Search of Neutrinoless Double Beta Decay with the GERDA Experiment

SWAPS 2014

Giovanni Benato for the GERDA Collaboration

University of Zurich

Cartigny, 11-13 June 2014

The GERDA Collaboration

The Double Beta Decay

- ▶ If β -decay energetically forbidden $\rightarrow 2\nu 2\beta$ decay might be possible
- ▶ $2\nu 2\beta$ decay introduced by Maria Goeppert-Mayer in 1935
- ▶ The experimental spectrum is a continuum ending at the Q-value
- $T_{1/2}^{2\nu}$ usually of order of 10^{19-21} years

• For ⁷⁶Ge:
$$T_{1/2}^{2\nu} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}^*$$

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

^{*}J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

The Neutrinoless Double Beta Decay

If $0\nu 2\beta$ decay is discovered:

- Lepton number is violated ($\Delta L = 2$)
- Neutrinos have a Majorana mass component
- Physics beyond the Standard Model

Theoretical aspects of $0\nu 2\beta$ decay

• Expected decay rate: $\left(T_{1/2}^{0\nu} \right)^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$

 $\begin{array}{l} G^{0\nu}(Q,Z) = \text{Phase Space integral} \\ \left| M^{0\nu} \right|^2 = \text{nuclear matrix element} \\ \left< m_{ee} \right>^2 = \sum_i U_{ei}^2 m_i = \text{effective } \nu \text{ mass} \\ U_{ei} = \text{elements of the PMNS mixing matrix} \end{array}$

• Experimental signature: peak at $Q_{\beta\beta} = m(A, Z) - m(A, Z - 2) - 2m_e$ (2039 keV for ⁷⁶Ge)

Number of signal events:

$$N_{sig}^{0\nu} = \frac{f_{76} \cdot N_A}{m_A} \frac{\ln 2}{T_{1/2}^{0\nu}} \varepsilon \cdot M \cdot t$$

Number of background events:

$$N_{bkg} = M \cdot t \cdot BI \cdot \Delta E$$

Experimental sensitivity:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2 \cdot N_A}{n_{\sigma}\sqrt{2}} \frac{f_{76} \cdot \varepsilon}{A} \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

- $f_{76} = enrichment fraction$
- $N_A = Avogadro number$
- $m_A = \text{atomic mass}$
 - $\varepsilon = {
 m efficiency}$
 - M = detector mass
 - t = livetime
- $M \cdot t = exposure$
 - BI = Background Index
 - ΔE = energy resolution
 - $n_{\sigma} = \text{Confidence Level}$

Advantages of Ge Disadvantages of Ge

The GERDA Experiment

Experiment structure

- ► 590 m³ Water Tank to absorb neutrons and veto cosmic muons
- ▶ 64 m³ Liquid Argon (LAr) for cooling and shielding (and vetoing)
- Plastic scintillators above the cryostat to veto cosmic muons

- Located in Hall A at Laboratori Nazionali del Gran Sasso of INFN
- 3800 mwe overburden
- Array of bare enriched Ge detectors in liquid argon (LAr)
- Minimal amount of material in proximity of the diodes

The two phases of GERDA (from the Proposal to LNGS):

	Mass	BI	Livetime	Expected $T_{1/2}^{0\nu}$
	[kg]	[counts/(keV·kg·yr)]	[yr]	Sensitivity [yr]
Phase I	15	10 ⁻²	1	$2.2 \cdot 10^{25}$
Phase II	35	10 ⁻³	3	$2 \cdot 10^{26}$

The time-line of GERDA:

- 2008 2010: Construction of GERDA
- 2010 2011: Commissioning of GERDA Phase I
- Nov. 2011 May 2013: Phase I data taking
- Oct. 2013 now: Phase II preparation
- Autumn 2014: Start of Phase II

The GERDA Detectors

Coaxial detectors

- $ho~\sim 86\%$ isotopically enriched in $^{76}{
 m Ge}$
- 5 enr-Ge ("ANG") detectors from Heidelberg-Moscow (HdM), 3 enr-Ge ("RG") from IGEX, 3 nat-Ge from Genius Test Facility (GTF)
- detectors reprocessed at Canberra before being used
- ho $\sim 2\%$ FWHM at 2.6 MeV
- Total enriched mass: 17.7 kg
- ► Two detectors turned off because of high leakage current → total enriched mass 14.6 kg

BEGe detectors (design for Phase II)

- BEGe = Broad Energy Germanium
- $ho~\sim 1\%$ FWHM at 2.6 MeV
- Enhanced Pulse Shape Discrimination (PSD)
- \blacktriangleright \sim 20 kg of BEGe's successfully produced and tested in 2012
- 5 BEGe's inserted in GERDA in July 2012

GERDA Phase I Data Taking

- ► Total Phase I exposure: 21.6 kg·yr between 9th Nov 2011 and 21st May 2013
- Total livetime of 492.3 days with 88% duty factor
- 5% of data not used due to temperature-related instability of the electronics
- Used for analysis: 6 enr-Ge coaxial detectors (14.6 kg) and 4 BEGe (3.0 kg)
- Blinding of events in the [2019; 2059] keV range!

- Spikes: (Bi)-weekly calibration runs
- Flat parts: BEGe's insertion (June 2012), maintenance operations
- Dataset for background model: Nov 2011 - March 2013
- Dataset for 0ν2β analysis: Nov 2011 -May 2013

$2\nu 2\beta$ Measurement

- Measured by GERDA with 5.04 kg·yr exposure
- Very simple background model due to high signal-to-background ratio

•
$$\mathsf{T}_{1/2}^{2
u} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \; \mathsf{yr}$$

 J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

The Background of GERDA Phase I

- Split coaxial data in two sets, according to the BI
- Golden: all the coax data, but July 2012
- Silver: coax data taken in June and July 2012 (removal of two nat-coaxial and insertion of BEGe's)
- BEGe data kept separated, due to different resolution and background

dataset	exposure [kg·yr]		
Golden	17.90		
Silver	1.30		
BEGe	2.40		

Minimum model for Golden dataset

- Only known and visible contributions considered
- Data used: 09.11.2011-03.03.2013 in order to be in time for the unblinding
- Fit range: 570-7500 keV
- No hint for any different behavior in the last 3 months of data
- Background Model published: arXiv:1306.5084v1
- Alternative (maximum) model constructed, including all possible backgrounds

- ▶ Both min and max model predict a flat bkg at $Q_{\beta\beta} \rightarrow$ unblind side-bands!
- BI predicted form bkg models and fitted from data are in agreement

BI before PSD interpolated in the Region of Interest:

GOLD-coax		SUM-BEGe	
	BI in ROI before PSD (10 keV for coaxial, 8 keV for BEGe) [10 ⁻³ cts/(keV·kg·yr)]		
interpolation minimum maximum	17.5[15.1, 20.1] 18.5[17.6, 19.3] 21.9[20.7, 23.8]	36.1[26.4, 49.3] 38.1[37.5, 38.7] -	

Analysis recipe: fit with Gaussian peak and flat background in the 1930-2190 keV region, excluding known gamma peaks at 2104 (²⁰⁸TI SEP) and 2119 keV (²¹⁴Bi).

Pulse Shape Discrimination: arXiv:1307.2610

- ► PSD: distinguish between (0ν2β) signal-like events (SSE) and background-like events (MSE, p⁺)
- Different PSD needed for coaxial and BEGe detectors

Coaxial: Artificial Neural Network (ANN) BEGe: A/E

- ► Applied to 50 rise-times (1,3,...,99%) with TMVA/TMIpANN
- SSE training with signal-like ²⁰⁸TI DEP at 1592 keV
- MSE training with background-like ²¹²Bi FEP at 1621 keV
- Cut adjusted for each detector to have 90% survival probability on DEP

- A = amplitude of current pulse
- ► E = energy
- High capability of distinguishing SSE from MSE, p⁺ and n⁺ events
- Well tested and documented method*

- Acceptance for $2\nu 2\beta$: 0.91 ± 0.05
- Acceptance for $0\nu 2\beta$: 0.92 ± 0.02

^a JINST 4 (2009) P10007; JINST 3 (2011) P03005; arXiv:1307.2610

$0\nu 2\beta$ Decay Analysis

From counts to half-life

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{enr} \cdot N^{0\nu}} M \cdot t \cdot \varepsilon$$
$$\varepsilon = f_{76} \cdot f_{AV} \cdot \varepsilon_{FEP} \cdot \varepsilon_{PSD}$$

Dataset	Exposure M∙t [kg∙y]	f ₇₆	f _{AV}	€FEP	€PSD
Golden	17.9	0.86	0.87	0.92	0.90
Silver	1.3	0.86	0.87	0.92	0.90
BEGe	2.4	0.88	0.92	0.90	0.92

 $N_A =$ Avogadro number $m_{enr} =$ molar mass of enr-Ge $N^{0\nu} =$ signal counts/limit t = livetime $f_{76} =$ enrichment fraction $f_{AV} =$ active volume fraction

$$\varepsilon_{FEP} = FEP$$
 efficiency for $0\nu 2\beta$

 $\varepsilon_{\textit{PSD}} = \text{signal acceptance}$

Fitting method

- ▶ Fit 3 datasets with Gaussian over flat background
- ▶ 4 parameters: 3 bkg levels and $T_{1/2}^{0\nu}$ with the constraint $1/T_{1/2}^{0\nu} > 0$
- Fixed parameters: $\mu = 2039.07 \pm 0.007$ keV and $\sigma = (2.0 \pm 0.1)/(1.4 \pm 0.1)$ keV for coaxial/BEGe
- ▶ Systematic uncertainties on f, ε , μ , σ : MC sampling and averaging

GERDA Phase I Result

Profile Likelihood Method

- best fit $N^{0\nu} = 0$
- No excess of signal over bkg
- 90% C.L. lower limit:

 ${\sf T}_{1/2}^{0
u}>2.1\cdot 10^{25}$ yr

Bayesian Approach

- Flat prior for $1/T_{1/2}^{0\nu}$ in [0; 10^{-24}] yr⁻¹
- best fit $N^{0\nu} = 0$
- ► 90% credibility interval: $\frac{\mathsf{T}_{1/2}^{0\nu} > 1.9 \cdot 10^{25} \text{ yr}}{\mathsf{T}_{1/2}^{0\nu} > 1.9 \cdot 10^{25} \text{ yr}}$

Phys. Rev. Lett. 111 (2013) 122503

How to reach 10^{26} yr sensitivity in $T_{1/2}^{0\nu}$?

- Increase the statistics
 - More active mass (new BEGe detectors)
 - Longer data taking
- Improve energy resolution
 - Use BEGe detectors
 - Improve shaping filter
- Reduce Background
 - Cleaner cables and electronics
 - Lighter detector holders
 - Special care in crystal production
 - Reject residual background radiation
 - Improve PSD (BEGe detectors)
 - Read LAr scintillation light

Production and Characterization of 30 Enriched BEGe Detectors*

- ▶ 35 kg of Ge crystal 86% enriched in ⁷⁶Ge produced ad Canberra Oak Ridge (US)
- Ge crystals stored underground before shipment to Europe
- ► 30 BEGe detectors produced at Canberra Olen (Be)
- Complete characterization performed with the HEROICA setup in the Hades underground facility at SCK·CEN in Mol (Be)

Performed tests

- ▶ High Voltage scan with ⁶⁰Co
- Average top surface dead layer (DL) determination with ¹³³Ba and ²⁴¹Am
- Active volume (AV) determination with ⁶⁰Co
- PSD performance with ²²⁸Th

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

^{*}E. Andreotti et al., JINST 8 (2013) P06012

Improvement of Energy Resolution via ZAC Filter*

The Zero-Area Cusp (ZAC) filter

- ► The semi-Gaussian filters does not specifically filter low-frequency noise
- Best noise whitening filter: infinite cusp
- In presence of low-frequency 1/f noise: zero-area filter
- Result: zero-area cusp filter

0.0025	F Finite Length Cusp	FWHM [keV]			
010020	Zero-Area Constraint		Semi-Gaussian	ZAC	Improvement
0.002	Zero-Area Finite Length Cusp	Detector	Shaping	Shaping	[keV]
- 0.0015	5 / · · ·	ANG2	4 73	4 29	0.44
ildu 0.001		ANG3	4.62	4.29	0.33
₹ 0.0005	5	ANG4	4.41	4.11	0.30
0 20 40 60 50 100 120 140 160 1 0 20 40 60 50 100 120 140 160 1		ANG5	4.17	3.87	0.30
		RG1	4.67	4.19	0.48
		RG2	5.06	4.86	0.20
		Agamennone	2.86	2.70	0.16
•	ZAC successfully tested on	Andromeda	2.88	2.75	0.13
Phase I data, and will be used for all Phase II		Anubis	2.91	2.79	0.12
		Achilles	3.59	2.85	0.74

*G. Benato et al., TAUP 2013, Poster 130

Search of Neutrinoless Double Beta Decay with the GERDA Experimen

Phase II Detector Assembly*

The Phase II detector array

- ► Closer detecor → better anti-coincidences
- ▶ 7 strings, 1 in the middle, 6 outside
- BEGe mounted in pairs, coaxial separately

The detector holder

- Reduce as much as possible the material in vicinity of Ge
- Replace Cu with mono-crystalline Si
- Factor 1.5 reduction in Cu and PTFE for kg of Ge

Material and radioactivity budget (²²⁸Th)

- Phase I: 1μ Bq per kg of detector mass
- Phase II: $0.4(0.3)\mu$ Bq per kg of BEGe (coaxial)

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

Phase II Contacting and Electronics*

Contacting

- HV and signal contacts realized with ultrasonic bonding at LNGS
- Thin AI film deposite on Ge to allow bonding
- Bonds made of 25 μ m thick Al wires
- Low mass, reliable contacts

Front-end electronics

- Separate very front-end (VFE) JFET and FE charge sensitive amplifier (CC3)
- Minimize mass in vicinity of Ge
- ► More radioactive and complex parts (CC3) at ~ 50 cm from Ge detectors
- ► BEGe have low capacitance: cables between diode and JFET increase the input capacitance C_{in} → shorter cables = less noise

*V. Wagner, DPG 2014, HK 15.5; T. Bode, DPG 2014, T 105.1

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

LAr Scintillation Veto for Background Suppression*

Possible events are:

- $\blacktriangleright\ \beta\beta$ events, releasing energy "only" in Ge
- \blacktriangleright γ 's can do multiple scattering and release energy both in Ge and Lar \rightarrow veto!
- Surface α and β events
 - Different pulse shape due to energy release in dead layer: PSD
 - Might release energy in LAr, too \rightarrow veto!

How does the LAr veto work?

- Energy released in LAr induces scintillation light
- $\lambda = 128$ nm, $\sim 4 \cdot 10^5$ pe/MeV
- Solution: install light detectors in LAr in "vicinity" of the Ge diodes!

*A. Wegmann, DPG 2014, HK 15.1

Search of Neutrinoless Double Beta Decay with the GERDA Experimen

LAr Scintillation Veto for Background Suppression

Photomultipliers

- 3" R11065-20 MOD
- 9 on top, 7 at bottom

Scintillating fibers

- BCF-91A, TPB coated
- Light readout at both ends by SiPM on top

Top/bottom Cu shroud with reflective foil

- Tetratex coated with TPB as wavelength shifter (WLS)
- Installed on inner side of Cu shroud

h=2200 mm

Nylon mini-shrouds

- transparent \rightarrow compatible with I Ar instrumentation
- Coated with WLS
- One for each Ge string

Summary

- Phase I data taking successfully completed
- $T_{1/2}^{2\nu} = 1.84_{-0.10}^{+0.14} \cdot 10^{21} \text{ yr}$
- $T_{1/2}^{0\nu} > 2.1 \cdot 10^{21} \text{ yr (90\% CL)}$

Outlook

- ► Upgrade for Phase II is ongoing
- Aimed sensitivity: $2 \cdot 10^{26}$ yr
- Expected start of Phase II: late 2014 early 2015