

New Results from the XENON100 Dark Matter Experiment

Marc Schumann Physik Institut, Universität Zürich SPS Annual Meeting, Lausanne, June 17th, 2011

www.physik.uzh.ch/groups/groupbaudis/xenon/

Dark Matter: (indirect) Evidence

Direct WIMP Detection

Dark Matter Project

Direct WIMP Search

Recoil Energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV})$$
Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
local WIMP density

 $\langle \sigma \rangle^{2}$ velocity-averaged scatt. X-section

→ need information on halo and interaction to get rate

WIMP Interactions Detector Requirements

Result: Tiny Rates R < 0.01 evt/kg/day E < 100 keV

What do we look for?

- nuclear recoils, single scatters
- recoil spectrum falls with E
- dependence on *A*, spin?
- annual flux modulation?

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good background discrimination

Backgrounds

Experimental Sensitivity:without background: ∞ (mt)-1with background: ∞ (mt)-1/2

Background Sources: environment: U, Th chains, K NIM A 643, 36 (2011)

²³⁸ U
$$\rightarrow^{234}_{\alpha}$$
 Th $\rightarrow^{234m}_{\beta}$ Pa $\rightarrow^{234}_{\beta}$ U $\rightarrow^{230}_{\alpha}$ Th $\rightarrow^{226}_{\alpha}$ Ra $\rightarrow^{222}_{\alpha}$ Rn $\rightarrow^{218}_{\alpha}$ Po ...
³² Th $\rightarrow^{228}_{\alpha}$ Ra $\rightarrow^{228m}_{\beta}$ Ac $\rightarrow^{228}_{\beta}$ Th $\rightarrow^{224}_{\alpha}$ Ra $\rightarrow^{220}_{\alpha}$ Rn $\rightarrow^{216}_{\alpha}$ Po ...

- γ and β Decays (electron recoil) careful material selection, discrimination, shielding (Pb, Cu, Xe, Ar, water)
- Neutrons from (*α*,n) in rocks neutron moderators (paraffin, poly, water)
- Neutrons from cosmic ray muons
 - \rightarrow go deep underground

M. Schumann (U Zürich) – XENON100

Three Experimental Results

M. Schumann (U Zürich) – XENON100

Dark Matter Project

Outline

Motivation: Dark Matter ✓ Direct Dark Matter Detection ✓ Xenon as a Detector Medium XENON100 The Future

Why Xenon?

- efficient, fast scintillator (178nm)
- high mass number A~131: SI: high WIMP rate @ low threshold
- high Z=54, high ρ~3 kg/l: self shielding, compact detector
- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ –100°C
- scalability to larger detectors
- in 2-phase TPC: good background discrimination

Dual Phase TPC

WIMP

gamma

Bottom PMT Array

- electron recoil rejection to >99% via ionization/scintillation ratio (S2/S1)
- 3d position reconstruction in TPC
- multiple scatter rejection

Localization / Discrimination

M. Schumann (U Zürich) – XENON100

Matter Project

The XENON program

XENON Collaboration

XENON Collaboration Meeting, LNGS 2011

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- → material selection & screening
- → detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs
- passive shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- → material selection & screening
- → detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs (Hamamatsu R8520)
- passive shield
 (Pb, Poly, Cu, H₂O, N₂ purge)

M. Schumann (U Zürich) – XENON100

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- → material selection & screening
- → detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs
- passive shield (Pb, Poly, Cu, H₂O, N₂ purge)

M. Schumann (U Zürich) – XENON100

ACANCO

Nazionali del Gran Sasso

Material Screening

GATOR: 2.2kg high purity Ge detector operated by UZH @ LNGS

arXiv:1103.2125

Component	Amount	Total radioactive contamination in materials [mBq/amount]				
		$^{238}{\rm U}$ / $^{226}{\rm Ra}$	232 Th	60 Co	^{40}K	other nuclides
Cryostat and 'diving bell' (316Ti SS)	73.61 kg	121.46	147.23	404.87	662.52	
Support bars (316Ti SS)	49.68 kg	64.58	144.07	69.55	352.73	
Detector PTFE	11.86 kg	0.71	1.19	0.36	8.89	
Detector copper	3.88 kg	0.85	0.62	5.21	0.78	
PMTs	242 pieces	60.50	111.32	181.50	1972.30	¹³⁷ Cs: 41.14
PMT bases	242 pieces	38.72	16.94	2.42	38.72	
TPC resistor chain	$1.5 \times 10^{-3} \text{ kg}$	1.11	0.57	0.12	7.79	
Bottom electrodes (316Ti SS)	0.23 kg	0.43	0.45	2.14	2.36	
Top electrodes (316Ti SS)	0.24 kg	0.85	0.43	1.73	1.16	
PMT cables	1.80 kg	0.85	1.97	0.37	18.65	^{108m} Ag: 2.67
Copper shield	2.1×10^{3} kg	170.80	24.69	6.59	80.26	
Polyethylene shield	$1.6 \times 10^{3} \text{ kg}$	368.0	150.4	-	1120.0	
Lead shield (inner layer)	$6.6 \times 10^3 \text{ kg}$	4.3×10^{3}	3.6×10^{3}	7.2×10^{2}	9.6×10^{3}	²¹⁰ Pb: 1.7×10 ⁸
Lead shield (outer layer)	$27.2 \times 10^3 \text{ kg}$	1.1×10^{5}	1.4×10^4	2.9×10^3	3.8×10^{5}	²¹⁰ Pb: 1.4×10 ¹⁰

Screening results: *arXiv:1103.5831*

use results for Monte Carlo Simulations

M. Schumann (U Zürich) – XENON100

Matter Project

XENON100 Background

- 30 kg fiducial mass
- active LXe veto not used for this plot
- exploit anti-correlation between light and charge for better ER-energy scale

Xenon keVee-Scale not precisely known below 9 keVee Measured Background in good agreement with MC prediction.

At low energies: Lowest background ever achieved in a Dark Matter Experiment!

21

Matter Project

Nuclear Recoil Energy Scale

X E N O N Dark Matter Project

- WIMPs interact with Xe nucleus
 - → nuclear recoil (*nr*) scintillation (β and γ 's produce electronic recoils)
- absolute measurement of nr scintillation yield is difficult
 - → measure relative to ⁵⁷ Co (122keV)
- relative scintillation efficiency Leff:

$$\mathcal{L}_{\rm eff}(E_{\rm nr}) = \frac{\rm LY(E_{\rm nr})}{\rm LY(E_{\rm ee} = 122 \ \rm keV)}$$

measurement principle:

most recent measurements:

- Plante et al., arXiv:1104.2587 (2011)
- △ Manzur et al., PRC 81, 025808 (2010)

for discussion of possible systematic errors see *A. Manalaysay, arXiv:1007.3746*

M. Schumann (U Zürich) – XENON100

50

100

blinded

- data taken in first half of 2010
- 100.9 life days

_og10(S2Tot/S1)

2.5

1.5

- data blinded in ROI
- analysis and results in: arXiv:1104.2549

Find a needle in a haystack!

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46

Basic Data Quality Cuts

- reject non useable waveforms (muons, micro-discharges, ...)
- hot spot cuts
- S1 noise cut

Energy Cuts

- low E region (S1)
- S2 software threshold
- require 2x S1 coincidence (against PMT dark current, noise)

Basic Data Quality Cuts

- reject non useable waveforms (muons, micro-discharges, ...)
- hot spot cuts
- S1 noise cut

Energy Cuts

- low E region (S1)
- S2 software threshold
- require 2x S1 coincidence (against PMT dark current, noise)

Single Scatter Selection

(WIMPs interact only once!)

- only one S2 peak
- only one S1 peak
- active veto cut

Basic Data Quality Cuts

- reject non useable waveforms (muons, micro-discharges, ...)
- hot spot cuts
- S1 noise cut

Energy Cuts

- low E region (S1)
- S2 software threshold
- require 2x S1 coincidence (against PMT dark current, noise)

Consistency Cuts

- S2 width cut
 - (drift time ok? gas events)
- position reconstruction
- anomalous event rejection

Basic Data Quality Cuts

- reject non useable waveforms (muons, micro-discharges, ...)
- hot spot cuts
- S1 noise cut

Energy Cuts

- low E region (S1)
- S2 software threshold
- require 2x S1 coincidence (against PMT dark current, noise)

Fiducial volume cut NR/ER discrimination (strict only for classical analysis)

Single Scatter Selection

(WIMPs interact only once!)

- only one S2 peak
- only one S1 peak
- active veto cut

Consistency Cuts

- S2 width cut (drift time ok? gas events)
- position reconstruction
- anomalous event rejection

Background Prediction

Expected Background for

- 48 kg fiducial mass
- 100.9 live days
- 99.75% ER rejection

Gaussian Leakage: 1.14 ± 0.48 Anomalous Leakage: 0.56 ± 0.25 Neutron Background: 0.11 ± 0.08

 1.8 ± 0.6 events

- → prediction based on data and MC
- → prediction verified on high *E* sideband

Unblinding

Population of noise events at threshold

- → Some leak into WIMP search region
- → Post-unblinding cut removes noise population

Result

 1.8 ± 0.6 events

Observe 3 events

- → likelihood for 3 or more events is 28%
- → Profile Likelihood analysis also does not yield significant signal → calculate limit

WIMP Limit

30

20

10

AmBe

25/02

26/03

²³²Th

25/04

⁶⁰Co

25/05

Date in 2011 [Day/Month]

Challenges the CoGeNT, DAMA signals as being due to light mass WIMPs

M. Schumann (U Zürich) – XENON100

XENON100: Sensitivity

O N

N Dark Matter Project

The next step: XENON1T

M. Schumann (U Zürich) – XENON100

- 2.4t LXe ("1m³ detector") 1t fiducial mass
- 100x lower background (10 cm self shielding, QUPID)
- Timeline: 2010 2015
- start construction end of 2011

Low Radioactivity Photon Detectors (3", Total ~250)

Ti Cryostat (or low rad. stainless steel)

34

XENON1T @ LNGS

Photosensors

QUPID

Quartz Photon Intensifying Detector

- developed by UCLA group (Arisaka/Wang)
- very low radioactivity APD, quartz, no voltage divider
- ongoing tests and R&D at UCLA

M. Schumann (U Zürich) – XENON100

Poster 3015 **Alternative:** A. Behrens Hamamatsu R11410 3" **PMT** high gain low radioactivity LXe operation Tests @ UZH 14000 12000 SPE 10000 8000 6000 4000 2000 ×10

Gain

20

25

DARWIN – Dark Matter WIMP Search with Noble Liquids

- *R&D and Design Study* for a next generation noble liquid facility in Europe. Approved by ASPERA in late 2009
- Coordinate existing European activities in LXe and LAr towards a multi-ton dark matter facility
- Physics goal: $\sigma < 10^{-47}$ cm²

http://darwin.physik.uzh.ch

Summary

Two new projects upcoming:

- XENON1T 1 ton LXe target mass
- DARWIN
 multiton LXe/LAr detector
- 104
- M. Schumann (U Zürich) marc.schumann@physik.uzh.ch

- Dark Matter: One of the big unsolved puzzles
- XENON100 62 kg dual-phase LXe TPC
- extremely low background
- new results from 100d data: arXiv:1104.2549 *(2011)*

Backup

M. Schumann (U Zürich) – XENON100

IDM Limit

- Inelastic Dark Matter (IDM): tries to reconcile the result from DAMA with other expts *Phys. Rev. D64, 043502 (2001)*
- Dark Matter particle has an excited state, with an energy splitting δ
 WIMP-nucleon interactions excite the WIMP, elastic scattering forbidden
 → rate peaks at higher E
- XENON100 excludes the IDM interpretation of the DAMA result at 90% CL arXiv:1104.3121

The DAMA Observation

http://dmtools.brown.edu/

Gaitskell, Mandic, Filippini

DAMA integrated by

Savage et al., arXiv:0808.3607

- DAMA: PMTs coupled to Nal Scintillators \rightarrow extremely low background necessary
- looks for annual modulation @ LNGS
- large mass and exposure: 0.82 ton years

- DAMA finds annual modulation @ 8.9 σ
- BUT: result cannot be explained with standard neutralinos or KK Dark Matter, result in conflict with other experiments

low mass WIMPs?

10⁻³⁸

Cryogenic Detectors: CDMS / EDELWEISS

Soudan Mine, USA (CDMS); LSM, France (EDELWEISS)

Principle: measure charge and heat (phonons) a deposited energy E produces temperature rise ΔT

90% CL Limits: Simple Merger of CDMS and EDELWEISS Data

Heat

backgrounds

Nuclear Recoil

Crystals: Ge, Si cooled to few mK

→ low heat capacity

onization

→ measurable µK temperature!

Good Discrimination

→ reject surface events via PSA

signal

CoGeNT

- CoGeNT: p-type point contact Ge-detector, ultra low noise
- prototype for MAJORANA, operated underground at Soudan
- very low threshold: 0.4 keVee (electronic noise)
- only one observable (charge), some PSD against surface events
- Excess at lowest energies

WIMP production

In early Universe: WIMPs in thermal equilibrium creation ↔ annihilation

$$p(E) \propto \exp\left(-\frac{E}{k_B T}\right)$$

expanding Universe: "freeze out"

WIMPs fall out of equilibrium, cannot annihilate anymore

$$k_B T \sim \frac{m_\chi c^2}{20}$$

- → non relativistic when decoupling from thermal plasma
- \rightarrow constant DM relic density
- \rightarrow relic density depends on $\sigma_{\rm A}$

WIMP relic density:

$$\Omega_{\chi} h^2 \approx \text{const.} \frac{T_0^3}{M_{Pl}^3 \langle \sigma_A v \rangle} \approx \frac{0.1 \text{pb}}{\langle \sigma_A v / c \rangle}$$

O(1) when $\sigma_{\rm A}$ ~10⁹ GeV \rightarrow weak scale

Xenon: Light and Charge

- energy deposited in LXe produces electron-ion pairs and excited atom states; both processes can lead to scintillation
- anti-correlation between charge and light
 - → improvement of energy resolution possible
- E-field dependence (field quenching)
- response also depends on particle energy

ER / NR Discrimination

- ER/NR discrimination via S2/S1 ratio
- Discrimination efficiency similar to XENON10 (>99%)

Matter Project

Selected Calibrations

Position dependent Corrections: Cs-137, AmBe inelastic (40 keV), Xe* (164 keV) Kr-83m (planned)

→ Agreement better than 3%

Electron Lifetime:

Cs-137

→ ~200 µs (11.2d), up to 400 µs (run_08)

Electron Recoil Band (Background): Co-60, Cs-137, Th-228

Nuclear Recoil Band (Signal): Neutrons: AmBe

→ definition of WIMP search region, discrimination

Calibration at low Energy

expect signal <40 keV (calibration from outside not possible) ⇒ n-activated Xe131, Xe129m was used for Xe10, $\tau \sim O(10d)$ 120

⇒ Kr83m

Calibration at low Energy

83m_-

expect signal <40 keV (calibration from outside not possible) ⇒ n-activated Xe131, Xe129m was used for Xe10, $\tau \sim O(10d)$ 120

Kr-85-Removal

measurement via

delayed concidences

514.0083 1.015 µs

- Xe has no long lived radioactive isotope
- BUT: Xe contains Kr-85

in air:	Kr/Xe ~ 10
in Xe gas (commercial)	Kr/Xe ~ ppm-ppb
necessary (Xe100)	Kr/Xe ~ 100 ppt
	(<1 evt in 0.5 yr)

→ dedicated Kr-85 removal to ppt level

10.756 y

85 36Kr

<4.7×10-7% >16.73 1/2-

9.5 9/2+

 $Q_{B} = 687.0$

0.434%

9/2+

First XENON100 Results

- Energy cut: <30 keVnr
- make use of excellent selfshielding capability of LXe
- 40 kg fiducial mass

- data from comissioning run Oct-Nov 2009
- 11.2 life days
- Data was not blinded
- But: Cuts developed on calibration data only

Matter Project

Profile Likelihood Method

Profile Likelihood Method

- necessary to claim a detection
- account for systematic uncertainties
- uses full S2/S1 space
- hypothesis (signal/bg) based on profile likelihood ratio
- σ is the interesting parameter; other nuisance parameters are profiled out
- method described in *arXiv:1007.1727*

Poisson Smearing

- Resolution at low *E* is dominated by Poisson counting statistics
 → a few photoelectrons seen by PMTs
- WIMP spectrum is expected to drop exponentially with E
 → more events make it above threshold than vice versa