Ge and Xe similar
- ...but decreasing with energy
- However, no direct constrains above 145 keV

	$\frac{M \cdot t}{\text{kg yr}}$	BI kgyrkeV	$\frac{FWHM}{keV}$
GERDA (175-1000 keV)	10 (100)	2-30 (/w LAr)	2-3
XENON100 100 keV	20	2	14

Energy reconstruction

- $\,\sim$ weekly calibrations with $^{\rm 228} {\rm Th}$ sources
- DAQ threshold > 500 keV
- Special calibration campaign /w ²²⁶Ra source also at < 500 keV

Background

- MC Background model
- Main contributions < 1 MeV:
 - $2\nu\beta\beta$ (irreducible internal SSE)
 - ³⁹Ar (n-surface; LAr suppression factor~3-5, PSD?)

Background reduction - Pulse shape discrimination

- Discrimination of SSE/MSE, surface events
- Charge drift time \rightarrow pulse shape
- Current trace amplitude/energy
 amplitude/area

MULTI SITE EVENT (MSE)

SINGLE SITE EVENT (SSE)

Background rejection

- A/E too sensitive to noise?
- − Check by adding measured noise to signal traces
 → might be alright
- Alternative: compare pulse to template of SSE, ΔQt

Conclusion

- Bosonic Super-WIMPs are a candidate for keV mass DM
- They can be detected via a peak signature
- GERDA performs well down to \sim 175 keV (exposure, energy resolution, background)
- ... and consequently might be sensitive to Super-WIMPs at the lower end of its spectrum

Recent GERDA results

- Phase II 28.5 kg yr exposure
- background index BEGe 0.6×10^{-3} and coax $2.2 \times 10^{-3} \frac{\text{cts}}{\text{kgyrkeV}}$
- < 1 background event in ROI at design exposure 100 kg yr

 $T_{1/2}^{0\nu} > 5.3 imes 10^{25} \, {
m yr}(90\% {
m C.L.})$

Accepted by Nature, arXiv:1703.00570