

International Conference on Technology and Instrumentation in Particle Physics 2 – 6 June 2014, Amsterdam

Direct dark matter detection with the XENON and DARWIN experiments

Alex Kish Physics Department, University of Zürich

Experimentally available parameter space for WIMPs

~120 researches from 16 institutions

Particle Detection Principle with Xenon Detector

log₁₀(S2 /S1)-ER mean

• particle interaction with the LXe target:

hv

prompt scintillation (S1), $\lambda = 178$ nm light detection with photomultiplier tubes

e⁻

ionization

charge is drifted and extracted into the gas phase, detected by PMTs as proportional scintillation light (S2)

 electronic recoil discrimination based on the ratio of scintillation and ionization, with efficiency >99%

```
(S2/S1)_{V} > (S2/S1)_{WIMP}
```


Energy [keVnr]

Reconstruction of the Interaction Vertex

- Z-coordinate (interaction depth) is inferred from the delay time between S1 and S2, Z position resolution 3mm
- X and Y coordinates are reconstructed via light pattern identification with Neural Networks, Support Vector Machines, χ^2 -minimization, etc.
- Radial position resolution:

XENON100	1" PMTs:	3 mm		
LUX	2" PMTs:	5 mm		
XENON1T, XENONnT				
DARWIN	3" PMTs:	8 mm		
\rightarrow error on the FV calculation <0.1%				

 Challenge: long e⁻ drift time in large detectors (XENON100: 30 cm drift = 176 µs at 0.53 kV/cm)

Location of the XENON Experiment

XENON100

Alex Kish	XENON and DARWIN	TIPP2014	Amsterdam, June 2, 2014	p.7

The XENON100 Detector

polyethylene

water tanks lead polyethylene copper

thickness 20 cm 15 and 5 cm (low ²¹⁰Pb), 33 t 20 cm thick, 1.6 t 5 cm thick, 2 t nitrogen flushing ~20 liters/minute

- \rightarrow neutrons
- \rightarrow gamma
- \rightarrow neutrons
- \rightarrow gamma from outer shield
- \rightarrow ²²²Rn in the shield cavity

Alex Kish

The XENON100 Detector

Cryostat:

- double walled (1.5 mm thick)
- low radioactivity stainless steel
- total weight 70 kg

PTFE structure:

- 24 interlocking panels
- total weight of teflon 12 kg
- UV light reflector

'Diving bell':

- stainless steel
- weight 3.6 kg

Target:

- 62 kg of LXe
- 30 cm diameter, 30 cm height

Veto:

- 99 kg of LXe
- average thickness 4 cm
- instrumented with 64 PMTs

98 PMTs in the top array QE ≈ 25%

80 PMTs on the bottom QE ≈ 32%

XENON1T

Alex Kish	XENON and DARWIN	TIPP2014	Amsterdam, June 2, 2014	p.10

The XENON1T Experiment

- Under construction at LNGS
- Background level 2 orders of magnitude lower than in XENON100
- 10m high and 9.6m diameter water tank (~700m³)
- Čerenkov light is detected with 84 × 8" PMTs

The XENON1T Experiment

- Many subsystems will be reused for the upgrade (XENONnT):
- water shield,
- cooling and support systems,
- outer cryostat,
- DAQ and cabling,
- xenon storage and purification,
- distillation column

The XENON1T Detector Design

- Dual-phase LXe TPC: ~3t of LXe in total (~2.2t active, ~1t fiducial)
- TPC out of OFHC and interlocking PTFE panels
- Low-background double-walled stainless steel cryostat
- 248 Hamamatsu R11410-21 PMTs

- Background goals:
 - < 1 event (ER +NR) in 2 years
 - < 0.5ppt of ^{nat}Kr
 - < $1\mu Bq/kg$ of ²²²Rn
- MC simulations with detailed GEANT4 model

Backgrounds in XENON1T

• ER: single scatter interactions in 2-10 keV_{ee} range, 99.75% discrimination

• NR: energy range 5-50 keV_{nr} (3-46 PE), 50% acceptance, taking into account energy threshold and resolution

Ta	ble D.1: Background events fro	om radioge	enic neutro	ons in [3,46	6] pe, in 1	ton FV		
ID	Component Background events (ev/y)							
		U238	U235	Ra226	Th232	Th228	Total	%
1	Shell	0.0251	0.000407	0.00181	3.01e-06	0.00685	0.0342	15.4
2	Flange	0.00402	6.52e-05	0.00309	9.27e-07	0.0232	0.0304	13.7
3	Stem	0.0156	0.0079	0.00859	1.12e-05	0.00824	0.0404	18.2
4	Quartz	0.00472	0.000305	0.000327	1.35e-06	0.000602	0.00596	2.7
5	PMTSS	0.000733	0.000121	0.000131	3.47e-07	0.000654	0.00164	0.7
6	PMTKovar	0.00102	5.6e-06	0.000241	9.14e-09	0.00253	0.00379	1.7
7	Bases	0.0185	0.00125	0.00615	3.34e-05	0.00102	0.0269	12.1
8	PTFE	0.00118	0.000826	0.00907	0.000477	0.0267	0.0383	17.2
9	Copper	0.000405	6.37e-07	1.14e-05	3.37e-09	4.73e-05	0.000464	0.2
10	Bottom Filler	0.0122	0.000196	0.000359	1.87e-06	0.00401	0.0167	7.5
11	Cathode, Anode, Support Ring	0.000604	1.03e-05	0.000493	9.4e-08	0.00358	0.00469	2.1
12	Lateral Bell	0.0149	0.00025	0.0003	2.92e-07	0.000974	0.0165	7.4
13	Top and Bottom Rings	0.000138	2.27e-06	1.01e-05	1.49e-08	3.8e-05	0.000189	0.1
14	Top Plate	0.0017	2.83e-05	0.000126	1.78e-07	0.000464	0.00232	1.0
	Total						0.222	

Single Scatter, 1 ton Fiducial Volume, [2, 12] keVee, [5, 50] keVr, 99.75% S2/S1 discrimination, 50% NR acceptance

Source	Background (ev/y)
ER from materials	0.05
Kr85 (0.2 ppt of ^{nat} Kr)	0.07
Rn222 (1 µBq/kg)	0.08
Solar neutrinos + $2\nu 2\beta$	0.09
NR from materials	0.2
Total	0.5

Xenon Storage and Recovery

- Xe storage and fast recovery system (ResToX)
- Capable to store 7.6t of Xe either in gas or liquid phase under high purity conditions
- Double-walled, high pressure (70atm) sphere (stainless steel + copper)
- LN₂ based 3kW condenser, large surface area (~5m²) to minimize icing
- 1.5kW heater to melt Xe ice during TPC filling after emergency cooling

XENON1T Cryogenics and Purification

• Cooled by 2 redundant PTRs. "Stand-alone" LN₂ backup cooling tower

 Recirculation pumps, mass flow controllers, HALO oxygen and water monitor, RGA + cold trap, baking equipment, automatic introduction of internal calibration sources

Xenon Purification

- On-site purification with a cryogenic distillation column (Kr removal)
- Preliminary result from a distillation run at 8.5 slpm:
 - in-gas concentration $^{nat}Kr/Xe = (136 \pm 22) ppt$
 - purified liquid out ^{nat}Kr/Xe < 28 ppq</p>

 \Rightarrow separation factor > 5000 at 90% C.L.

• Recirculation rate up to

XENON1T Electric Field Cage

- Electrodes: 1m diameter wire grids
- Equidistant field shaping rings
- Total weight: 86kg OFHC, 16kg PTFE
- 100kV custom feedthrough
- Electric field optimization with COMSOL and KEMField (boundary element method) simulations

Photosensors

- 3-inch Hamamatsu R11410-21 PMTs
- Average quantum efficiency 36% (at λ =178nm)
- Optimized to operate in LXe conditions, minimized radioactive contamination JINST 8, P04026, 2013
- Gain 2÷5×10⁶ at ~1.5kV

- Voltage divider network on cirlex substrate
- Optimized linearity and power consumption

DARWIN

The DARWIN Consortium

• 29 groups from 9 countries; joined effort of Xe- and Ar-based experiments

TIPP2014

The DARWIN Detector Design (Xe part example)

• Can be installed in the XENON1T water tank

JCAP 01,044 (2013)

DARWIN: Backgrounds from Natural Radioactivity

- Studied Xe-based part of the project
- Copper for cryostat vessels (5 cm thick): inner cryostat 1.8t, outer vessel 2.2t
- PTFE for the TPC (~300 kg)
- The modeled photosensors are 3" Hamamatsu R11410 PMTs (1050 in total)
- The best results from XENON100 and XENON1T screening campaigns have been selected <u>JCAP 01,044 (2013)</u>
- Intrinsic contamination: 0.1 ppt of ^{nat}Kr, 0.1μ Bq/kg of ²²²Rn
 - XENON100: (1.0±0.2) ppt of krypton EXO-200: (3.7±0.4) ppt of radon

DARWIN: Neutrino and WIMP detection with Xe Detector

JCAP 01,044 (2013)

- The total background at low energies is dominated by $2\nu\beta\beta$ -decays of ¹³⁶Xe (T_{1/2} = 2.165×10²¹ years, as measured by EXO-200), followed by krypton
- Fiducialize 14t of LXe in the central detector region
- Energy range for neutrino measurement up to 30 keV_{ee} (intersect with 136 Xe 2v $\beta\beta$ curve)
- WIMP ROI up to 2–10 keVee + electronic recoil rejection 99.5%

DARWIN: WIMP and Neutrino Sensitivity with Xe Detector

• Assuming electronic recoil rejection 99.5%, nuclear recoil acceptance 50%

• Electronic recoil neutrino BG limits DM search channel (spin-independent WIMP-nucleon coupling) around cross-sections of 2×10⁻⁴⁸ cm², dominated by interactions of pp-neutrinos

- Coherent neutrino-nucleus elastic scattering (mostly ⁸B and hep neutrinos) affects the sensitivity to low-mass WIMPs
- Atmospheric and diffuse supernovae neutrinos become relevant at 10⁻⁴⁸ cm²

Alex Kish	XENON and DARWIN	TIPP2014	Amsterdam, June 2, 2014	p.25

XENON100

• Still in operation after 5 years. Recent DM-search data is blinded

XENON1T

- Construction is on schedule
- Commissioning of the cryostat and cryogenic plants in July 2014
- TPC installation by Spring 2015

XENONnT

• The detector upgrade has been proposed. To start in 2018

DARWIN

- Planned for 2020-2030
- Limiting backgrounds for WIMP-search channel:

– solar pp-neutrinos: WIMP-nucleon cross-sections below $\sim 2 \times 10^{-48}$ cm² and WIMP masses around 50 GeV/c²

 \rightarrow another physics channel: statistical uncertainty of the measured flux ~1%)

– NRs from coherent scattering of solar neutrinos: sensitivity to WIMP masses below 6 GeV/c² to cross-sections above $\sim 5 \times 10^{-45}$ cm²