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Motivation: Investigating the Neutrino nature

Open questions

I Is lepton number conservation violated?

I Is the neutrino a Majorana particle?

I What’s the absolute neutrino mass scale?

I What’s the neutrino mass hierarchy?

Possible answer: double beta decay

I Occurs in even-even isobars

I Measurable if single β decay
energetically forbidden

I Rare process → ultra-low bkg required!
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I Allowed in the SM, ∆L=0

I Signature: continuum from 0 to Qββ

I Half life: T2ν
1/2 ∼ (1018-1024) yr

I T2ν
1/2(76Ge) =

(
1.926± 0.095

)
· 1021 yr

ArXiV:1501.02345

0νββ decay

I Non-SM process, ∆L=2

I Possible only if neutrinos have Majorana
mass component

I Signature: peak at Qββ(76Ge: 2039 keV)
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The Neutrinoless Double Beta Decay

The mass mechanism

I For light Majorana ν exchange:(
T 0ν

1/2

)-1

= G 0ν(Q,Z)
∣∣M0ν

∣∣2〈mββ〉2

I G 0ν(Q,Z) = Phase Space integral

I
∣∣M0ν

∣∣2 = nuclear matrix element

I 〈mββ〉2 =
∑

i U
2
eimi = effective ν mass

I Uei = PMNS mixing matrix elements

Phys. Rev. D90 (2014) 033005

Experimental sensitivity:

I Number of signal events:

nS =
1

T 0ν
1/2

· ln 2 · NA

mA
· f76 · ε ·M · t

I Number of background events:

nB = BI ·∆E ·M · t

where: f = enrichment fraction

NA = Avogadro number

mA = atomic mass

ε = total efficiency

M = detector mass

t = live time

M · t = exposure

BI = Background Index

∆E = Region Of Interest (ROI)

Digital Signal Processing for Germanium Detectors: Theory and Practice Giovanni Benato 4



0νββ Decay Search with Germanium Detectors

Why using germanium?

I High total efficiency:
ε ∼ 0.75

I Best energy resolution
on the market:
∼ 1.5h Full Width at
Half Maximum
(FWHM) at Qββ

I Can be enriched to
86% in 76Ge

How to reduce the background?

I Operate the experiment underground

I Use active veto for cosmic muons and external radiation

I Minimize radioactive contamination in the materials close
to the detectors

I Current pulse is different for single site events (like
0νββ signal) versus multi-site events (like Compton
scattered γ) or surface events
→ Pulse Shape Discrimination (PSD)

Ge detector readout

I Ge diode in reverse bias
→ measurement of ionization
energy

I FADC allows offline analysis of
recorded signals ( energy, rise
time, PSD parameters, ... )
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The Gerda Experiment

Why Liquid Argon + Water?

Material 208Tl Activity
[µBq/Kg]

Rock, concrete 3000000
Stainless steel ∼ 5000

Cu (NOSV), Pb < 20
Purified water < 1

LN2, LAr ∼ 0

I Located in Hall A at Laboratori Nazionali del
Gran Sasso of INFN

I 3800 mwe overburden (µ flux ∼ 1 m−2h−1))

I Array of bare Ge detectors 86% enriched in 76Ge
directly inserted in liquid argon (LAr)

Digital Signal Processing for Germanium Detectors: Theory and Practice Giovanni Benato 6



The Gerda Experiment

The two phases of Gerda

Mass Expected BI Live time Expected T 0ν
1/2

[kg] [counts/(keV·kg·yr)] [yr] Sensitivity [yr]

Phase I 15 10-2 1 2.4 · 1025

Phase II 35 10-3 3 1.4 · 1026

Coaxial detectors

I Inherited from HdM and IGEX experiments

I 2.4h FWHM at Qββ (1.7h reachable with better
cables & improved signal shaping)

I Total enriched mass: 17.7 kg (analysis on 14.6 kg)

BEGe detectors (design for Phase II)

I BEGe = Broad Energy Germanium

I 1.6h FWHM at Qββ (1.2h reachable)

I Enhanced PSD

I ∼ 20 kg of BEGe’s produced and tested in 2012

I 5 BEGe’s inserted in Gerda in July 2012
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Signal Formation in Germanium Detectors

Digitization

Electrical signal

Pre-amplification + amplification

Charge collection

Ionization of other atoms in the detector

e−(e+) in detector volume, Ekin

Photo-electric, Compton, pair-production

Incoming particle
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Semiconductors

Eg ∼ 10 eV

Eg < 0
Eg ∼ 1 eV

Insulator Conductor Semiconductor
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I Probability for an electron
to jump to the conduction
band (thermal excitation):

P(T ) ∝ T 3/2 exp

(
− Eg

2kT

)
where:

Eg = band gap

k = Boltzmann constant

T = temperature

I Leakage current:
background current
induced by thermal
motions of electrons into
the conduction band

I Low temperature reduces
the leakage current!
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From a Semiconductor to a Semiconductor Detector

Suppose we have an electron jumping into the conduction band...

I We get a hole (positive charge) in the valence band

I If no external electric field is present, at some point the electron will fall down to the
valence band: “charge recombination”

I If we put an external electric field, the electron (e) and the hole (h) migrate
→ need high enough electric field to avoid recombination!

A semiconductor detector is:

I a semiconductor with an electric field applied to collect the charge deposited by a
particle

How many e-h pairs are produced in a particle-detector interaction?

I Let η be the average energy necessary for the creation of a e-h pair, then:

n =
Eabsorbed

η

I To improve energy resolution, we need to minimize η in order to maximize n
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Detector Performances versus Temperature

How do η and Eg depend on temperature?

I No theoretical models, only empirical parametrizations

I For Ge (F. E. Emergy and T. A. Rabson, Phys. Rev. 140 (1965) 2089-2093):

η(T ) = 2.2 · Eg (T ) + 1.99 · E 3/2
g (T ) · exp

(
4.75

Eg (T )

T

)
I For all semiconductors (Y. P. Varshni, Physica 34 (1967) 149-154):

Eg (T ) = Eg (0)− αT 2

T + β

I Typical values:

Material Eg (0) [eV] α [eV/K] β [K]

Si 1.1157 7.021 1108
Ge 0.7142 4.561 · 10−4 210
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Detector Performances versus Temperature

I Trade-off for germanium: operation at
liquid nitrogen temperature (77 K)

Eg [eV] η [eV]

Si 1.106 (300 K) 3.62 (300 K)
Ge 0.67 (77 K) 2.96 (77K)

How fast are the charges collected?

I Drift velocity of electrons ad holes
depends on the applied voltage:

Mobility [cm2V−1s−1]
Material electrons holes

Si 1350 480
Ge 3.6 · 104 4.1 · 104

I Big detectors are possible with
germanium!
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From a Germanium Crystal to a Germanium Detector

“We live in a real world. Ideal germanium crystals do NOT exist.∗”

Possible impurities in the crystal lattice (Ge is 4-valent):

I Acceptors, e.g. boron with 3 valence electrons → p-type crystal

I Donors, e.g. 5-valent arsenic or 1-valent Lithium → n-type crystal

Doping makes you win!†

I Insert acceptors on one side and donors on the other → “compensated” germanium

I Apply a voltage to attract e and h to the opposite sides (reverse biased junction)
→ the central region is “depleted”
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I Once a bias voltage is applied, the Ge detectors behaves as a capacitor!
∗Old Indian saying of unkwnown origin.
†Old secret bequeathed among several generations of Tour de France winners
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What’s the Capacitance of a Germanium Detector?

Given: k = dielectric constant ' 16.2

ε0 = space permittivity = 8.85 · 10−15 F/mm

h = height for coaxial detector→ assume 80 mm

r1(r2) = inner (outer) diameter for coaxial detector→ assume 5 (40) mm

d = height for cylindrical planar detector→ assume 35 mm

r = diameter for cylindrical planar detector→ assume 35 mm

For a true-coaxial detector:

Cd = kε0
2πh

ln
(

r2
r1

) ∼ 34 pF

For a planar (cylindrical) detector:

Cd = kε0
πr 2

h
∼ 16 pF

Why do we care about the detector capacitance?

I Wait a few slides and you’ll see!
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Charge Collection

What is the charge collection time, given a bias voltage Vb?

I For both e and h we can define the mobility as: µ = vd
E

where: vd = drift velocity
E = electric field

Example (planar detector):

I Vb = 4 kV

I d = 4 cm

I E = 1000 V/cm

I From the plot:
vd ∼ 7 · 106 cm/s

I Suppose the charge (e/h)
travels 3 cm:

tc =
3 cm

vd
∼ 0.5 µs
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Readout Electronics

I Collected charge ∝ deposited energy

I Goal of readout electronics: transfer the collected charge to the ADC (MCA/FADC)
with the smallest possible alteration

Solution: charge-sensitive preamplifier

I High impedance load for detector

I Low impedance source for the amplifier (if any)

I Gain independent of detector capacitance

I Junction gate field-effect transistor (JFET)
coupled to feedback circuit

I Capacitor Cf integrates charge from detector

I Resistor Rf discharges the capacitor not to
saturate the dynamic range of the ADC

I Charge pulse will have an exponential decay
with τ = Rf Cf
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Readout Electronics

How does a waveform look like?

I Flat baseline before the charge collection

I Rise time ∼ 0.5µs

I Exponentially decaying tail
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Equivalent Noise Charge

I The ENC is the number of electrons which would need to be collected in order to
obtain a signal with the amplitude of the electronic noise RMS

I In general (QUOTE GATTI MANFREDI AND/OR ZAC PAPER):

ENC 2 = α
2kT

gmτs
C 2
T + βAf C

2
T + γ

(
e(IG + IL) +

2kT

Rf

)
τs

k = Boltzmann constant = 1.38 · 10−23 J/K

T = Operational temperature = 77 K for LN

gm = JFET trasconductance ' 5 mA/V for Gerda

CT = Total capacitance = CD + Ci + Cf

CD ∼ 1(30) pF for BEGe (coaxial) detectors

Ci = Preamplifier input capacitance ∼ 10 pF

Cf = Feedback capacitance = 0.3 pF (for Gerda)

Af = 1/f noise term ∼ 10-12-10-14 V2 (difficult to calculate, better measure it)

Ig = Gate current ∼ 1 pA → negligible

IL = Leakage current ∼ O(100) pF

Rf = Feedback resistance = 500 MΩ (for Gerda)

α, β, γ = Constants depending of O(1) on filter shape and electrical components

τs = Shaping time of the considered filter. Typically O(10) µs
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Equivalent Noise Charge

What do we learn from this long formula?

I Operating at low temperature helps a lot!

I The series noise (first term) is ∝ 1/τS , while the parallel noise (third term) is ∝ τs .
Hence, τs can be optimized.

I Must pay attention to the total capacitance!

I Mechanical movements can alter Ci , inducing microphonic noise
→ better put the preamplifier close to the detector
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Equivalent Noise Charge: What is the Contribution of Each Term?

Series noise

2kT

gmτs
C 2
T =

2 · 1.38 · 10-23 J
K
· 77 K

5 · 10-3 A
V
· 10-5s

C 2
T = 4.3 · 10-15V2 · C 2

T

BEGe: ∼ 4.3 · 10-36C2 = 166 e2

coaxial: ∼ 6.9 · 10-35C2 = 2680 e2

Parallel noise(
e(IG + IL) +

2kT

Rf

)
· τs =

(
e · 100 pA +

2 · 1.38 · 10-23 J
K
· 77 K

5 · 108Ω

)
· 10-5 s

=

(
e · 10-10 C

s
+ 4.3 · 10-30 C2

s

)
· 10-5 s

= 7916 e2

1/f noise

Assuming Af = 10-14 V2 :

BEGe: Af C
2
T = 10-14 V2 · 10-22 C2

V2 ' 39 e2

coaxial: Af C
2
T = 624 e2

Assuming Af = 10-12 V2 :

BEGe: Af C
2
T ' 3900 e2

coaxial: Af C
2
T = 62400 e2
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Pulse Shaping

What is pulse shaping?

I Pulse shaping is the process of changing of the signal waveform to get a “better”
signal shape

I Goal: enhancing the signal-to-noise ration to get a more precise energy estimation

I Analog pulse shaping: set of RC (differentiation, high-pass) and (RC) (integration,
low-pass) filters

I Digital pulse shaping: equivalent of analog shaping, but performed via software on
digitized waveforms → need to use a FADC

I Filter defined by:
1) shape
2) shaping time (τs), additional parameters
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Analog Pulse Shaping

Semi-Gaussian shaping

I R1C1-(C2R2)n with n≥ 2

I Optimal resolution obtained with
R1C1 = R2C2

I Shaping time: τs = RC [µs]

I Typical shaping times: 1-20 µs
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Analog Pulse Shaping

Trapezoidal shaping

I Convolution of two squared filters of same (different) duration‡

I Circuit implementation not so trivial

‡V. Radeka, Nucl. Instrum. Methods 99 (1972) 525-539.
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Digital Pulse Shaping

Advantages with respect to analog shaping

I Infinite number of filters available → space to creativity

I Waveform digitization allows to reprocess data in a second time
→ possible to improve energy resolution and recover bad-quality data

How does it work?

I Substitute filtering circuits with equivalent digital filters

I Perform the convolution of the waveform with the digital filter

How to improve energy resolution or other physical quantities?

I Play with filter shape

I Optimize filter parameters
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Digital Pulse Shaping

Semi-Gaussian shaping

I RC → delayed differentiation: x0[t]→ x1[t]− x0[t − τs ]
I (CR)n → Moving Average: xi [t]→ xi+1[t] = 1

τs

∑t
t′=t−τs xi [t

′] i = 1, . . . , n

I Pro: stable, robust, fast

I Con: sensible to low-frequency noise
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Energy Resolution

How to define energy resolution?

I FWHM: Full Width at Half Maximum (in keV) of a gamma line in the energy spectrum

I For a Gaussian peak: FWHM = 2.355 σ

I FWHM(E) =
√

w 2
i + w 2

e + w 2
p + w 2

c

I wi = intrinsic width of the gamma line. wc << 0.1 eV → negligible

I we = electronic noise contribution

I wp = charge production term

I wc = charge collection and integration term

Electronic noise

I we = 2.355 · η
e
ENC 2

I Series noise: we,series ∼ 0.1(0.4) keV for BEGe (semi-coaxial) detectors

I Parallel noise: we,parallel ∼ 0.6 keV

I 1/f noise: from 0 to several keV, depending on the situation

I In total: we ≥ 0.65(0.75) keV for BEGe (semi-coaxial) detectors

I All quoted numbers depend on filter shape and shaping time!

I Once fixed the detector + electronics system, we can still play with the shaping filter
to optimize the energy resolution
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Energy Resolution

Charge production

I η = 2.96 eV = average energy necessary for the creation of a e-h pair

I Given a deposited energy E , we expect N = E
η

e-h pairs. But η is just an average...

I Assume the e-h pair creation obeys to Poisson statistics. Then: σN =
√
N =

√
E
N

I The uncertainty on the absorbed energy is: σE = η ·
√
N =

√
η · E

I The corresponding contribution to FWHM in keV is: wp = 2.355 ·
√
η · E

For the 60Co line at 1333 ke: wp = 4.68 keV, but experimentally is O(2) keV...

I Poisson statistics applies to independent events, but the e-h creation in the crystal
lattice is not!

I Solution: introduce an additional “Fano” factor§:

F =
σN,exp

σN,Poisson
' 0.11 for Ge

I Corrected formulation of wp:

wp = 2.355 ·
√
ηFE → 1.55 keV at 1333 keV

I wp is an irreducible term. No way to improve it!

§U. Fano, Phys. Rev. 72 (1947) 26-29
B. G. Lowe, Nucl. Instrum. Methods A 399 (1997) 354-364
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Energy Resolution

Charge collection and integration: possible problems

1. Presence of strong crystal imperfections can cause charge trapping
→ not all the charge is collected
Solution: almost none

2. Too low bias voltage can turn small crystal imperfections to big ones
Solution: higher Vb, if possible

3. A too short shaping filter might not fully integrate the charge
Solution: increase τs and/or use a filter with a flat top for all the duration of charge
collection

4. τ = RC short with respect to charge collection time
Solution: pole-zero cancellation

How does wc depend on energy?

I Difficult to model, but empirically: wc = 2.355
√
c2E 2

What’s the effect on the spectrum?

I In all cases we underestimate the energy by some variable amount → Low-energy tails

P.S.: in case the charge collection is fine (points 1, 2) but the filter does not fully integrate
the charge (points 3, 4), we talk about “ballistic deficit”
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Energy Resolution

To summarize:

FWHM = 2.355

√
η2

e2
ENC 2 + ηF · E + c2E 2
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Ballistic Deficit Correction

Method 1: Use of a filter with flat-top¶

I Fully integrate the charge by using a flat filter for the whole duration of the charge
collection

I Pro: very easy to implement

I Con: Sensible to low-frequency noise

¶V. Radeka, Nucl. Instrum. Methods 99 (1972) 525-539
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Ballistic Deficit Correction

Method 2: Goulding-Landis‖

I Energy correction based on the delay in peak time of the shaped signal:

∆S

S0
=

(
∆τp
τp

)k

where: ∆S = signal amplitude deficit

S0 = peak amplitude for signal with zero risetime

∆τp = peak delay of the shaped signal

τp = peaking time of signal with zero risetime

k = empirical ∈ [2; 3]

I Partially corrects for energy loss due to charge trapping, too!

‖F. S. Goulding and D. A. Landis, IEEE Trans. Nucl. Sci. 35 (1988) 119-124
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Ballistic Deficit Correction

Method 3: Hinshaw∗∗

I Use two shaper: a quasi-triangle and a quasi-triangle + RC differentiation. This has a
shorter peaking time, hence a larger ballistic deficit. Measure the difference in deficit
and correct for it:

TP1 ,TP2 = peaking times (TP2 > TP1 )

∆A1,∆A2 = deficits

Tr = input signal risetime

∆TP1 ,∆TP2 = delays in peaking time

∆A

A
=

(
∆TP

TP

)2

∆TP ∝ TR

⇒


∆A1

A1
= k

(
∆TR

TP1

)2

∆A2

A2
= k

(
∆TR

TP2

)2

∆m := (A−∆A2)− (A−∆A1) = kAT 2
R

(
1

T 2
P1

− 1

T 2
P2

)
∆A2 =

∆m

R2 − 1
with R =

TP2

TP1

∗∗F. S. Goulding, D. A. Landis and S. M. Hinshaw, IEEE Trans. Nucl. Sci. 37 (1990) 417-423
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Extended Example: Improving the Energy Resolution in Gerda Phase I

Gerda energy reconstruction

I Full traces digitized with FADC

I Digital pseudo-Gaussian filter
(25× 5 µs moving average)

I Same filter parameters for all detectors
and all Phase I data

Possible improvements

I Stability of energy scale

I “Intrinsic” energy resolution of
calibration data

I “Effective” energy resolution of physics
data at Qββ

Strategy

I Develop a new digital shaping filter tuned on the experimental noise figure
→ Enhanced noise whitening, less sensitive to 1/f noise

I Correct preamplifier response function

I Tune the filter separately for each detector

I Split the Phase I data in different data sets, according to the detector configurations
and the noise conditions
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The Zero-Area Finite-Length Cusp Filter (ZAC)

The ZAC filter

I Sinh-like cusp → optimal shaping filter for δ-like traces of finite length

I Central flat top (FT) → maximize charge integration

I Total zero-area → filter out 1/f noise

I Baseline subtraction best performed with parabolic filters

ZAC(t) =


sinh

(
t
τs

)
+ A

[(
t − L

2

)2 − L
2

2
]

0 < t < L

sinh
(

L
τs

)
L < t < L + FT

sinh
(

2L+FT−t
τs

)
+ A

[(
3
2
L + FT − t

)2 −
(
L
2

)2
]

L + FT < t < 2L + FT

Final filter

I Deconvolution of the preamplifier response function: fτ = {1,− exp (−∆t/τ)}
I Final filter through convolution of ZAC with fτ : FF (t) = ZAC(t) ∗ fτ (t)
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The Zero-Area Finite-Length Cusp Filter (ZAC)

Original waveform

ZAC filter

Final filter FF (dashed red) and filtered
waveform (black)
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Filter Optimization and Data Reprocessing

Optimization of the ZAC filter

I Phase I data divided in 5 periods according to detector configuration

I Filter optimization performed for 2-3 calibration runs of each period

I Scan parameter space, fit 208Tl peak at 2614.5 keV, compute FWHM

f (E) =A exp

(
− (E − µ)2

2σ2

)
+ B +

C

2
erfc

(
E − µ√

2σ

)
+

D

2
exp

(
E − µ
δ

)
erfc

(
E − µ√

2σ
+

σ√
2δ

)
I The optimal parameters are stable within each period

Reprocessing of calibration and physics Phase I data

I Create tier2 (uncalibrated spectra) of calibration data using optimized ZAC filter
→ Extract calibration curves, produce stability plots (e.g. FWHM vs time)

I Create tier3 (calibrated spectra) of calibration data
→ Further stability plots (deviations from literature, ...)

I Produce tier2 and tier3 of physics data using optimized ZAC filter
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Comparison of the 2614.5 keV Peak

I All Phase I calibration spectra summed-up, same events considered in both cases

I Energy resolution improved in all cases

I Low-energy tail reduced thanks to better charge integration
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Comparison of Energy Resolution for Calibration Data

FWHM at 2614.5 keV Improvement
Detector Gaussian ZAC [keV]

ANG2 4.712(3) 4.314(3) 0.398(4)
ANG3 4.658(3) 4.390(3) 0.268(4)
ANG4 4.458(3) 4.151(3) 0.307(4)
ANG5 4.323(3) 4.022(3) 0.301(4)
RG1 4.595(4) 4.365(4) 0.230(6)
RG2 5.036(5) 4.707(4) 0.329(6)

GD32B 2.816(4) 2.699(3) 0.117(5)
GD32C 2.833(3) 2.702(3) 0.131(4)
GD32D 2.959(4) 2.807(3) 0.152(5)
GD35B 3.700(5) 2.836(3) 0.864(6)

I Greatest improvement obtained on ENC 2

I Average improvement in FWHM at 2614.5 keV on all Phase I calibration data is
0.30 keV for coaxial and 0.13 keV for BEGes (GD35B excluded)

I Higher improvement for GD35B due to better treatment of low-frequency disturbance
by the ZAC filter
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Stability Plot: FWHM vs Time

I ZAC filter insensitive to microphonic disturbance of ANG2 (June 2012)
I FWHM brought to nominal for GD35B for all Phase I duration

Digital Signal Processing for Germanium Detectors: Theory and Practice Giovanni Benato 39



Comparison of Energy Resolution for Physics Data

I 42K peak at 1524.6 keV is the only spectral line in the physics spectrum

I Improvement of ∼ 0.4 keV, about 0.1 keV larger than expected for calibration data
due to higher precision in the estimation of the calibration curves and lower sensitivity
to time evolution of microphonics during physics run

I FWHM improvement at Qββ estimated to be ∼ 0.5 keV for both coaxial and BEGe
detectors
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Cross-Checks and Outlook

I No surprise in the event-by-event energy difference (verified on physics data, too)

I Phase II 0νββ median sensitivity increased by ∼ 5%

I Same recipe for filter optimization will be used in Phase II

I Reprocessed Phase I data will be combined with Phase II data for 0νββ decay analysis

I GERDA collaboration paper accepted by Eur. Phys. J. C (ArXiV:1502.0392)
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