

Physik Institut Universität Zürich^{UZH}

1

GERmanium Detector Array : Status and Plans

G. Kiran Kumar

for the GERDA Collaboration

Outline

* Double Beta Decay

* Neutrino - Dirac or Majorana

* GERDA - Motivation & Goals

- Experimental Setup

- Preliminary results: Phase-I

* Phase - II - Perspectives

- BEGe Detectors : Testing and Preparation
- Liquid Argon (L.Ar) Instrumentation

* Conclusion

Double Beta Decay

* Double beta decay is a radioactive decay process where a nucleus releases two beta_particles as a single process.

* Two beta decay is possible if the usual single beta decay is energetically forbidden.

Ονββ

2000

* In double-beta decay, two neutrons \rightarrow protons, 2e and 2v e are emitted.

* β-decay is possible, if the final nucleus has larger binding energy than the original nucleus.

* If the neutrino is a Majorana particle (antineutrino and the neutrino are the same particle), and at least one type of neutrino has non-zero mass (established by the neutrino oscillation experiments), then it is possible for neutrinoless double-beta decay to occur.

Ovββ-signal: Point-like energy deposition
at Ovββ signatures in Ge:
Q = 2039 keV ⇒ single site event (SSE)

Total energy of decay is deposited within detector: sharp peak

Energy

1000

2νββ

2 neutrinos escape the detector undetected: Continuous spectrum

500

0.003

0.002

0.001

0

0

Neutrino - Dirac or Majorana What is known * Neutrinos have mass * Mass difference between eigenstates Dirac Majorana What is unknown? $\nu \neq \nu$ * Mass Scale $v = \overline{v}$ * Mass Hierarchy * Majorana vs Dirac electron matter antimatte Majorana germanium 76 selenium 76 electron antineutrino

matter

Ονββ and 2νββ

antimatt

- * Forbidden process in SM
- * Lepton number violated $\Delta L = 2$
- * $(T^{Ov}_{1/2})^{-1}=G^{Ov}\cdot |M^{Ov}|^2\cdot \langle m_{\beta\beta} \rangle^2$
- * (A, Z) \rightarrow (A, Z+2) + 2e⁻

 G^{OV} : Phase space integral M^{OV} : Nuclear matrix elements $\langle m_{\beta\beta} \rangle^2 = |\sum_i U^2_{ei} m_{Vi}|^2$

- * Allowed by SM
- * Lepton number conserved $\Delta L = 0$
- * Observed in many isotopes
- * T_{1/2} ~ 10¹⁹-10²¹y
- * (A, Z) \rightarrow (A, Z+2) + 2e⁻ + 2v e

GERDA - Motivation & Goals

Heidelberg-Moscow Experiment --> The Claim

- * 5 HPGe crystals with 71.7 kg y
- * Peak at Q value:

 $T^{0v}_{1/2} = 1.2 (0.7-4.2) \times 10^{25} \text{ y (3s)}$ $\langle m_{\beta\beta} \rangle = 0.44 (0.24 - 0.58) \text{ eV (3s)}$

Background index (BI) [cts/(keV·kg·yr)] ~ 0.1

*RevModPhys 80(08)481

* Significance of the claim depend on the background model and energy region selected.

* Needs cross-check: Experiments with higher sensitivity

GERDA - Motivation & Goals

Reach background index (BI) at QBB = 2039 keV of 0.01 / 0.001 cts / (keV·kg·yr)

Phase I :

- * Use Ge-76 diodes of HD-Moscow & IGEX
- * ~18 kg (enriched to 86% Ge) + 7.59 kg Natural.
- * Reach BI ~ 0.01 cts / (keV·kg·yr) check the

claim of Klapdor-Kleingrothaus et al.

- * Half-life $T_{1/2} > 2 \times 10^{25}$ s
- * Majorana mass m_{ee} < (0.23 0.39) eV (Phys.
 Rev. C 81 (2010) 028502)

Phase II:

- * Add new enriched Ge-76 detectors, 20 kg
- * Reach Background (BI) 10⁻³ cts/(keV kg y)
- * Half-life T^{1/2} > 1.5 × 10²⁶ y

* Majorana mass mee < (0.09 - 0.15) eV (Phys. Rev. C 81 (2010)
028502)

Why Germanium?

Advantages of Germanium:

- * High ε: Source = Detector
- * High signal efficiency ~ 85-95%
- * Ultrapure material, High Purity Ge
- * Excellent ΔE : FWHM ~ (0.1-0.2)%
- * Helps to reduce background from 2vββ and avoid y's from the Compton continuum.
- * Well-established technology.

$$S \sim \varepsilon.a. \sqrt{\frac{M.t}{b\Delta E}}$$

S: sensitivity ε: efficiency a: abundance of 2vββ isotope M: detector mass

t: exposureb: background index∆E: detector resolution

Disadvantages of Germanium:

* Q_{BB} =2039 keV, still plenty of y's

Small phase space factor : needs a factor of ~3 times more mass to observe the same no of events - compared to ¹³⁰Te.
 Limited sources of crystal & detector manufacturers. Enrichment expensive.

* Low Q value below 2615 keV γ-line of ²⁰⁸Tl

GERDA -Experimental Setup

Location: Hall A of LNGS, Assergi, Italy 3500 mwe

GERDA -Experimental Setup

GERDA Underground Detector Laboratory (GDL): Testing and preparation of Phase I detectors

Mini Shroud

Detectors with mini-shroud

In IGEX and H-M experiments the detector's background was due to radioactive contamination of surrounding materials (including copper cryostat).

> In GERDA we use "Bare" Ge detectors submerged into the High-Purity liquid Ar which shields from radiation and cools the Ge detectors.

If positive or negative ions of ⁴²K are drifting in the liquid Ar they could be attracted by the E-field of the detectors or another electrodes. To check this different electrical fields have been organized by using shroud and mini-shroud.

Spectra with and without Mini-shroud

Detectors without mini-shroud

Source Insertion System (SIS)

* 3 Source Insertion Systems (SIS) for calibration.

* Calibration system -- allows to lower 3 Th-228 sources, ~20 kBq each, close to the Ge array.

* Incremental Encoder: An optical system with an LED on one side of the steel band and two photosensors on the other side counts the holes in the steel band.

* Absolute Encoder: Connected via rank wheels, the system counts the turns of the crank.

Duty cycle = 78.3%

Calibration and long term stability 4.5 to 5.1 keV (FWHM) at 2614 keV @ Q_{BB} = 2039 keV: 4.5 keV resolution (FWHM)

isot

^{nat}Ge spec scaled by exposure to have the same rate as enr Ge in low energies

2vββ decay in Gerda Phase-I

Counts and rates of background lines for the enriched and natural detectors in Gerda in comparison to the enriched detectors of HdM

Excess counts in enrGe due to 2vbb

Spectra (data) from Phase I Detectors

		$^{nat}Ge (3.17 kg \cdot yr)$		$^{\rm enr}{ m Ge}$ (6.10 kg·yr)		HDM $(71.7 \text{ kg} \cdot \text{yr})$
isotope	energy	tot/bck	rate	tot/bck	rate	rate
	$[\mathrm{keV}]$	[cts]	$[cts/(kg\cdot yr)]$	[cts]	$[cts/(kg\cdot yr)]$	$[cts/(kg\cdot yr)]$
⁴⁰ K	1460.8	85 / 15	$21.7^{+3.4}_{-3.0}$	125 / 42	$13.5^{+2.2}_{-2.1}$	181 ± 2
⁶⁰ Co	1173.2	43 / 38	< 5.8	182 / 152	$4.8^{+2.8}_{-2.8}$	55 ± 1
¹³⁷ Cs ²²⁸ Ac	$\begin{array}{c} 1332.3 \\ 661.6 \\ 910.8 \end{array}$	$31 / 33 \\ 46 / 62 \\ 54 / 38$	< 3.8 < 3.2 $5.1^{+2.8}_{-2.9}$	$\begin{array}{c} 93 \ / \ 101 \\ 335 \ / \ 348 \\ 294 \ / \ 303 \end{array}$	< 3.1 < 5.9 < 5.8	51 ± 1 282 ± 2 29.8 ± 1.6
²⁰⁸ Tl	$968.9 \\ 583.1$	$64 \ / \ 42 \\ 56 \ / \ 51$	$ \begin{array}{c} 6.9^{+3.2}_{-3.2} \\ < 6.5 \end{array} $	247 / 230 333 / 327	$2.7^{+2.8}_{-2.5} < 7.6$	$17.6 \pm 1.1 \\ 36 \pm 3$
	2614.5	9 / 2	$2.1^{+1.1}_{-1.1}$	10 / 0	$1.5^{+0.6}_{-0.5}$	16.5 ± 0.5
²¹⁴ Pb	352	740 / 630	$34.1^{+12.4}_{-11.0}$	1770 / 1688	$12.5^{+9.5}_{-7.7}$	138.7 ± 4.8
²¹⁴ Bi	609.3	99 / 51	$15.1^{+3.9}_{-3.9}$	351 / 311	$6.8^{+3.7}_{-4.1}$	105 ± 1
	1120.3	71 / 44	$8.4^{+3.5}_{-3.3}$	194 / 186	< 6.1	26.9 ± 1.2
	1764.5	23 / 5	$5.4^{+1.9}_{-1.5}$	24 / 1	$3.6^{+0.9}_{-0.8}$	30.7 ± 0.7
	2204.2	5 / 2	$0.8^{+0.8}_{-0.7}$	6 / 3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5

Background Index of Gerda Phase-I

Preliminary half-life of 2vββ decay of ⁷⁶Ge

The $T_{1/2}^{2\nu}$ prelimenary values from fit to data from 6 enriched diodes we achieved an half-life of $T_{1/2}^{2\nu} = (1.88 \pm 0.10) \cdot 10^{21} \text{ yr}$

Compilation of results of the
$2\nu\beta\beta$ of ⁷⁶ Ge. The exposure is
normalized to germanium
isotopically enriched at 86% in
76Ge; the exposure of the PNL-
USC used, natural germanium
(7.44% in ⁷⁶ Ge)

$T_{1/2}^{2 u} \ [10^{21} \text{ yr}]$	Experiment	Exposure [kg·yr]	year
0.9 ± 0.1 [†])	ITEP-YPI	0.83	1990
$1.1 {}^{+0.6}_{-0.3} {}^{\star})$	PNL-USC	0.17	1991
$0.92 \begin{array}{c} +0.07 \\ -0.04 \end{array} \star)$	PNL-USC-ITEP-YPI	0.06	1991
$1.2 \stackrel{+0.2}{_{-0.1}} ^{\dagger})$	PNL-USC-ITEP-YPI	0.10	1994
$1.77 \pm 0.01(\text{stat})^{+0.13}_{-0.11}(\text{syst})$	Heidelberg-Moscow (HDM)	10.58	1997
1.45 ± 0.15 [†])	Igex	5.7	1999
$1.55 \pm 0.01(\text{stat})^{+0.19}_{-0.15}(\text{syst})$	Heidelberg-Moscow (HDM)	47.7	2001
$1.74 \pm 0.01(\text{stat})^{+0.18}_{-0.16}(\text{syst})$	Klapdor-HDM	41.57	2003
$1.78 \pm 0.01(\text{stat})^{+0.07}_{-0.09}(\text{syst})$	Bakalyarov-HDM	50.5	2005

Phase-II: Preparation and Status

\Rightarrow R & D of Phase-II detectors:

Schematic of a typical P-type BEGe

BEGe detectors were chosen for the Phase II of the GERDA experiment

crystal pulling completed 9 crystals pulled 26+ enr. diodes (20+ kg)

- * Pulse Shape Discrimination using A/E for BEGe detectors.
- * SSE and MSE are identified using A/E.
- * A/E for SSE is independent of the energy.
- * A/E for MSE is smaller

Candidate SSE (left) and MSE (right) current signals from the BEGe detector

LAr instrumentation - Wave Length Shifting foils

Liquid argon is used as a coolant, shielding and will be * instrumented to become an active veto in phase II.

* Scintillation light in LAr has a wave length of 128nm, it is converted to higher wave lengths to be detected by PMT's with glass window.

* The quantum efficiency and stability of various such foils is being tested

Component ratio: Is the integral in the fast component over the integral of whole trace.

L.Ar test stand

Scintillation light produced by an ²⁴¹Am a-source and shifted by a surrounding cylinder of WLS reflector foil.

Efficiency of the various wls coatings

 α -source

GERDA Phase II: Diode Production and Characterization

- 1. Purchase Enriched ⁷⁶GeO₂ : ECP Zelenogorsk, RU
- 2. Metal Reduction and Zone Refinement: Langelsheim, DE
- 3. Crystal Pulling at Canberra: Oakridge, TN, USA
- 4. BEGe Detector Diode Production: Olen, BE

Phase-II: Infrastructure in Hades

HEROICA Hades Experimental Research Of Intrinsic Crystal Appliances

Diodes are always placed in underground locations in the vicinity of the production and characterization centers to minimize cosmic activation (${}^{68}Ge$, ${}^{60}Co$).

Schematic of the lab in HADES

Phase-II: BEGe performance measurements

Diode Production in Canberra, Olen:	Measurements done in Hades:		
1. Groove + etching	1. Resolution measurement at nominal voltage : Using ²⁴¹ Am, ⁶⁰ Co.		
2. Li diffusion for n ⁺ contact	2. Active Volume measurement: Using ⁶⁰ Co source		
3. 4h Annealing to get larger DL	3. Precise measurement of Dead Layer: Using ¹³³ Ba and ²⁴¹ Am and		
4. B implantation for p ⁺ contact	comparing spectra with the Monte-Carlo simulations.		
5. Passivation layer (PL) for tests in LN2 and in vacuum.	4. High Voltage Scan : From operational Voltage to 499V in -50V		
7 Tests: 60_{CO} 57_CO 55_EQ · E = resolution = in $1 N_2$ · T/V	steps.		
7. Tests Co, Co, $re \cdot E - resolution - in Linz. 1/V,$	5. Pulse Shape Discrimination: Using ²²⁸ Th source. A/E studies to		
Leakage Currant.	characterize the PSD performance.		
(7b. If reprocessing needed: Etching, new PL, annealing)	6. ²⁴¹ Am Scanning: Two type of measurements are performed on		
8. Mounting to vacuum cryostats or in vac. containers	the scanning tables:		
Next:	- linear scanning on the TOP or LATeral surface;		
9. Al evaporation, Contacting	- circular scanning on the TOP or LATeral surface.		
10. Remove PL, (tests in Olen),			
Store in vac. containers - LNGS	The second s		

Schematic of the scanning table

Energy resolution and high voltage scan up to the operational value ($\leq 4kV$) with 60_{CO} .

Automated surface scan of detector: count rate and FWHM @ 59 keV -precision ~ 2 mm

Phase-II: BEGe performance: Results II

Average top surface dead layer determination using ²⁴¹Am and 133Ba: dead layer

Active volume determination using ⁶⁰Co: count frate under the peaks @ 1173. 2 keV and 1332.5 keV is compared to the simulated one.

10-6

1310

1315

1320

Dimensions of a BEGe

 $\mathcal{E}_{59.5 keV}$

 $\overline{\mathcal{E}_{99keV} + \mathcal{E}_{103keV}}$

 $\mathcal{E}_{8\,1keV}$

 \mathcal{E}_{356keV}

 $\mathcal{E} = Experimental count$

 $r_{Am241} =$

 $r_{Ba133} =$

Dead Layer measurement

1355 Energy [keV

1350

Summary and Outlook

Phase - I

GERDA Phase I started in November 2011 with 17.6 kg of enrGe. Blinding 2019 - 2059 keV

- Signal/background ratio for 2nubb is 4. GERDA has the best value of all Ge-76 experiments.
- Phase I background index of 10⁻² counts/(keV kg yr) is attainable when PSD applied. Present BI = 0.02 counts/(keV kg yr)
- Half-life of the 2vßß decay of ⁷⁶Ge measured with a remarkable signal-to-noise ratio.
- Accurate determination of the ⁴²Ar contaminant concentration. ⁴²Ar(⁴²K) activity determined: (93.0 ± 6.4) µBq/kg. (Preliminary)
- Minimized ⁴²Ar background through the use of polarized mini-shrouds.
- 5 enrBEGe added to Phase I to increase enrGe mass to 18.1 kg.
- First 2vßß half-life results will be published soon. $T_{1/2}^{2
 u}~=~(1.88\pm0.10)\cdot10^{21}~{
 m yr}$

Phase - II

- Phase II enrBEGe detectors are under production (> 20 kg).
- Phase II R&D for LAr scintillation light read-out is going on.
- Phase II background index 10⁻³ counts/(keV kg yr) with LAr veto and PSD.
- Precise measurement of DL, AV, PSD performance of the new BEGe's.

Backup Slices & Pictures

Phase - I

- * 8 enrGe (HdM & IGEX) + 3 natGe p-type coaxial Ge detector refurbished
- * enrGe mass:1-3 kg (total 17.6 kg)
- * Deployed in strings of 3 dets each.
- * Mounted in low-mass Cu holders.
- * HV contact: on Li surface by pressure.
- * Readout contact: in borehole spring-loaded.
- * All the detectors tested naked in L.Ar and they performed well (Resolution < 3 keV @ 1332 keV)

Low mass Cu holder

¢ counts [#]

LArGe test facility

Operation of Phase II detector prototype in LArGe: Measured suppression factor at $Q_{\beta\beta}$: ~0.5·10⁴ for a ²²⁸Th calibration source Also: successful read out scintillation light with fibers coupled to SiPMs

Phase-II Lock Design

PSA Measurement for ARGO

Entries 1676139

Energy, keV

Figure 2: A/E Distribution of ARGO

List of 1st Batch BEGe PSA performance

	ARGO	ANDROMEDA	ARCHIMEDES	ANUBIS
DEP	0.900 ± 0.023	0.900 ± 0.0258	0.900 ± 0.013	0.900 ± 0.027
FEP 1.6 MeV	0.128 ± 0.010	0.112 ± 0.014	0.180 ± 0.009	0.181 ± 0.014
SEP	0.078 ± 0.007	0.080 ± 0.009	0.121 ± 0.006	0.142 ± 0.010
FEP 2.6 MeV	0.132 ± 0.002	0.117 ± 0.002	0.163 ± 0.001	0.217 ± 0.003
$2004\text{-}2074 \mathrm{keV}$	0.400 ± 0.005	0.403 ± 0.007	0.427 ± 0.004	0.464 ± 0.007
$1989-2089 \mathrm{keV}$	0.395 ± 0.004	0.404 ± 0.006	0.427 ± 0.003	0.466 ± 0.006
Measuring time	5 h	5 h	12 h	12 h (3h live)
	ARISTOTELES	ACHILLES	AGAMENNONE	Ge-9
DEP	0.900 ± 0.017	0.899 ± 0.018	0.900 ± 0.019	0.901 ± 0.029
FEP 1.6 MeV	0.159 ± 0.009	0.104 ± 0.007	0.106 ± 0.007	0.099 ± 0.011
SEP	0.106 ± 0.007	0.056 ± 0.005	0.051 ± 0.006	0.057 ± 0.008
FEP $2.6 MeV$	0.157 ± 0.002	0.065 ± 0.001	0.082 ± 0.001	0.074 ± 0.002
$2004-2074 \mathrm{keV}$	0.404 ± 0.004	0.325 ± 0.004	0.323 ± 0.004	0.327 ± 0.006
$1989-2089 \mathrm{keV}$	0.405 ± 0.004	0.322 ± 0.003	0.323 ± 0.003	0.324 ± 0.005
Measuring time	8 h	8 h	7 h	6 h

Table 2: List of PSD acceptances for first 7 enriched BEGe detectors and depleted DD BEGe detector at nominal high voltage.

Figure 4: Peak and background regions for Argo. The normalized count rate is plotted as a function of the energy.

GERDA

