Search of Neutrinoless Double Beta Decay with the $\ensuremath{\operatorname{GERDA}}$ Experiment

From Majorana to LHC: Workshop on the Origin of Neutrino Mass

Giovanni Benato for the GERDA Collaboration

University of Zurich

ICTP, Trieste, 3 October 2013

The GERDA Collaboration

The Double Beta Decay

- If β -decay energetically forbidden $\rightarrow 2\nu 2\beta$ decay might be possible.
- $2\nu 2\beta$ decay introduced by Maria Goeppert-Mayer in 1935.
- ► The experimental spectrum is a continuum ending at the Q-value.
- $T_{1/2}^{2\nu}$ usually of order of 10^{19-21} years.

• For ⁷⁶Ge:
$$T_{1/2}^{2\nu} = \left(1.84^{+0.14}_{-0.10}\right) \cdot 10^{21} \text{ yr}^*$$

^{*}J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

The Neutrinoless Double Beta Decay

If $0\nu 2\beta$ decay is discovered:

- Lepton number is violated ($\Delta L = 2$)
- Neutrinos are Majorana particles
- Physics beyond the Standard Model

Theoretical aspects of $0\nu 2\beta$ decay

- Expected decay rate: $\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$
 - $G^{0\nu}(Q, Z) =$ Phase Space integral $|M^{0\nu}|^2 =$ nuclear matrix element $\langle m_{ee} \rangle^2 = \sum_i U_{ei}^2 m_i =$ effective ν mass $U_{ei} =$ elements of the PMNS mixing matrix
- Experimental signature: peak at $Q_{\beta\beta} = m(A, Z) m(A, Z 2) 2m_e$ (2039 keV for ⁷⁶Ge)

Experimental Requirements for $0\nu 2\beta$ Decay Search

Number of signal events:

$$N_{sig}^{0\nu} = \frac{f_{76} \cdot N_A}{m_A} \frac{\ln 2}{T_{1/2}^{0\nu}} \varepsilon \cdot M \cdot t$$

Number of background events:

$$N_{bkg} = M \cdot t \cdot BI \cdot \Delta E$$

Experimental sensitivity:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2 \cdot N_A}{n_{\sigma}\sqrt{2}} \frac{f_{76} \cdot \varepsilon}{A} \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

 $f_{76} = enrichment fraction$

- $N_A = Avogadro number$
- $m_A = \text{atomic mass}$
 - $\varepsilon = \text{efficiency}$
 - M = detector mass
 - t = livetime
- $M \cdot t = exposure$
 - BI = Background Index
 - ΔE = energy resolution
 - $n_{\sigma} = \text{Confidence Level}$

Advantages of Ge Disadvantages of Ge

The GERDA Experiment

Experiment structure

- 590 m³ Water Tank to absorb neutrons and veto cosmic muons
- ▶ 64 m³ Liquid Argon (LAr) for cooling and shielding (and vetoing)
- Plastic scintillators above the cryostat to further veto cosmic

- Located in Hall A at Laboratori Nazionali del Gran Sasso of INFN
- 3800 mwe overburden
- Array of bare enriched Ge detectors in liquid argon (LAr)
- Minimal amount of material in proximity of the diodes

The GERDA Experiment

The two phases of GERDA (from the Proposal to LNGS):

	Mass	BI	Livetime	Expected $T_{1/2}^{0\nu}$
	[kg]	[counts/(keV·kg·yr)]	[yr]	Sensitivity [yr]
Phase I Phase II	15 35	10 ⁻² 10 ⁻³	1 3	$\begin{array}{c} 2.2 \cdot 10^{25} \\ 2 \cdot 10^{26} \end{array}$

The time-line of GERDA :

- Mar. 2008: cryostat installation
- May 2008: water tank construction
- ▶ Feb. 2009: clean room installation
- May 2010: start of commissioning
- ▶ 10 Nov. 2010: inauguration
- Nov. 2011 May 2013: Phase I data taking
- Summer/autumn 2013: preparing Phase II...

The GERDA Detectors

Coaxial detectors

- $\blacktriangleright~\sim 86\%$ isotopically enriched in $^{76}{\rm Ge}$
- 5 enr-Ge ("ANG") detectors from Heidelberg-Moscow (HdM), 3 enr-Ge ("RG") from IGEX, 3 nat-Ge from Genius Test Facility (GTF)
- detectors reprocessed at Canberra before being used
- $ho~\sim 2\%$ FWHM at 2.6 MeV
- ▶ Total enriched mass: 17.7 kg
- ► Two detectors turned off because of high leakage current → total enriched mass 14.6 kg

BEGe detectors (design for Phase II)

- BEGe = Broad Energy Germanium
- \blacktriangleright $\sim 1\%$ FWHM at 2.6 MeV
- Enhanced Pulse Shape Discrimination (PSD)
- $\blacktriangleright~\sim$ 20 kg of BEGe's successfully produced and tested in 2012
- 5 BEGe's inserted in GERDA in July 2012

GERDA Phase I Data Processing and Selection

Data processing framework: GELATIO

Read-out and signal structure:

- Eur. Phys. J. C (2013) 73:2330
- ▶ JINST 6 (2011) P08013
- J. Phys., Conf. Ser. 368 (2012) 012047

Digital signal processing to extract energy, rise time, ...

GERDA Phase I Data Taking

- ▶ Total Phase I exposure: 21.6 kg·yr between 9th Nov 2011 and 21st May 2013
- Total livetime of 492.3 days with 88% duty factor
- \blacktriangleright 5% of data not used due to temperature-related instability of the electronics
- ▶ Used for analysis: 6 enr-Ge coaxial detectors (14.6 kg) and 4 BEGe (3.0 kg)

- Spikes: (Bi)-weekly calibration runs
- Flat parts: BEGe's insertion (June 2012), maintenance operations
- Dataset for background model: Nov 2011 - March 2013
- Dataset for 0ν2β analysis: Nov 2011 -May 2013

Calibration of the GERDA Data

- ► Spectra calibrated (bi)-weekly with ²²⁸Th sources
- Data useful also for monitoring the resolution and gain stability over time
- ► FWHM at Q_{ββ}: 4.8 keV for the coaxial detectors, 3.2 keV for the BEGe's (space for ~ 10% improvement with better filtering).

Time Stability and Energy Resolution

Blinding of the Region of Interest

Energy & pulse of events \in [2019-2059] keV automatically removed from data flow

Tasks to be fulfilled before the unblinding

- ► Reach 20 kg·yr of exposure
- Reach sensitivity of $2 \cdot 10^{25}$ yr on $T_{1/2}^{0\nu}$
- ► Have (and publish: arXiv:1306.5084) a good enough background model
- ▶ Be able to predict a reliable BI at $Q_{\beta\beta}$ (intensity and shape)
- ► Fix the data selection and the partition
- ▶ Fix the data processing procedure (quality cuts, calibration, ...)
- ▶ Fix (and publish: arXiv:1307.2610) the PSD methods and cuts
- Fix the statistical analysis

Unblinding procedure

- Once the background model is fixed, open 15keV side-bands
- ▶ If no surprise is found, proceed as stated above. And good luck!

$2\nu 2\beta$ Measurement

- Measured by GERDA with 5.04 kg·yr exposure
- Very simple background model due to high signal-to-background ratio

•
$$\mathsf{T}_{1/2}^{2
u} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21}$$
 yr

 J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

The Background of GERDA Phase I

- Split coaxial data in two sets, according to the BI
- Golden: all the coax data, but July 2012
- Silver: coax data taken in June and July 2012 (removal of two nat-coaxial and insertion of BEGe's)
- BEGe data kept separated, due to different resolution and background

dataset	exposure [kg·yr]		
Golden	17.90		
Silver	1.30		
BEGe	2.40		

The Background Model at High Energy

- Duty-factor corrected time distribution of events in the 3.5-5.3 MeV compatible with ²¹⁰Po half-life (T_{1/2} = 138 d)
- Contribution from ²²⁶Ra and daughters also visible
- α-emitter mostly located on p⁺ surface (also confirmed by PSD)
- ▶ α events account for ~ 10% of the BI at $Q_{\beta\beta}$ for coaxial detectors and ~ 5% for BEGe's.

The Background Model of GERDA Phase I

Search of Neutrinoless Double Beta Decaywith the GERDA Experiment

Minimum model for Golden dataset

- Only known and visible contributions considered
- Data used: 09.11.2011-03.03.2013 in order to be in time for the unblinding
- Fit range: 570-7500 keV
- No hint for any different behavior in the last 3 months of data taking
- Official result found with 30 keV binning, crosschecks performed with thinner binnings
- Background Model published: arXiv:1306.5084v1

The Background Model of GERDA Phase I

- No surprise found when comparing the complete
 Phase I spectrum and the (scaled) background model
 with 2 keV bins
- No surprise in comparison between lines intensity predicted by the background model(s) and the spectral fit on data
- Same approach for BEGe's
- Crosschecked with nat-Ge detectors, too

Background prediction at $Q_{\beta\beta}$

- ▶ Both min and max model predict a flat bkg at $Q_{\beta\beta} \rightarrow$ unblind side-bands!
- BI predicted form bkg models and fitted from data are in agreement

Pulse Shape Discrimination: arXiv:1307.2610

- ► PSD: distinguish between (0ν2β) signal-like events (SSE) and background-like events (MSE, p⁺)
- Different PSD needed for coaxial and BEGe detectors

Pulse Shape Discrimination for BEGe

GD32B

ected

2νββ

----- Compton

-- DEP

PSD discrimination parameter: A/E

- A = amplitude of current pulse
- \blacktriangleright E = energy
- High capability of distinguishing SSE from MSE, p^+ and n^+ events

Pulse Shape Discrimination for coaxial detectors*

- PSD discrimination method: Artificial Neural Network (ANN)
 - ► ANN analysis of 50 rise-time info (1,3,5,...,99%) with TMVA/TMIpANN
 - SSE training with signal-like ²⁰⁸TI DEP at 1592 keV
 - MSE training with background-like ²¹²Bi FEP at 1621 keV
 - ► Cut adjusted for each detector to have 90% survival probability on DEP

*arXiv:1307.2610

Pulse Shape Discrimination for coaxial detectors*

PSD selection in $2\nu 2\beta$ and $0\nu 2\beta$ energy ranges

For $2\nu 2\beta$ data and model are in good Without PSD counts/(5 keV) 85 85 agreement With PSD \triangleright 2 ν 2 β survival fraction: 0.85 \pm 0.02 600 cts/(10 keV) 00 00 data cut with ANN ----- background model (BM) 20 predicted ANN cut on BM fraction 15 400 10 300 100 200 1900 2100 energy [keV] 100 • Estimated survival fraction for $0\nu 2\beta$ event: $0.90^{+0.05}_{-0.09}$ 1.2 1.3 1.0 1.1 1.4 1.5 1.6 energy [MeV

*arXiv:1307.2610

$0\nu 2\beta$ Decay Analysis

From counts to half-life

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{enr} \cdot N^{0\nu}} M \cdot t \cdot \varepsilon$$
$$\varepsilon = f_{76} \cdot f_{AV} \cdot \varepsilon_{FEP} \cdot \varepsilon_{PSD}$$

Dataset	Exposure M∙t [kg∙y]	f 76	<i>f</i> _{AV}	€FEP	€PSD
Golden	17.9	0.86	0.87	0.92	0.90
Silver	1.3	0.86	0.87	0.92	0.90
BEGe	2.4	0.88	0.92	0.90	0.92

 $N_A = Avogadro number$

 $m_{enr} = molar mass of enr-Ge$

 $N^{0\nu} = \text{signal counts/limit}$

t = livetime

 $f_{76} = enrichment fraction$

 $f_{AV} =$ active volume fraction

$$\varepsilon_{FEP} = FEP$$
 efficiency for $0\nu 2\beta$

$$\varepsilon_{PSD} = \text{signal acceptance}$$

Fitting method

- Fit 3 datasets with Gaussian over flat background
- ▶ 4 parameters: 3 bkg levels and $T_{1/2}^{0\nu}$ with the constraint $1/T_{1/2}^{0\nu} > 0$
- Fixed parameters: μ = 2039.07 ± 0.007 keV and σ = (2.0 ± 0.1)/(1.4 ± 0.1) keV for coaxial/BEGe
- ▶ Systematic uncertainties on f, ε , μ , σ : MC sampling and averaging

Unblinding of GERDA Phase I Data

GERDA Phase I Results

Events at $Q_{\beta\beta} \pm 5 \text{ keV}$

PSD	Dataset	Obs.	Exp. bkg
no	Golden	5	3.3
	Silver	1	0.8
	BEGe	1	1.0
yes	Golden	2	2.0
	Silver	1	0.4
	BEGe	0	0.1

Profile Likelihood Method

- best fit $N^{0\nu} = 0$
- No excess of signal over bkg
- ▶ 90% C.L. lower limit:

 ${\sf T}_{1/2}^{0
u}>2.1\cdot 10^{25}~{
m yr}$

Bayesian Approach

- ► Flat prior for 1/T^{0ν}_{1/2} in [0; 10⁻²⁴] yr⁻¹
- best fit $N^{0\nu} = 0$
- ► 90% credibility interval: $\frac{\mathsf{T}_{1/2}^{0\nu} > 1.9 \cdot 10^{25} \text{ yr}}{\mathsf{r}}$

Phys. Rev. Lett. 111 (2013) 122503

Combination with HdM 2001 and IGEX

Previous limits

- ▶ HdM 2001: $T^{0\nu}_{1/2} > 1.9 \cdot 10^{25}$ yr (90% C.L.) EPJ A12 (2001) 147-154
- ▶ IGEX 2002: $T_{1/2}^{0\nu} > 1.57 \cdot 10^{25}$ yr (90% C.L.) Phys. Rev. D65 (2002) 092007

Combining the limits

Same result with Profile Likelihood and Bayesian approach

 $\mathsf{T}_{1/2}^{0\nu} > 3.0\cdot 10^{25}$ yr (90%) C.L.

Comparison with Phys. Lett. B 586 198 (2004) Claim

- ▶ Phys. Lett. B 586 198 (2004): $T_{1/2}^{0\nu} = (1.19^{+0.37}_{-0.23}) \cdot 10^{25}$ yr
- Expected 5.9 \pm 1.4 signal events over 2.0 \pm 0.3 bkg events in a $\pm 2\sigma$ region
- Found 3 counts in $\pm 2\sigma$ region (0 in $\pm 1\sigma$)

Hypothesis comparison

- H1: claimed signal (5.9 ± 1.4)
- H0: background only
- Bayes factor: P(H1)/P(H0) = 0.024
- ► P-value from profile likelihood: P(N^{0ν} = 0|H1) = 0.01
- Bayes factor lowered to 2 · 10⁻⁴ when combining with IGEX and HdM 2001
- Comparison independent of NME and physical mechanism generating 0ν2β

Claim strongly disfavored

Conclusion and Outlook

Summary of the results

- ▶ Best fit gives 0 counts both for PL and BA: no excess is visible.
- $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$ yr (90% C.L.)
- ► 2004 claim predicted 5.9 ± 1.4 signal events over 2.0 ± 0.3 bkg events in $Q_{\beta\beta} \pm 2\sigma$.
- ▶ 3 events are observed in $Q_{\beta\beta} \pm 2\sigma$, 0 in $Q_{\beta\beta} \pm \sigma$.
- Claim disfavoured with high probability.

Combination with other experiments

- \blacktriangleright Combining with HdM 2001 and IGEX 2002: $T_{1/2}^{0\nu}>3.0\cdot10^{25}$ yr (90%) C.L. (same with Bayesian approach).
- Limit on effective Majorana neutrino mass: m_{ee} < 0.2-0.4 eV

Outlook

 \blacktriangleright Work is ongoing with the preparation of GERDA Phase II...