Neutrino astrophysics and particle physics in LAGUNA

Teresa Marrodán Undagoitia

marrodan@physik.uzh.ch

Universität Zürich

Seminars on Astroparticle Physics, DESY, Hamburg, 03.05.2010

LAGUNA

Outline

- 2 Detector concepts and design study
- 3 Physics potential

Outline

- 2 Detector concepts and design study
- 3 Physics potential

4 Summary

LAGUNA

Large Apparatus for Grand Unification and Neutrino Astrophysics

- European underground laboratory design study (2008 – 2010) funded with 1.7 ME by the EU
- Study of seven possible locations:
 - Canfránc (Spain)
 - Fréjus (France)
 - Boulby (England)
 - Pyhäsalmi (Finland)
 - Sieroszewice (Poland)
 - Slanic (Romania)
 - Umbria (Italy)

Scientific paper: D. Autiero et al., JCAP 0711, 011 (2007)

Physics of LAGUNA: Low Energy Neutrino Astrophysics

- Supernova explosion
 - Measurement of the energy spectrum of different *v*-flavours
 - Time evolution of the neutrino emission
 - Neutrino properties: oscillation parameters
- Diffuse background of supernova neutrinos
 - Understanding of the explosion mechanism of a SN
- Solar neutrinos
 - $\bullet~$ High statistics measurements \rightarrow solar modulation
- and Geophysics
 - Measuring radioactivity of the Earth with geoneutrinos

Physics of LAGUNA: Particle physics

- Proton decay
 - Mainly $p \to K^+ \overline{\nu}$ and $p \to e^+ \pi^0$
- Atmospheric neutrinos:
 - Improve the measurement of $\sin^2\theta_{23}$
- Reactor neutrinos:
 - Precise measurement on Δm_{12}^2 and $\sin^2 \theta_{12}$
- Detectors for accelerator experiments:
 - $\theta_{\rm 13},\,\delta_{\it CP}$ and mass hierarchy
 - Beta beams
 - Super beams
 - Neutrino factories

LAGUNA detector concepts

- MEMPHYS MEgaton Mass PHYSics
 - tanks of 60 m heigth \times 65 m Ø
 - \sim 440 kt water Cherenkov detector
- GLACIER Giant Liquid Argon Charge Imaging ExpeRiment
 - 20 m heigth \times 70 m \varnothing
 - $\bullet\ \sim 100\,kt\ \text{liquid}\ \text{Ar}\ \text{TPC}$
- LENA Low Energy Neutrino Astronomy
 - 100 m long \times 30 m \varnothing
 - \sim 50 kt liquid scintillator

LAGUNA Design Study

- Design Study (EU funded): 2008 2010
- Prioritize the sites and down-select: July 2010
- Prioritize detector options: 2011 2012
- Phase 1 construction: 2012 2016

Outline

2 Detector concepts and design study

3 Physics potential

4 Summary

MEMPHYS MEgaton Mass PHYSics

- 3 (or 5) cylindric modules
 60 x 65 m each
- Fiducial mass 440 kt water
- Readout: \sim 70 000 PMTs of 10-12 inch per shaft
 - \rightarrow 30% coverage
- Size limited by the attenuation length ($\lambda \sim$ 80 m) and the pressure on the PMTs
- Option of adding gadolinium

GLACIER

Giant Liquid Argon Charge Imaging ExpeRiment

- 20 m heigth \times 70 m \varnothing
- 100 kt liquid Ar TPC
- Scintillation light detected by \sim 28 000 PMTs
- e⁻ drift in 1 kV/cm field
- LEMs for charge amplification
- Charge readout on top

LAGUNA

LENA

Low Energy Neutrino Astronomy

- Size: 100 m length \times 30 m \varnothing
- 50 kt of organic scintillator
- ~15 000 photosensors (including water veto)
- About 180 pe/MeV light yield
- Current design: vertical cylinder

Typical questions addressed in LAGUNA:

- rock mechanics of caverns
- design of tanks in relation to sites
- overburden vs. detector options
- logistic: transport, access, delivery of liquids
- safety (tunnel vs. mine) and environment (rock removal)
- relative costs

Underground construction

- o Stability of the cavity
- o Tunnels, access ...
- GLACIER
 - Depth: 2500 m.w.e.
- LENA
 - at 4 000 m.w.e.

• MEMPHYS

• at 3 000 m.w.e.

ightarrow artistic impressions by Rockplan

Detector location: Reactor neutrinos

- Depth
 - Fast neutron background
 - Trigger rate
- Reactor neutrinos
 - Background for DSNB
 - Signal for an oscillation experiment

from J. Peltoniemi and K. Loo

Outline

2 Detector concepts and design study

O Physics potential

4 Summary

LAGUNA	Detectors and design	Physics potential	Summary		
Proton Deca	у				
Non supersymmetric Grand Unified Theories					
Dominant d	ecay mode: $p \rightarrow e^+ \pi^0$	$ au \leq$ 1.4 \cdot 10 ³⁶ y			
Supersymi	metry (SUSY)				
Dominant d	ecay mode: $\rho \to K^+ \overline{\nu}$	$ au \sim (0.3 - 3) \cdot \mathbf{10^{34}}$ y			
Extra dime	nsions (6D)				
Dominant d	ecay mode: $p \rightarrow e^+ \pi^0$	$ au \sim $ 10 ³⁵ y			
(Limits from P. Nath 2	2006 and S. Raby 2002)				
 Superka 	amiokande: $ au(m{p} ightarrowm{e}^+\pi^0)$ $ au(m{p} ightarrowm{K}^+\overline{ u})$	$\gtrsim 8.2 \cdot 10^{33}$ y (90% C.I $\gtrsim 2.3 \cdot 10^{33}$ y (90 % C.I))		

Proton decay in MEMPHYS

- High efficiency in the identification of $p \rightarrow e^+ \pi^0$
 - Two electron-like Cherenkov rings in opposite directions
 - ightarrow Sensitivity: $au > 1.0 \cdot 10^{35}$ y in 10 years

Super-Kamiokande

 $\mu - like ring e - like ring$

- Detection of $p \to K^+ \overline{\nu}$ using the decay particles
 - ightarrow Sensitivity: $au > 2 \cdot 10^{34}$ y in 10 years

Proton decay in GLACIER

- High sensitivity due to excellent tracking capabilities
- 3D position reconstruction
- ightarrow Sensitivity for $p \rightarrow e^+ \pi^0$ $\tau > 4 \cdot 10^{34}$ y in 10 y
- ightarrow Sensitivity for $p \rightarrow K^+ \overline{\nu}$ $\tau > 6 \cdot 10^{34}$ y in 10 y

Simulation of proton decay events

A. Bueno et al., JHEP04 (2007) 041

LAGUNA

Proton decay in LENA

 $oldsymbol{
ho} o oldsymbol{K}^+ \overline{
u}$ $T(K^+) = 105 \ {
m MeV} \qquad au(K^+) = 12.8 \ {
m ns}$

Potential of LENA in 10 y:

- For Superkamiokande current limit: τ = 2.3 · 10³³ y
 o About 40 events and ≤ 1 bg
- Limit at 90% (C.L) for no detected signal:

 τ > 4 · 10³⁴ y

Phys. Rev. D, 72, 075014 (2005) and hep-ph/0511230

 \rightarrow Efficiency for other decay channels depend on tracking capabilities

SUPERNOVA DETECTION

 $8~M_{\odot}~(3\cdot10^{53}~erg)$

at D = 10 kpc (galactic center)

- Total rates:
 - o GLACIER: $\sim 55\,000$ events
 - o LENA: \sim 15000 events
 - o MEMPHYS: ~ 200 000 events

- Time evolution of the neutrino flux
- Detection of different flavours
- Neutrino mean energies

Supernova neutrino rates

MEMPHYS		LENA		GLACIER	
Interaction	Rates	Interaction	Rates	Interaction	Rates
$\bar{\nu}_e$ IBD	$2 imes 10^5$	$\bar{\nu}_e$ IBD	$9.0 imes 10^3$	$ u_e^{ m CC}({}^{40} m Ar,{}^{40} m K^*)$	$2.5 imes 10^4$
$^{(-)}_{\nu_e}$ CC (16O, X)	1×10^4	$\nu_x \; \mathrm{pES}$	$7.0 imes 10^3$	$ u_x^{ m NC}(^{40}{ m Ar}^*)$	$3.0 imes 10^4$
$ u_x ext{ eES}$	1×10^3	$ u_x^{ m NC}(^{12}{ m C^*})$	$3.0 imes10^3$	$ u_x ext{ eES}$	$1.0 imes 10^3$
		$\nu_x { m eES}$	$6.0 imes10^2$	$ar{ u}_e^{ ext{CC}}({}^{40} ext{Ar},{}^{40} ext{Cl}^*)$	$5.4 imes 10^2$
		$ar{ u}_e^{ ext{CC}}(^{12} ext{C}, ^{12} ext{B}^+)$	$5.0 imes10^2$		
		$ u_e^{ m CC}(^{12}{ m C}, ^{12}{ m N}^-)$	$8.5 imes 10^1$		

Neutronization burst rates

MEMPHYS	60	$\nu_e \; \mathrm{eES}$
LENA	70	$\nu_e \; \mathrm{eES/pES}$
GLACIER	380	$ u_x^{ m NC}({ m ^{40}Ar^*})$

Diffuse Background of Supernova Neutrinos (DSNB)

In LENA detector: (44 kt f.v.) Event rate in 10 y:

- LL: \sim 110 events
- TBP: \sim 60 events

M. Wurm et al., Phys. Rev. D75 023007 (2007)

Information about Star Formation Rate for 0 < z < 1

DSNB in MEMPHYS and GLACIER

MEMPHYS

• Adding 0.2% gadolinium

- $\overline{\nu}_e + p \rightarrow n + e^+$
- $n + Gd \rightarrow \gamma$ (8 MeV)
- \rightarrow rejection of *invisible muons*
 - (43 109) signal and 47 bg events in 5 years

GLACIER

- $\nu_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{Ar}^*$
- + associated gamma cascade
- Background from solar and low energy atmospheric v's
- (40 60) signal and 30 bg events in 5 years

LAGUNA scientific paper, D. Autiero et al., JCAP 0711, 011 (2007)

Solar neutrinos

Predicted solar *v*-spectrum

MEMPHYS

- Direction to separate from background events
- ⁸B ES: 1.1×10⁵ events in 1 y

• GLACIER

- $\nu_{\mathbf{X}} \mathbf{e}^- \rightarrow \nu_{\mathbf{X}} \mathbf{e}^-$
- ν_e +⁴⁰ Ar $\rightarrow e^-$ +⁴⁰ Ar^{*}
- However, threshold of 5 MeV on the e⁻ energy
- ⁸B ES: 4.5×10⁴ events in 1 y
- LENA
 - ⁷Be ν 's: \sim 5400 d⁻¹
 - \rightarrow search for time modulations
 - pep ν's: ∼ 150 d⁻¹
 - CNO ν 's: \sim 210 d⁻¹
 - ⁸B ν 's: CC on ¹³C: \sim 360 y⁻¹

Geoneutrinos

- Unexplained source of heat flow from Earth
- Unknown contribution of natural radioactivity
- How are ²³⁸U, ²³²Th distributed in core, mantle and crust?

In water or liquid scintillator:

 $\overline{\nu}_e + p \rightarrow n + e^+$

• In LENA: ~ (400-4000) events/y (scaling KamLAND results)

LAGUNA

Reactor neutrinos

S. T. Petcov and T. Schwetz, Phys. Lett. B642, 487 (2006)

- Determination of θ_{12} and Δm_{12}^2
 - For the Fréjus location
 - After one year measuring time, 3σ precision on oscillation parameters:
 - \rightarrow 20% on θ_{12} and 3% on Δm_{12}^2
 - for 147 kt Cherenkov detector with 0.1% Gd and 44 kt liquid scintillator

J. Kopp et al., JHEP 01, 053 (2007)

- Using a mobile $\overline{\nu}_e$ source (e.g. a nuclear powered ship)
 - For an underwater detector location
 - \rightarrow sin² 2 θ_{13} < 0.004 after about 3 years in LENA

Neutrino beams

- Baselines from CERN to the LAGUNA possible labs:
 - Canfránc $L = 630 \, \text{km}$
 - Fréjus $L = 130 \, \mathrm{km}$
 - Boulby $L = 1050 \,\mathrm{km}$
 - Pyhäsalmi $L = 2300 \, \text{km}$
 - Sieroszewice L = 950 km
 - Slanic $L = 1570 \,\mathrm{km}$
 - Umbria $L = 700 \, \text{km}$

Neutrino beams in MEMPHYS

- CERN to Frejus
 - \rightarrow 130 km distance
- The main goals for super-beam and beta-beam:
 - search for θ_{13}
 - searching for possible leptonic CP violation;
 - determining the mass hierarchy and the θ₂₃ value.

J.E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, JHEP 0704, 003 (2007), arXiv:hep-ph/0603172

Neutrino beams in GLACIER

- Updated CNGS beam
 - GLACIER at 0.75° off-axis $\sin^2 2\theta_{13} > 0.004$ at 3σ

A. Meregaglia and A. Rubbia, JHEP11 (2006) 032, hep-ph/0609106

- CERN SPL: Super beam project
 - ν_{μ} disappearance
 - $\nu_{\mu} \rightarrow \nu_{e}$ appearance
- Beta beams (βB):
 - Pure ν_e or $\overline{\nu}_e$ beam from ¹⁸Ne and ⁶He
- \rightarrow possibility to have a magnetized detector

A. Badertscher et al., NIM A 555 (2005) 294, physics/0505151

Neutrino beams with LENA

• Evaluation of muon/electron separation

- Evaluation of track reconstruction:
- → High energy particles create along their track a light front very similar to a Cherenkov cone

J. Learned (arXiv:0902.4009) and J. Peltoniemi (arXiv:0909.4974)

Outline

2 Detector concepts and design study

3 Physics potential

Summary

- LAGUNA design study
 - Investigation of possible sites ongoing
 - Final report July 2010
- Three detector concepts under discussion:

GLACIER (LAr), MEMPHYS (water) and LENA (scintillator)

- Physics objectives:
 - Neutrino astrophysics
 - → first detection of DSNB
 - Proton decay
 - → one order of magnitude improvement in sensitivity, important input for theories beyond the standard model
 - Neutrino oscillations