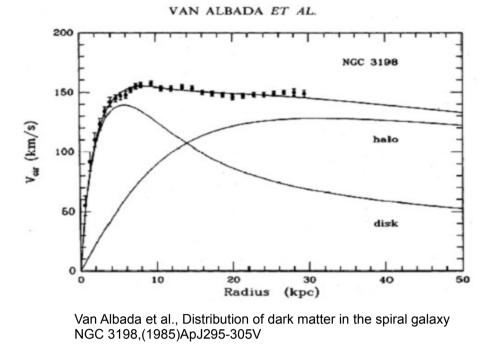
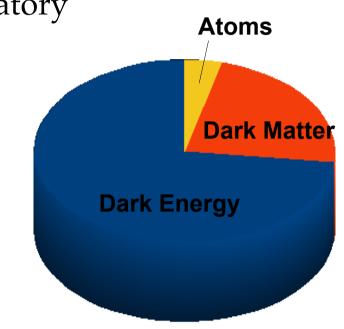
Tests of PMTs for Future Dark Matter Detectors

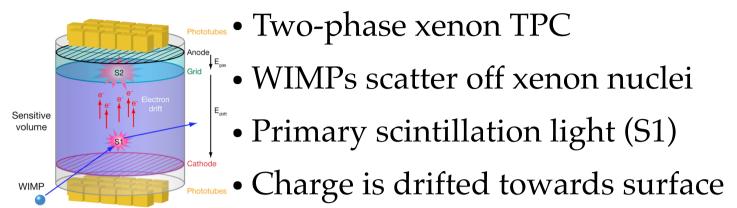


<u>A. Behrens</u>, L. Baudis, A. D. Ferella, D. Florin, A. Kish, A. Manalaysay, T. Marrodán Undagoitia, M. Schumann Physik-Institut Universität Zürich



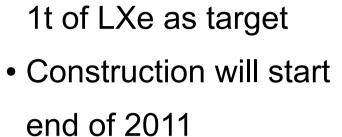
Dark Matter

- Many hints on the existence of dark matter from astronomy and cosmology
- \bullet Dark matter is believed to make up for 23% of the universe, while only 4% are made from normal matter. The other 73% are dark energy
- Dark matter does not interact electromagnetically, hence the name
- One possible dark matter candidate is the weakly interacting massive particle (WIMP)
- Many experiments try to directly detect dark matter in the laboratory



Future LXe Dark Matter Detectors

Detection Principle

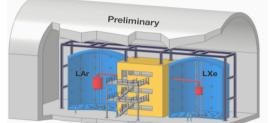

- Secondary scintillation light (S2) in gas phase
- 3d position reconstruction from drift time

PMT Requirements

- Performance in LXe (~ -100 °C, up to 5 bar)
- Sensitivity to xenon scintillation light (178 nm)
- Low radioactive background
- Low noise
- Single photon detection

XENON1T

 The successor of XENON100 will use
1t of LXe as target



DARWIN

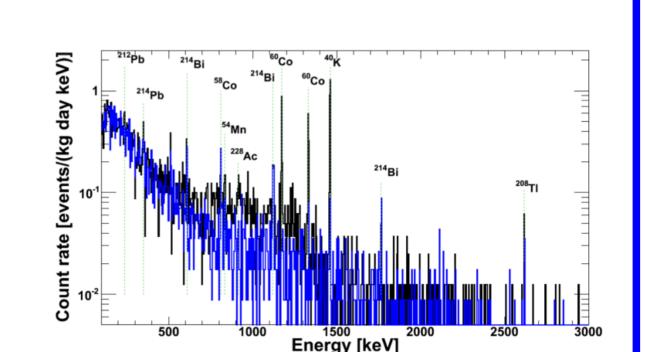
Dark Matter WIMP Search with Noble Liquids

- A multi-ton detector using LXe and/or LAr
- Now in design phase

http://darwin.physik.uzh.ch/

Hamamatsu R11410-MOD

- The Hamamatsu R11410 PMT has been specifically designed for the operation in liquid xenon
- Can be operated down to -110 °C
- Special bialkali photocathode for improved operations at low temperatures
- Quartz window ensures sensitivity to xenon scintillation light at 178 nm
- High quantum efficiency

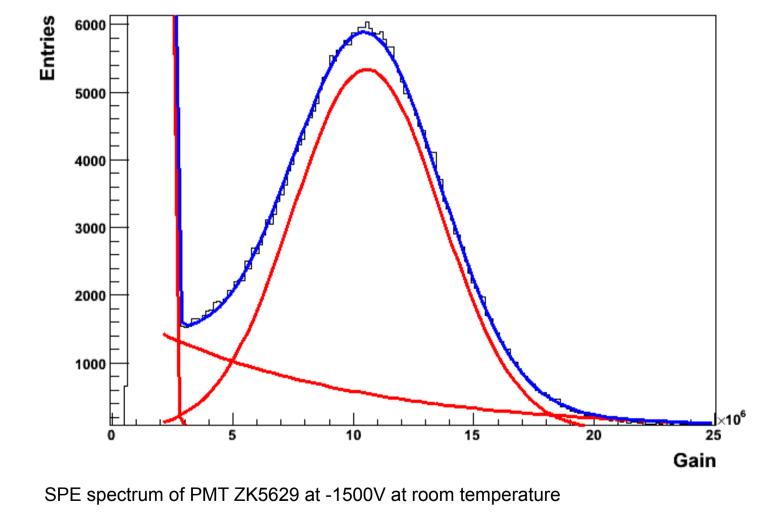

Size of photocathode	3 inch
Photocathode material	Bialkali LT
Number of dynodes	12
Operating temperature	-110 to 50 °C
Light range	160 to 650 nm
Quantum efficiency	~ 26 % at 175 nm
Maximum voltage	1750 V
Recommended voltage	1500 V

Screening Results

- The R11410-MOD PMT has been screened with Gator, a high purity germanium detector used for material screening for the XENON experiment (arXiv:1103.2125v1)
- Lower overall radioactivity than for the R8520 PMT currently used in XENON100, especially for ⁴⁰K

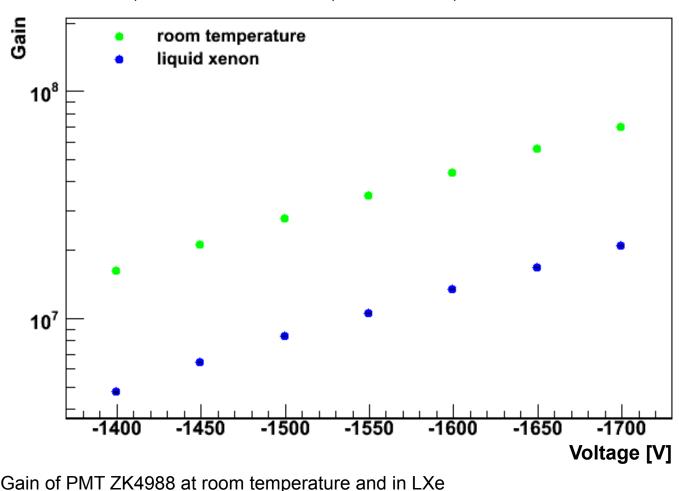
"Material Screening and Selection for XENON100", accepted for publication in Astroparticle Physics, arXiv:1103.5831

Isotope	Per PMT	Per Photocathode Area	R8520 (XENON100)
²²⁸ Ra	< 3.8 mBq	< 0.09 mBq/cm ²	< 0.11 mBq/cm ²
²²⁸ Th	< 2.6 mBq	< 0.06 mBq/cm ²	< 0.07 mBq/cm ²
²³⁸ U	< 95 mBq	< 2.09 mBq/cm ²	< 2.33 mBq/cm ²
²²⁶ Ra	< 2.4 mBq	< 0.06 mBq/cm ²	< 0.06 mBq/cm ²
²³⁵ U	< 4.3 mBq	< 0.10 mBq/cm ²	< 0.11 mBq/cm ²
⁴⁰ K	13 ± 4 mBq	0.29 ± 0.09 mBq/cm ²	2.17 ± 0.31 mBq/cm ²
¹³⁷ Cs	< 1.3 mBq	< 0.03 mBq/cm ²	< 0.02 mBq/cm ²
⁶⁰ Co	$3.5 \pm 6 \text{mBg}$	$0.08 \pm 0.13 \text{ mBg/cm}^2$	$0.10.0 \pm 0.01 \text{mBg/cm}^2$

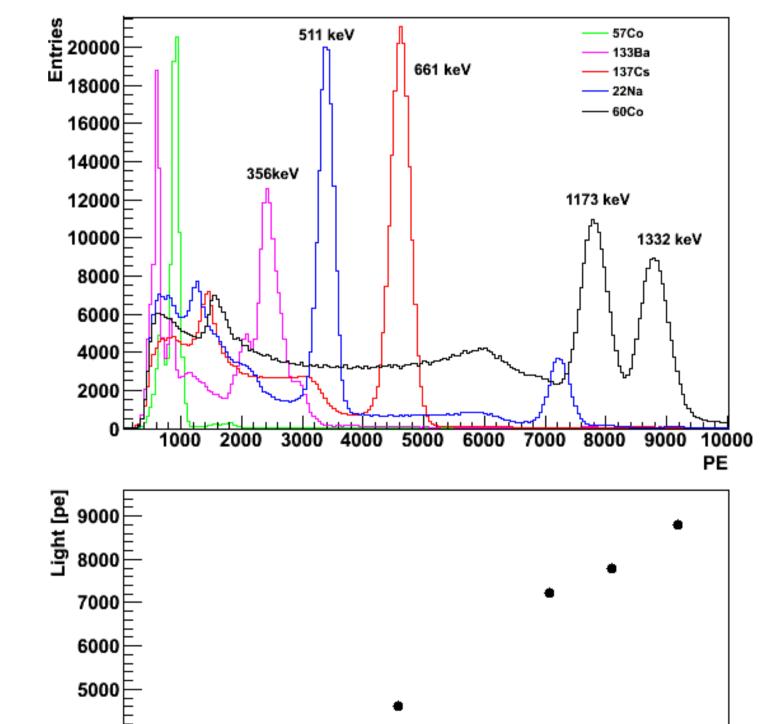

PMT Performance

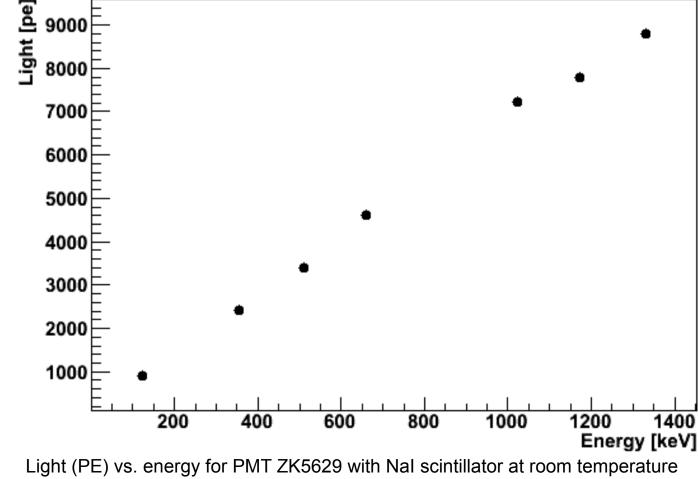
Test Setup

- R11410-MOD PMTs have been tested at University of Zurich
- Tests have been conducted in a black box at room
- temperature and at LXe temperature in a small single phase liquid xenon chamber
- Single photoelectron emission has been stimulated by using blue LED light
- For linearity tests, various radioactive sources have been used together with the liquid xenon as scintillator and a NaI scintillator for the black box tests


Single Photoelectron Spectrum

- SPE spectra have been measured at different voltages both at room temperature and in liquid xenon
- The signal peak in the spectrum can be described very well by a gaussian plus and additional exponential component (under investigation, maybe afterpulsing?)
- The PMT shows very good SPE resolution both at room temperature and in liquid xenon (resolution on signal peak ~30%, peak-to-valley ratio up to 3.8)


Gain


- The gain has been determined from the fit to the signal peak in the SPE spectra
- The gain is higher at room temperature $(2.77 \cdot 10^7 \text{ at} -1500 \text{ V})$ than in LXe $(8.37 \cdot 10^6)$

Linearity of the Base

- Various sources have been used with a NaI scintillator
- Plotting the peak position in photoelectrons against the energy, the linearity of the PMT can be determined
- The PMT shows good linearity in the tested range of up to 9000 photoelectrons

