Direct dark matter search using liquid noble gases

Teresa Marrodán Undagoitia

marrodan@physik.uzh.ch

Physik Institut Universität Zürich

Texas Symposium 2010, Heidelberg, 09.11.2010

Direct detection experiments

Advantages of liquid noble gases for DM searches

- Large masses and homegeneous targets (LNe, LAr & LXe)
- Very high scintillation yield (\sim 40 000 photons/MeV)
- Transparent to their own scintillation light
- 3D position reconstruction
 - Light pattern in the PMTs for single phase (cms)
 - Few mms resolution in TPC mode
- High ionization yield ($W_{LXe} = 15.6 \text{ eV}$ and $W_{LAr} = 23.6 \text{ eV}$)
- Particle discrimination
 - Pulse shape discrimination
 - Charge to light ratio

Comparison between noble gases

	LNe	LAr	LXe
Z (A)	10 (20)	18 (40)	54 (131)
Density [g/cm ³]	1.2	1.4	3.0
Scintillation λ	78 nm	125 nm	178 nm
BP [K] at 1 atm	27	87	165
Ionization [e ⁻ /keV]	46	42	64
Scintillation [γ /keV]	7	40	46

Radioactive isotopes:

- Argon: ³⁹Ar (565 keV endpoint, 1 Bq/kg), ⁴²Ar
- Xenon: ¹³⁶Xe ββ candidate not yet measured!
- ⁸⁵Kr in argon or xenon
 → removal using distillation

Two phase noble gas TPC

Electron recombination is stronger for nuclear recoils

→ Electron- / nuclear recoil discrimination

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)

Electron recoil calibration

- Energy calibration and electron recoil band characterization
- Introducing sources inside
 - Easier in single phase detectors (field distorsion)
 - Light blocking issue
- $\bullet~$ Calibration sources outside $\rightarrow~$ self-shielding issue for low energies

Nuclear recoil calibration

- No monoenergetic neutron lines for calibration
- → Dedicated neutron scattering experiments

Low energy calibration

^{83m}Kr calibration source:

- EC decay-product of ⁸³Rb
- Lines at 9.4 and 32.1 keV
- Uniform distribution

- Target mass: \sim 0.1 kg LXe
- Volume: 3 cm drift length and 3.5 cm diameter
- Two R9869 PMTs
- 6 pe/keV in double phase
- → at University of Zürich

A. Manalasay et al., Rev. Sci. Instr. 81, 073303 (2010), 0908.0616

Calibration of the nuclear recoil energy scale

• Nuclear recoil energy (*E*_{nr}):

 $E_{nr} = rac{S1}{L_y L_{eff}} imes rac{S_e}{S_r}$

S1: measured signal in p.e.

 L_y : LY for 122 keV γ in p.e./keV

 S_e/S_r : quenching for 122 keV γ /NR due to drift field

 Relative scintillation efficiency of NR to 122 keV γ at 0-field

 $L_{eff} = q_{nucl} imes q_{el} imes q_{esc}$

- qnucl: Linhard quenching
- *q_{el}*: Electronic quenching
- *q_{esc}*: Escape e⁻'s at 0-field

Measuring the nuclear recoil scale

Liquid argon

Two existing measurements

Discrepancies in the low energy for the xenon experiments

→ Currently: plans to do such measurements at lower recoil energies and understand the systematics see A. Manalaysay, arXiv:1007.3746

LAr experiments in Europe: WARP & ArDM

WARP140: 140 kg

- First results with a 23 | prototype
- 60 cm drift length and 50 cm \varnothing
- Commissioning at Gran Sasso
- Detector filled in March 2010
- PMT upgrade to lower the threshold

ArDM: 850 kg

- 120 cm drift length and 26 cm \varnothing
- Charge read-out on top: LEMs
- First cool down completed
- Commissioning the protopype at CERN
- Underground @ Canfranc in 2011

LXe, LAr & LNe in the US

LUX - Large Underground Xenon detector

- $\bullet~\sim$ 100 kg LXe in double phase
- Status: commissioning above ground
- waiting for the Homestake mine

CLEAN - Cryogenic Low Energy Astrophysics with Noble gases

- MiniCLEAN: 150 kg fv single phase detector with LAr/LNe
- In commissioning phase

DEAP - Dark matter Experiment with Argon and Pulse shape discrimination

- 3 600 kg LAr in single phase (depleted)
- Status: in construction
- \rightarrow DEAP/CLEAN in Snolab

DEAP-3600

Heidelberg, 09.11.20

1/18

LXe experiments: Zeplin III & XMASS

- Zeplin III: 12 kg active mass @ Boulby (UK)
- \sim 30 cm \varnothing and 3.6 cm drift UPGRADE in 2010
- Detector currently running and acquiring dark matter data

- \rightarrow **XMASS**: Search for DM
- + Solar ν 's + 0 ν $\beta\beta$ of ¹³⁶Xe

in Japan

- 800 kg of LXe (single phase)
- Self-shielding concept
- Plans for DM run within 2010

September 2010

XENON experiment

- Laboratori Nazionali del Gran Sasso (Italy)
- ho \sim 3 500 m.w.e. shielding

• XENON10: 15 kg active volume

• Finished: No evidence for DM

J. Angle *et al.*, Phys. Rev. Lett. 100, 021303 (2008) J. Angle *et al.*, Phys. Rev. Lett. 101, 091301 (2008) J. Angle *et al.*, Phys. Rev. D80, 115005 (2009)

• XENON100: 62 kg active volume

• Currently running

XENON100

- 30 cm drift length and 30 cm \varnothing
- 161 kg total (30-50 kg fiducial volume)
- 100x lower background than XENON10

→ 'Background free': in the 11.17 days of data after discrimination

Limit from non-blinded data analysis

- Excellent sensitivity: even for few days of data
- \rightarrow Sensitivity to low WIMP masses depends on L_{eff}

 Spin independent limit: for standard halo parameters

- E. Aprile *et al.* (XENON100 Collaboration), Phys. Rev. Lett. 105, 131302 (2010)
- Much more data recorded in blind mode
- + analysis in the high nuclear-recoil energy region

Future: XENON1t

- 1.0 ton fiducial mass
 - (\sim 2.4 ton LXe in total)
- Drift length: \sim 90 cm
- 100x background reduction
- Muon veto
- Copper/titanium cryostat
- QUPIDs for photo-detection
- → New collaborators
- → Currently working on MC simulations and design
 - Location under discussion: Gran Sasso/Modane

DARWIN and MAX future projects

R&D and DS for a noble liquid

facility in Europe

MAX Multi-ton Argon Xenon

@ DUSEL

 US R&D activities for multi-ton argon and xenon detectors

http://darwin.physik.uzh.ch/

Teresa Marrodán Undagoitia (UZH)

0

Liquid noble gases

Summary

- DM search with noble liquids has progressed rapidly in the last years → No discovery so far!
 - \rightarrow Best limit by XENON100 at 3.4 $\times 10^{-44}\, \text{cm}^2$ (SI) for 55 GeV/c² WIMP mass
- Big effort to increase the mass and reduce the backgrounds
 - → Material screening and selection
 - → Fiducialization: Position reconstruction best in TPCs
- Current experiments in the order of 10 100 kg LAr/LXe
 - → Plans for ton-scale experiments (some already under construction)

