Search of Neutrinoless Double Beta Decay with the GERDA Experiment

Giovanni Benato for the GERDA Collaboration

University of Zurich

ICHEP 2014 Valencia, 2-9 July 2014

The GERDA Collaboration

Two neutrino double beta decay (2 $u\beta\beta$)

- If β -decay energetically forbidden $\rightarrow 2\nu 2\beta$ decay might be possible.
- $2\nu 2\beta$ decay introduced by Maria Goeppert-Mayer in 1935.
- $T_{1/2}^{2\nu}$ usually of order of 10^{19-21} years.
- For $^{76}\text{Ge:}\ \mathsf{T}^{2\nu}_{1/2} = \left(1.84^{+0.14}_{-0.10}\right)\cdot10^{21}\ \text{yr}^*$

Neutrinoless double beta decay $(0\nu\beta\beta)$

- Violates lepton number conservation ($\Delta L = 2$)
- Possible only if v's have Majorana mass component
- Could enlighten the neutrino mass hierarchy
- *J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

Experimental signatures

- $2\nu\beta\beta$: continuum
- 0νββ: peak at Q_{ββ} (2039 keV for ⁷⁶Ge)

The mass mechanism

Expected decay rate (for light ν exchange):

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

where:

- $G^{0\nu}(Q,Z) =$ Phase Space integral
- $|M^{0\nu}|^2$ = nuclear matrix element
- $\langle m_{ee} \rangle^2 = \sum_i U_{ei}^2 m_i =$ effective ν mass
- U_{ei} = elements of the PMNS mixing matrix

Space for competing technologies!

Experimental Sensitivity Sensitivity on $T_{1/2}^{0\nu}$ for exclusion limit at

 n_{σ} CL with non null background is given by:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2 \cdot N_A}{n_{\sigma}\sqrt{2}} \frac{f \cdot \varepsilon}{m_A} \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

where:

- f = enrichment fraction
- $N_A = Avogadro number$
- $m_A = \text{atomic mass}$
 - $\varepsilon = \text{total efficiency}$
- M = detector mass
 - t = livetime
- $M \cdot t = exposure$
 - BI = Background Index
 - ΔE = energy resolution

The GERDA Experiment

Experiment structure

- 590 m³ Water Tank as shielding and veto for cosmic muons (PMTs)
- ▶ 64 m³ Liquid Argon (LAr) for cooling and shielding (and vetoing)
- Plastic scintillators above the cryostat to further veto cosmic muons

- Located in Hall A at Laboratori Nazionali del Gran Sasso of INFN
- 3800 mwe overburden
- Array of bare Ge detectors 86% enriched in ⁷⁶Ge directly inserted in liquid argon (LAr)
- Minimal amount of material in proximity of the diodes

Ge detector readout

- ▶ Ge diode in reverse bias → measurement of ionization energy
- FADC allows offline analysis of recorded signals

Data processing framework: GELATIO

- Digital signal processing to extract energy, rise time, pulse shape discrimination (PSD) parameters, ...
- Eur. Phys. J. C (2013) 73:2330
- JINST 6 (2011) P08013
- J. Phys., Conf. Ser. 368 (2012) 012047

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

The GERDA Experiment

The two phases of GERDA

	Mass	BI	Livetime	Expected $T_{1/2}^{0\nu}$
	[kg]	[counts/(keV·kg·yr)]	[yr]	Sensitivity [yr]
Phase I Phase II	15 35	10 ⁻² 10 ⁻³	1 3	$2.4 \cdot 10^{25}$ $1.4 \cdot 10^{26}$

Coaxial detectors

- Inherited from HdM and IGEX experiments
- ► 2.4‰ FWHM at Q_{ββ} (1.7‰ reachable with better cables & shaping)
- Total enriched mass: 17.7 kg (14.6 kg used for analysis)

BEGe detectors (design for Phase II)

- BEGe = Broad Energy Germanium
- 1.6% FWHM at $Q_{\beta\beta}$ (1.2% reachable)
- $\blacktriangleright~\sim$ 20 kg of BEGe's produced and tested in 2012
- 5 BEGe's inserted in GERDA in July 2012

Search of Neutrinoless Double Beta Decay with the GERDA Experimen

Time Stability and Energy Resolution

FWHM at $Q_{\beta\beta}$

detector	FWHM [keV]			
SUM-coax				
ANG2	5.8 (3)			
ANG3	4.5 (1)			
ANG4	4.9 (3)			
ANG5	4.2 (1)			
RG1	4.5 (3)			
RG2	4.9 (3)			
mean coax	4.8 (2)			
SUM-BEGe				
GD32B	2.6 (1)			
GD32C	2.6 (1)			
GD32D	3.7 (5)			
GD35B	4.0 (1)			
mean BEGe	3.2(2)			

GERDA Phase I

Spikes: calibration runs

- Flat parts: BEGe's insertion (June 2012), maintenance
- ▶ Total livetime: 492.3 days
- Exposure: 21.6 kg·yr
- Used 6 coaxial (14.6 kg) and 4 BEGe (3.0 kg)

Blind analysis and unblinding procedure

- 40 keV blind region around Q_{ββ}
- Background model published before unblinding (EPJC 74 (2014) 2764)
- Fixed data processing procedure, quality cuts, PSD methods and statistical analysis

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

The Background of GERDA Phase I

Background models

- Minimum model containing only known and visible background sources
- Alternative (maximum) model containing the same isotopes but more possible locations

 Fit with Gaussian peak and flat background in the 1930-2190 keV region, excluding known gamma peaks at 2104 (²⁰⁸TI SEP) and 2119 keV (²¹⁴Bi).

PSD	Dataset	Obs.	Exp. bkg
	Golden	5	3.3
no	Silver	1	0.8
	BEGe	1	1.0
	Golden	2	2.0
yes	Silver	1	0.4
	BEGe	0	0.1

Profile Likelihood Method

- best fit $N^{0\nu} = 0$
- No excess of signal over bkg
- 90% C.L. lower limit:

 ${\sf T}_{1/2}^{0
u}>2.1\cdot 10^{25}$ yr

• Median sensitivity: $2.4 \cdot 10^{25}$ yr

Bayesian Approach

- Flat prior for $1/T_{1/2}^{0\nu}$ in [0; 10^{-24}] yr⁻¹
- best fit $N^{0\nu} = 0$
- ▶ 90% credibility interval: $T_{1/2}^{0\nu} > 1.9 \cdot 10^{25}$ yr
- Median sensitivity: 2.0 · 10²⁵ yr

GERDA Collaboration, Phys. Rev. Lett. 111 (2013) 122503

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

Previous limits

- ▶ HdM 2001: $T_{1/2}^{0\nu} > 1.9 \cdot 10^{25}$ yr (90% C.L.) EPJ A12 (2001) 147-154
- ▶ IGEX 2002: $T_{1/2}^{0\nu} > 1.57 \cdot 10^{25}$ yr (90% C.L.) Phys. Rev. D65 (2002) 092007

Combining the limits

Same result with PL and Bayesian approach

 ${\sf T}_{1/2}^{0
u}>3.0\cdot10^{25}$ yr (90%) C.L.

Comparison with Phys. Lett. B 586 198 (2004)

- \blacktriangleright Claimed signal with $\mathsf{T}^{0\nu}_{1/2} = \left(1.19^{+0.37}_{-0.23}\right)\cdot 10^{25}~\text{yr}$
- H1: claimed signal (5.9 ± 1.4)
- H0: background only
- Bayes factor: P(H1)/P(H0) = 0.024
- P-value from PL: $P(N^{0\nu} = 0|H1) = 0.01$
- ► Comparison independent of NME and physical mechanism generating 0*ν*2β

Claim strongly disfavored

Search of Neutrinoless Double Beta Decay with the GERDA Experiment

1.000 Xe+Ge (g_{phen}) 0.500 Xe+Ge (g.m.t. - Xe+Ge (g_{nucleon}) 0.100 m_{ββ} [eV] 0.050 IH 0.010 Mega/Ultimate 0.005 NH 10-4 0.001 0.01 0.1 mlightest [eV]

From arXiv:1404.2616v1:

- GERDA, KamLAND-Zen and EXO-200 succesfully completed their first phase
- Klapdor's claim strongly disfavoured
- The field of research is open again to search for $0\nu\beta\beta$ decay

(Near) future experiments:

⁷⁶Ge: GERDA Phasell, Majorana, GERDA+Majorana

- ► ¹³⁶Xe: Exo-200, nEXO, KamLAND2-Zen, NEXT-100, MAGIX/GraXe
- Bolometers: CUORE, AMoRE, LUCIFER
- Other technologies: SNO+, CANDLES, SuperNEMO, DCBA
- Plus many others...

Summary

- ▶ GERDA Phase I data taking successfully completed
- $2\nu\beta\beta$ decay: $T_{1/2}^{2\nu} = 1.84^{+0.14}_{-0.10} \cdot 10^{21}$ yr
- $0\nu\beta\beta$ decay: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$ yr (90% CL)

Outlook

- ▶ Upgrade for GERDA Phase II is ongoing
- Aimed sensitivity: $1.4 \cdot 10^{26}$ yr
- Slowly approaching the inverted hierarchy land...

Bonus Slide: GERDA Phase II

Goal: reach 10^{26} yr sensitivity in $T_{1/2}^{0\nu}$

- Increase the statistics
 - More active mass (new BEGe detectors)
 - Longer data taking
- Improve energy resolution
 - Use BEGe detectors
 - Improve shaping filter
- Reduce Background
 - Cleaner cables and electronics
 - Lighter detector holders
 - Special care in crystal production
 - Reject residual background radiation
 - Improve PSD (BEGe detectors)
 - Read LAr scintillation light

Bonus Slide: Pulse Shape Discrimination: EPJC 73 (2013) 2583

- PSD: distinguish between (0ν2β) signal-like events (SSE) and background-like events (MSE, p⁺, n⁺)
- Different PSD needed for coaxial and BEGe detectors

Bonus Slide: Pulse Shape Discrimination

Coaxial: Artificial Neural Network (ANN)

- ► TMVA/TMIpANN applied to time when the pulse reaches 1, 3, ..., 99%
- SSE training with signal-like ²⁰⁸TI DEP at 1592 keV
- MSE training with background-like ²¹²Bi FEP at 1621 keV
- Cut adjusted for each detector to have 90% survival probability on DEP

BEGe: A/E

- A = amplitude of current pulse
- ► E = energy
- High capability of distinguishing SSE from MSE, p⁺ and n⁺ events
- Well tested and documented method*

- Acceptance for $2\nu 2\beta$: 0.91 ± 0.05
- Acceptance for $0\nu 2\beta$: 0.92 ± 0.02

^aJINST 4 (2009) P10007; JINST 3 (2011) P03005; EPJC 73 (2013) 2583

- ► Spectra calibrated (bi)-weekly with ²²⁸Th sources
- > Data useful also for monitoring the resolution and gain stability over time

