

Dark Matter and the XENON Experiment

Marc SchumannPhysik Institut, Universität ZürichLunch Seminar, WeizmannInstitute of Science, November 4th, 2010

www.physik.uzh.ch/groups/groupbaudis/xenon/

95% of the Universe is DARK

Baryonic Matter (from X-rays)

Dark Matter (Gravitational Lensing)

2 colliding galaxy clusters separation of Dark and Light (baryonic) matter → Dark Matter and not modified gravity

Galactic Rotation Curves

Expect: Kepler Rotation (as in the solar system)

Galactic Rotation Curves

Measurement: Flat Rotation Profile

V. Rubin, K. Ford (1970)

Cosmic Microwave Background

generated when radiation and matter decouple and photons can propagate freely

get information about structures in early universe

→ Cold Invisible
 Dark Cold (v < 10⁻⁸ c)
 Matter: Collisionless
 Stable
 from "new physics"

M. Schumann (U Zürich) – Dark Matter & XENON

power spectrum of ΔT "typical variation at typical distance"

SUSY and the WIMP

SUSY was introduced to solve Standard Model problems (i.e. hierarchy problem, Higgs mass) New fundamental space-time symmetry between fermions and bosons

R-parity avoids B/L number violation:

 $R = (-1)^{(3B+L+2S)}$

→ lightest supersymmetric particle (LSP)
 is stable → cold DM candidate:
 WIMP = weakly interacting massive particle

eutralino:
$$\tilde{\chi}_1^0 = N_{11}\tilde{B}^0 + N_{12}\tilde{W}_3^0 + N_{13}\tilde{H}_d^0 + N_{14}\tilde{H}_u^0$$

SUSY WIMP production

In early Universe: WIMPs in thermal equilibrium creation ↔ annihilation

$$p(E) \propto \exp\left(-\frac{E}{k_B T}\right)$$

expanding Universe: "freeze out"

WIMPs fall out of equilibrium, cannot annihilate anymore

$$k_B T \sim \frac{m_\chi c^2}{20}$$

- → non relativistic when decoupling from thermal plasma
- \rightarrow constant DM relic density
- \rightarrow relic density depends on $\sigma_{\rm \tiny A}$

WIMP relic density:

$$\Omega_{\chi} h^2 \approx \text{const.} \frac{T_0^3}{M_{Pl}^3 \langle \sigma_A v \rangle} \approx \frac{0.1 \text{pb}}{\langle \sigma_A v / c \rangle}$$

O(1) when $\sigma_{\rm A}$ ~10^{.9} GeV \rightarrow weak scale

Outline

Motivation: Dark Matter ✓ Direct Dark Matter Detection Xenon as a Detector Medium XENON100 The Future

Dark Matter Search

Direct Detection

Indirect Detection Production @Collider

Direct WIMP Detection

Direct WIMP Search

Recoil Energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV})$$
Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
 ρ_{χ}/m_{χ}

 ρ_{χ}/m_{χ} local WIMP density < σ > velocity-averaged scatt. X-section

 \rightarrow need information on halo and interaction to get rate

WIMP Interactions Detector Requirements

Result: Tiny Rates R < 0.01 evt/kg/day E_r < 100 keV

Roszkowski, Ruiz & Trotta (2007)

What do we look for?

- nuclear recoils, single scatters
- recoil spectrum falls with E
- dependence on A, spin?
- annual flux modulation?
- other possibilities? iDM, ...?

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good background discrimination

Backgrounds

Experimental Sensitivity:without background: \propto (mt)-1with background: \propto (mt)-1/2

Background Sources: environment: U, Th chains, K

²³⁸ U
$$\rightarrow^{234}_{\alpha}$$
 Th $\rightarrow^{234m}_{\beta}$ Pa $\rightarrow^{234}_{\beta}$ U $\rightarrow^{230}_{\alpha}$ Th $\rightarrow^{226}_{\alpha}$ Ra $\rightarrow^{222}_{\alpha}$ Rn $\rightarrow^{218}_{\alpha}$ Po ...
³² Th $\rightarrow^{228}_{\alpha}$ Ra $\rightarrow^{228m}_{\beta}$ Ac $\rightarrow^{228}_{\beta}$ Th $\rightarrow^{224}_{\alpha}$ Ra $\rightarrow^{220}_{\alpha}$ Rn $\rightarrow^{216}_{\alpha}$ Po ...

- γ and β Decays (electron recoil) careful material selection, discrimination, shielding (Pb, Cu, Xe, Ar, water)
- Neutrons from (α,n) in rocks
 neutron moderators (paraffin, poly, water)
- Neutrons from cosmic ray muons
 → go deep underground

Neutrons are most dangerous background since they interact like WIMPS! (nuclear recoil)

The DAMA Observation

- DAMA: PMTs coupled to Nal Scintillators
 → extremely clean background necessary
- looks for annual modulation @ LNGS
- large mass and exposure: 0.82 ton years

- DAMA finds annual modulation @ 8.9 σ C.L.
- BUT: result cannot be explained with standard neutralinos or KK Dark Matter, result in conflict with other experiments

CDMS: Cryogenic Detectors

Located underground in Soudan Lab, Minnesota (USA)

Principle: measure charge and heat (phonons) a deposited energy E produces temperature rise ΔT

Crystals: Ge, Si cooled to few mK

- → low heat capacity
- → measurable µK temperature!

similar: CRESST, EDELWEISS, Rosebud

M. Schumann (U Zürich) – Dark Matter & XENON

Heat

good discrimination

- → "backgound-free experiment"
- → BUT: reject surface events via PSA

The latest CDMS Result

Science 327, 1619 (2010)

- 2 events remain after all cuts after un-blinding
- Background expection: 0.9 ± 0.2 events
- probability for 2 or more events: 23%

Dark Matter Project

CoGeNT

- CoGeNT: p-type point contact Ge-detector, ultra low noise
- prototype for MAJORANA, operated underground at Soudan
- very low threshold: 0.4 keVee (electronic noise)
- only one observable (charge), some pulse shape discrimination
- Excess at lowest energies

 → light mass WIMP claim
 (BUT: null hypothesis has similar X²)

Why Xenon?

- efficient, fast scintillator (178nm)
- high mass number A~131: SI: high WIMP rate @ low theshold
- high atomic number Z=54, high density (~3kg/l): self shielding, compact detector
- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ -100°C
- scalability to larger detectors
- in 2-phase TPC: good background discrimination
- M. Schumann (U Zürich) Dark Matter & XENON

Dual Phase TPC

Localization / Discrimination

M. Schumann (U Zürich) – Dark Matter & XENON

Discrimination:

~99.5% bg rejection @ 50% acceptance (Xe10 performance) definition of WIMP search region

Matter Project

Outline

Motivation: Dark Matter ✓ Direct Dark Matter Detection ✓ Xenon as a Detector Medium ✓ XENON100 The Future

The XENON program

XENON100 Collaboration

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- \rightarrow material selection & screening
- \rightarrow detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- \rightarrow material selection & screening
- → detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs (Hamamatsu R8520)
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- \rightarrow material selection & screening
- \rightarrow detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100 @ LNGS

LNGS: 1.4km rock (3700 mwe)

	Site (Multiple levels given in ft) (from: R. Gaitskell)	Relative Muon Flux	Relative Neutron Flux
1	WIPP (2130 ft) (1500 mwe)	x 65	x 45
	Soudan (2070 mwe)	x 30	x 25
	Kamioke	x 12	x 11
	Boulby	x 4	x 4
	Gran Sasso(3700 mwe) Frejus (4000 mwe). Homestake (4860 ft)	x 1	x 1
	Mont Blanc	x 6 ⁻¹	x 6 ⁻¹
	Sudbury	x 25 ⁻¹	x 25 ⁻¹
	Homestake (8200 ft)	x 50 ⁻¹	x 50 ⁻¹

underground since end of February 08 first filled with Xe in mid May 08 detector fully operational, taking science data

Calibration I

Gain calibration, Gain Stability: blue LED (+optical fibers)

→ gains stable within $\pm 2\%$ (σ/μ)

Average Light Yield, combined *E*-Scale: Cs-137, AmBe inelastic (40 keV, 80 keV), Xe* (164 keV, 236 keV), Co-60, ...

→ *LY*(122 keVee) = 2.20(9) PE/keVee

Position dependent Corrections: Cs-137, AmBe inelastic (40 keV), Xe* (164 keV) Kr-83m (planned)

→ Agreement better than 3%

Calibration II

X E N O N Dark Matter Project

Electron Lifetime: Cs-137 → ~200 µs (11.2d), up to 400 µs (run 08)

Position Reconstruction Tests: Co-57 (collimated), Cs-137, + MC

→ 3 algorithms (NN, SVM, x^2) available: $\Delta r < 3 \text{ mm}, \Delta z < 2 \text{ mm}$

Electron Recoil Band (Background): Co-60, Cs-137, Th-228

Nuclear Recoil Band (Signal): Neutrons: AmBe

→ definition of WIMP search region, discrimination

ER / NR Discrimination

- ER/NR discrimination via S2/S1 ratio
- Discrimination efficiency similar to XENON10 (>99%)

Matter Project

Material Screening

GATOR: 2.2kg high purity Ge detector operated by UZH in low bg environment @ LNGS

	Unit	Quantity	²³⁸ U	²³² Th	⁴⁰ K	⁶⁰ Co	²¹⁰ Pb
TPC Material		used	[mBq/unit]	[mBq/unit]	[mBq/unit]	[mBq/unit]	[Bq/unit]
R8520 PMTs	PMT	242	$0.15 {\pm} 0.02$	$0.17 {\pm} 0.04$	9.15 ± 1.18	$1.00{\pm}0.08$	
PMT bases	base	242	$0.16{\pm}0.02$	$0.07 {\pm} 0.02$	< 0.16	< 0.01	
Stainless steel	kg	70	< 1.7	< 1.9	< 9.0	5.5 ± 0.6	
PTFE	kg	10	< 0.31	< 0.16	< 2.2	< 0.11	
QUPID	QUPID	-	< 0.49	< 0.40	<2.4	< 0.21	
Shield Material							
Copper	kg	1600	< 0.07	< 0.03	< 0.06	< 0.0045	
Polyethylene	kg	1600	< 3.54	< 2.69	< 5.9	< 0.9	
Inner Pb (5 cm)	kg	6300	< 6.8	< 3.9	< 28	< 0.19	17 ± 5
Outer Pb (15 cm)	kg	27200	< 5.7	< 1.6	14 ± 6	< 1.1	516 ± 90

use results for Monte Carlo Simulations

M. Schumann (U Zürich) – Dark Matter & XENON

Matter Project

Monte Carlo Simulations

GEANT4 simulations of full experiment (detector+shield+surrounding)

Gamma Background:

in DM search region, after cuts 50 kg: < 9.8×10⁻³ events/kg/keV/day 30 kg: < 3.2×10⁻³ events/kg/keV/day *before S1/S2 discrimination cut!*

M. Schumann (U Zürich) – Dark Matter & XENON

Kr-85-Removal

M. Schumann (U Zürich) – Dark Matter & XENON

10

10

XMASS, arXiv:0809.4413 (2008) 37

XENON100 Background

- 30 kg fiducial mass
- active LXe veto not used for this plot
- exploit anti-correlation between light and charge for better ER-energy scale

Measured Background in good agreement with Monte Carlo prediction. Matter Project

Background Comparison

This is the lowest Background ever achieved in a Dark Matter Experiment!

Nuclear Recoil Scale

- WIMPs interact with Xe nucleus
 - → nuclear recoil (*nr*) scintillation (β and γ 's produce electron recoils)
- absolute measurement of *nr* scintillation yield is difficult
 - → measure relative to Co57 (122keV)
- relative scintillation efficiency *L*_{eff}:

 $\mathcal{L}_{\rm eff}(E_{\rm nr}) = \frac{{\rm LY}(E_{\rm nr})}{{\rm LY}(E_{\rm ee}=122~{\rm keV})}$

measurement principle:

Nuclear Recoil Scale II

- difficult measurements
- measurements differ systematically
- large uncertainties

New measurements ongoing at Columbia; In preparation in Zürich

- direct measurements vs. indirect determinations
- no proper theoretical model available
- → do not prefer single measurement (not even our own ones)
- → global fit to all direct measurements
- → get 90% CL from statistics
- → extrapolation to low energies motivated by available data

First XENON100 Data

- Energy cut: <30 keVnr
- make use of excellent selfshielding capability of LXe
- 40 kg fiducial mass

- Background data taken in stable conditions Oct-Nov 2009
- 11.2 life days
- Data was not blinded
- But: Cuts developed and optimized on calibration data only
- PRL 105, 131302 (2010) *arXiv:1005.0380*

A Look at the Bands

- Background free in 11.2 days after S2/S1 discimination
- Both plots show similar exposure

NR acceptance = 50%cut efficiency ~ 60-85%(conservative) Background expectation $\ll 1$

A first Limit from XENON100

M. Schumann (U Zürich) – Dark Matter & XENON

New: Alternative Interpretation

XENON100: Sensitivity

30 kg Target: 200 days $\sigma = 2 \times 10^{-45}$ cm² (@ 100 GeV)

The next step: XENON1T

- 2.4t LXe ("1m³ detector")
 1t fiducial mass
- 100x lower background (10 cm self shielding, QUPID)
- MC studies, design studies already started 2009
- proposal and TDR submitted; currently: working on the details; secure funding
- Timeline: 2010 2015 ???

Radiation- free Photon Detector (3" QUPID, Total 242)

Ti Cryostat (or low rad. stainless steel)

The QUPID

- invented and developed by UCLA group (Arisaka/Wang)
- very low radioactive photosensor to replace PMTs APD, quartz, only a few pins, no voltage divider
- QUPIDs are "invisible" in GATOR screening facility
- first units were build by HAMAMATSU, ongoing tests and R&D at UCLA (later also UZH)

It is actually working...

QUPID Test in Liquid Xenon

Alternative: Hamamatsu R11410

- 3" PMT
- high gain
- LXe operation
- Low radioactivity

Dark Matter Project

XENON1T: Location?

The Future: DARWIN

DARWIN – Dark Matter WIMP Search with Noble Liquids

- *R&D and Design Study* for a next generation noble liquid facility in Europe. Approved by ASPERA in late 2009
- Coordinate existing European activities in LXe and LAr towards a multi-ton Dark Matter facility
- Physics goal: probe WIMP cross sections well below 10⁻⁴⁷ cm²

Goals and Structure

R&D and Design Study for Light/Charge Readout, Electronics/DAQ, Detector/Underground/Shield Infrastructure, Material Screening/Backgrounds, Science Impact

Multiton LXe and/or LAr WIMP detector find best choice/design, exploit complementarity?

M. Schumann (U Zürich) – Dark Matter & XENON

ArDM, WARP, XENON Groups: UZH (CH), INFN (I), ETHZ (CH), Subatech (F), Mainz (D), MPIK (D), Münster (D), Nikhef (NL), KIT (D), IFJPAN (PL) + Columbia, Princeton, UCLA (USA)

http://darwin.physik.uzh.ch

Summary

Two new projects upcoming:

- XENON1T 1 ton LXe target mass
- DARWIN multiton LXe/LAr detector
- M. Schumann (U Zürich) Dark Matter & XENON

- Dark Matter: One of the big unsolved puzzles
- XENON100 62 kg dual-phase LXe TPC
- extremely low background
- first results from 11.2d data: PRL 105, 131302 (2010)

Backup

Xenon: Light and Charge

Columbia

60

70

0.27 kV/cm

2.00 kV/cm

Case

-@•0.10 kV/cm

• 2.03 kV/cm

110 120

Energy [keVr]

- energy deposited in LXe produces electron-ion pairs and excited atom states; both processes can lead to scintillation
- anti-correlation between charge and light
 - → improvement of energy resolution possible
- E-field dependence (field quenching)
- response also depends on particle energy

Poisson Smearing

- Resolution at low *E* is dominated by Poisson counting statistics
 → a few photoelectrons seen by PMTs
- WIMP spectrum is expected to drop exponentially with E
 → more events make it above threshold than vice versa