The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

Manuel Walter

Patras Workshop 24-28 July 2013 Schloss Waldthausen

The GERDA Collaboration

Situated in Hall A of LNGS

[Map from google maps]

[Image from LNGS]

Double Beta Decay

 $2\nu\beta\beta$ standard model process known for: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U, ¹³⁰Ba, ¹³⁶Xe with T_{1/2} between 7.10¹⁸ yr and 2.5.10²⁴ yr,

 $1.84^{+0.14}$ $\cdot 10^{21}$ yr for ⁷⁶Ge [1].

 $0\nu\beta\beta$ not allowed in the standard model:

Controversial claim for ⁷⁶Ge with $T_{1/2} = 1.19 \cdot 10^{25}$ yr by a subgroup of the HdM experiment [2].

- Existence would imply violation of lepton number conservation.
- Most likely mechanism is "massive Majorana neutrino exchange".

[1] GERDA collaboration, J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110[2] H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586, 198 (2004).

Manuel Walter

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

4

Double Beta Decay Detection

Spectrum of summed electron energies.

 $2\nu\beta\beta$ produces a continuous spectrum as the v energy is not detected.

 $0\nu\beta\beta$ results in a peak at the Q-value of ⁷⁶Ge at 2039 keV.

Ge has several advantages:

- Ge detectors are used as both the decay source and the detection device.
- Ge has a very high energy resolution:
 - The higher the energy resolution, the higher the signal to background ratio.

Ονββ Ultra Low BG Experiment GERDA

Bare Ge diodes enriched to 86% of ⁷⁶Ge directly immersed in a 5.5 m high 64 m³ liquid Ar cryostat.

- Ar serves as coolant (87 K) and shielding.
- High purity water tank for additional shielding and to veto muons by their Cherenkov light.

Muon veto panels above the water tank.

Running in two Phases:

- Phase I: Nov 2011 to May 2013
 - ≈18 kg of enriched Ge.
- Phase II: Starting end of 2013,
 - + 20 kg of enriched Ge, factor 10 less background.

Schematic view of the GERDA experiment [1]. [1] GERDA collaboration, arXiv:1212.4067 [physics.ins-det] (2013).

Manuel Walter The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

Phase I Configuration

8 enriched coaxial detectors from IGEX and HdM, previously used for the claimed observation:

2 quickly developed high leakage currents ⇒ not used.

1 non enriched.

5 Phase II type BEGe detectors since July 2012, 1 had energy drifts \Rightarrow not used.

Manuel Walter The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

65-80 mm

Phase I Data Taking

High average live time fraction.

- Spikes due to calibration.
- Total exposure of enriched Ge detectors 21.6 kg yr [1].

Data was taken with a blinded energy window of $Q_{\beta\beta} \pm 20 \text{ keV}$ (FWHM $\approx 4.5 \text{ keV}$):

- Background models and analysis methods were developed.
- Unblinding of side bands: Background models verified and analysis methods frozen.
- Final unblinding performed on 14th of June and the analysis applied.

• Will be published soon!

[1] GERDA collaboration, arXiv:1306.5084 [physics.ins-det] (2013)

Detector Stability

Phase I Background

The outer most, so called Dead Layer, of the detectors is not active.

Background sources:

- α decays on the p+ surface,
- β decay of ⁴²K on the surface or close to the detector which comes from ⁴²Ar (factor ≈ 10 higher than expected!),
- β decay of ⁶⁰Co inside the detectors,
- γ from ²⁰⁸Tl, ²¹⁴Bi from various setup components.

Phase I background reduction:

- Cut detector coincidences,
- prevent ⁴²K ions from drifting to the detectors using minishrouds.

Phase I Background

Determination Method:

- Simulate spectral shape of individual background sources.
- Add minimal number of spectra necessary to fit the measured spectrum ⇒ Minimal Model.

Shown analysis is for coaxial detectors, which yield for most of the exposure.

Background in the BEGe detectors is slightly higher due to ⁴²K, which can be rejected by the pulse shape.

Manuel Walter

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

Phase I Background at Q_{BB}

Maximal Model: Use same isotopes as for the Minimal Model but more possible source positions to fit the background.

For both models no background peaks expected at Q_{bb}!

Background is constant at $Q_{bb} \pm 100$ keV for both models.

Coaxial background prediction at Q_{bb}: 1.76 to 2.38 • 10⁻² cts/(keV kg yr), 68% C.L., consistent with interpolation from constant background.

Manuel Walter

12

Phase I Background

600 to 1600 keV range dominated by $2\nu\beta\beta$ events.

Both background models provide a half life which is consistent with our previously published value of $T_{1/2 2\nu\beta\beta} = 1.84^{+0.14} \cdot 10^{21} \text{ yr [1]}.$

[1] GERDA collaboration, J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

Manuel Walter

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

Phase II BEGe Detectors

Geometry results in well separated current peaks for different interaction points:

Efficient rejection of multi site events [1].

Lower capacity results in a higher energy resolution: 2.7 keV instead of 4.5 keV (FWHM) at Q_{BB} .

[1] D. Budjas et. al, JINST 8 P04018 (2013)

Manuel Walter

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

Liquid Ar Veto

Many background events at $Q_{\beta\beta}$ are in coincidence with an energy deposition in LAr.

Ar is a scintillator \Rightarrow can be used to efficiently suppress background.

Background suppression of a LAr veto and pulse shape discrimination was measured for a close ²²⁸Th source (in a test set-up): Typical suppression factors in the ROI: ²⁰⁸TI: 1180, ²¹⁴Bi: 4.6 [1].

Representative for impurities in holders, pre-amplifiers and other close objects.

Peak at 3 MeV from pulser.

[1] "A liquid argon scintillation veto for Gerda", PhD thesis, M. Heisel, 2011.

GERDA LAr Veto System

- Scintillation light has 128 nm
 ⇒ needs to be converted to
 longer wavelength before
 detection.
- Performed by Tetraphenyl butadiene (TPB) coated onto Tetratex (a PTFE fabric).
- Tetratex is fixed to Cu shrouds.

Middle part surrounded by \approx 1000 m of wavelength shifting fibres equipped with Si-photomultiplier.

Allows to detect light from outside of the cylinder.

Ge detector array.

Low radioactivity Photomultiplier tubes (PMTs) R11065-20.

Manuel Walter

17

Conclusion

Phase I data taking successfully finished with a background rate of about 2 · 10⁻² cts/(keV kg yr).
Background is flat at Q_{ββ}.
Phase I results will be published soon.
Transition to Phase II started:

- Background rate: 1.10-3 cts/(keV kg yr).
- Observation or limit of $T_{1/2} = 15 \cdot 10^{25}$ yr.

Thank you!

Backup Slides

Controversial Claim

Claiming a 4.2 σ confidence level of the observation of $0\nu\beta\beta$ in ⁷⁶Ge.

Extending the energy window increases the background and decreases the signal count by up to 40 %. [2]

Results from Kamland-Zen and EXO suggest that the Claim is wrong.

[1] H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586, 198 (2004).

[2] O.Chkvorets, PhD thesis, Universität Heidelberg, arXiv:0812.1206

Manuel Walter

r The GERDA Experiment for the Search of Neutrinoless Double Beta Decay Patras Workshop July 2013 Waldthausen

BEGe Production

SS and MS Event in a BEGe Detector

Manuel Walter

22

BEGe Background

Full Spectra

Time Evolution of Background

Event rate in the Gold Coaxial data

In the energy range of 3.5 to 5.3 MeV a decrease of the event rate with time is observed with a half life of 138.4 \pm 0.2 d (statistical uncertainty only), which is compatible with the half life of ²¹⁰Po of 138.38 d.

Above it is constant with time.

set.

Data Sets

Silver-Coax data set consists of data taken within 30 days after the immersion of the BEGedetectors.

data set	detectors	expo this analysis	exposure ${\cal E}$ analysis $0 uetaeta$ analysis	
		kg·yr		
SUM- $coax$	all enriched coaxial	16.70	19.20	
GOLD- $coax$	all enriched coaxial	15.40	17.90	
SILVER- $coax$	all enriched coaxial	1.30	1.30	
GOLD- nat	GTF 112	3.13	3.98	
GOLD- hdm	ANG 2, ANG 3, ANG 4, ANG 5	10.90	12.98	
GOLD- $igex$	m RG 1, m RG 2	4.50	4.93	
SUM-bege	GD32B, GD32C, GD32D, GD35B	1.80	2.40	

Detector Specifications

detector	f_{76}	Mg	$M_{act}(\Delta M_{act})$ g	$f_{av}(\Delta f_{avt})$	$egin{array}{c} d_{dl} \ \mathrm{mm} \end{array}$	
enriched coaxial detectors						
ANG 1 [†])	0.859(29)	958	795(50)	0.830(52)	1.8(5)	
ANG 2	0.866(25)	2833	2468(145)	0.871(51)	2.3(7)	
ANG 3	0.883(26)	2391	2070(136)	0.866(57)	1.9(7)	
ANG 4	0.863(13)	2372	2136(135)	0.901(57)	1.4(7)	
ANG 5	0.856(13)	2746	2281(132)	0.831(48)	2.6(6)	
RG 1	0.855(15)	2110	1908(125)	0.904(59)	1.5(7)	
RG 2	0.855(15)	2166	1800(115)	0.831(53)	2.3(7)	
RG 3 †)	0.855(15)	2087	1868(113)	0.895(54)	1.4(7)	
enriched BEGe detectors						
GD32B	0.877(13)	717	638(19)	0.890(27)	1.0(2)	
GD32C	0.877(13)	743	677(22)	0.911(30)	0.8(3)	
GD32D	0.877(13)	723	667(19)	0.923(26)	0.7(2)	
GD35B	0.877(13)	812	742(24)	0.914(29)	0.8(3)	
GD35C †)	0.877(13)	635	575(20)	0.906(32)	0.8(3)	
natural coaxial detectors						
GTF 32 [†])	0.078(1)	2321	2251(116)	0.97(5)	0.4(8)	
$GTF 45 \dagger$	0.078(1)	2312				
GTF 112	0.078(1)	2965				

Liquid Ar as an active veto

Main BG in ROI:

 β and γ from $^{\rm 214}\text{Bi},\,\beta$ from $^{\rm 42}\text{K}$ and $\gamma\,^{\rm 208}\text{TI}$:

 Often in coincidence with an energy deposition in LAr.

Ar is a scintillator => can be used as a veto.

128 nm => needs to be converted to longer wavelength before detection.

- Performed by reflector foils coated with Tetraphenyl butadiene (TPB).
- Conversion yield determines rejection efficiency.

Light is produced by triplet and singlet state excimers with very distinct life times.

Typical suppression factors (measured [1]) in the ROI (source in active volume):

²⁰⁸TI: 1180, ²¹⁴Bi: 4.6 [1].

Scintillation process in Ar.

Mean PMT trace of Ar scintillation light.

D

[1] "A liquid argon scintillation veto for Gerda", M. Heisel, 2011.

Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light

Liquid Ar Set-up at Uni Zürich

Cooling by LN₂ flowing through Cu coil in the dewar condensing high purity Ar gas (6.0).

Ar is excited by α -particles from ²⁴¹Am. The scintillation light is shifted by a surrounding cylinder of WLS reflector foil and detected by a R11065-10 PMT.

Schematic view of the LAr Set-up.

Results

	rel. efficiency
VM2000	1.0
VM2000, PS + TPB (10/1), 0.073 mg/cm ²	1.5
VM2000, 80% M + 20% TPB , 0.082 mg/cm ²	2.3
Tetratex, pure TPB, 0.88 mg/cm ²	3.3

Efficiencies are measured relative to an uncoated VM2000.

To compare efficiencies of different coatings at the same triplet lifetime a linear function is fit to the peak position versus triplet lifetime of VM2000.

Highest efficiency for TPB on Tetratex.

For all coatings:

 WLS appears to resist cooling cycles (visual inspection of the setup and the coating with a UV lamp).

Commercial Scintillators as WLS

BC408, UPS-923A and BCF-10 fibre dissolved in Toluene (3.3 g/100 ml) and wet coated onto VM2000. ⇒ thickness of:

 UPS-923A: 0.16 mg/cm², BCF-10: 0.26 mg/cm² and BC 408: 0.25 mg/cm².

Efficiency measured using GAr scintillation light, relative to VM2000:

- 1.2 for BC408 and UPS-923A,
- 1.5 for BCF-10 fibre (like PS + TPB from LAr).

Result: These commercial scintillators with a high light yield coated to VM2000 are less efficient than TPB on Tetratex.

Manuel Walter Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light

TPB Concentration Optimisation

Concetration/thickness dependent efficiency measured using GAr scintillation light (error bars statistical only).

Most coatings measured several times (unmounted between measurements):

 \Rightarrow fluctuation \approx 8.6 %.

Optimal thickness at about 0.8 mg/cm² (error bars from fluctuation).

Coating test successfully performed on a 45 cm x 93 cm sheet of Tetratex.

D

Manuel Walter Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light