

Dark Matter Search with XENON

Marc Schumann Universität Zürich SPS Meeting 2012, ETH Zürich, 21.06.2012

www.physik.uzh.ch/groups/groupbaudis/xenon/

Dark Matter: Evidence & Detection

10⁻⁴⁴ 10⁻⁴⁵ V Cr Mn Fe Co Ni Cu Zn Ga Ge As Sc Ti Se Br. 41 5 42 5 43 49 5 50 115 5 46 5 47 5 48 5 10⁻⁴⁶ Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Те Ta W Re Os Ir Pt Au Hg Hf TI Pb Bi Po 7 105 7 106 7 107 7 108 7 109 7 110 7 111 7 112 7 113 7 114 7 104 Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uug Uur 10-47 M. Schumann (U Zürich) – XENON

Direct WIMP Search

Expect tiny rates: R < 0.01 evt/kg/day*E*_{_} < 100 keV

How to build a WIMP detector?

- large total mass, high A
 ✓ for Xe
 ✓ for Xe
 ✓ for Xe
- low energy threshold for Xe
- ultra low background 🖌 for Xe
- good background discrimination for Xe

Dual Phase TPC

TPC = time projection chamber

Dual Phase TPC

3d Vertex Reconstruction

Signal/Background Discrimination

M. Schumann (U Zürich) – XENON

The XENON program

161 kg LXe, 62 kg in target 242 1" x1" PMTs

M. Schumann (U Zürich) – XENON

(spin-independent) WIMP Limit

The main result of 2011:

PRL 107, 131302 (2011) already cited 325x

XENON100 sets the most sensitive limit over a large WIMP mass range

Challenges the CoGeNT, DAMA, CRESST-II signals as being due to light mass WIMPs

Dark Matter Project

NEW: spin-dependent WIMP Limit

Spin-dependent interactions:

 $m_A \sigma_{SD}^0$

WIMPs couple to total angular momentum J Xe-129 and Xe-131 have unpaired spins \rightarrow non-zero J

Rate:

$$\sigma_{SD}^{0} = \frac{32}{\pi} G_F^2 \mu_A^2 [a_p \langle S_p \rangle + a_n \langle S_n \rangle]^2 \frac{J+1}{J}$$

form factor F has to be calculated using spin-structure functions \rightarrow large theoretical uncertainties

M. Schumann (U Zürich) – XENON

The new Data (2011-2012)

M. Schumann (U Zürich) – XENON

Dark Matter Project

XENON100: Sensitivity Matter Project 10-39 DAMA/Na WIMP-Nucleon Cross Section [cm²] 10-40 Ē CoGeNT DAMA/I 10-41 **WIMP** Expectations Section [cm²] CDMS (2010) 10-42 CMSSM: Trotta et al. CMSSM+LHC: EDELWEISS (2011) Buchmueller et al. 10⁻⁴³ Cross (XENON100 (2010) 1 event/kg/yr

MP-Nucleon

1000

10⁻⁴⁵

10⁻⁴⁶

10

10

event/ton/vi

30

20

40 50

100

WIMP Mass [GeV/c²]

Buchmueller et al.

300 400

200

How do we get there?

XENON100 goal

20

6 7 8 910

 10^{-45}

XENON100 (2011)

100

WIMP Mass $[GeV/c^2]$

30 40 50

300

200

1000

The next step: XENON1T

M. Schumann (U Zürich) – XENON

- 2.6t LXe ("1m³ detector")
 1t fiducial mass → 20x larger
- 100x lower background (~10 cm self shielding, low radioactivity components)
- background goal: <1 evt in 2 years

Low Radioactivity Photon Detectors (3", Total ~250)

Ti Cryostat (or low rad. stainless steel)

12

The next step: XENON1T

- 2.6t LXe ("1m³ detector")
 1t fiducial mass → 20x larger
- 100x lower background (~10 cm self shielding, low radioactivity components)
- background goal: <1 evt in 2 years
- Timeline: 2010 2017
- start construction in 2012

XENON1T @ LNGS

Summary

