The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

Manuel Walter for the GERDA collaboration

Discrete Conference, 2.- 6. December 2014, London

Experiment Site

GERDA employs Ge detectors enriched in ⁷⁶Ge doing double beta decay => detector = source

Manuel Walter The GERDA Experiment for the Search of Onbb Decay

Double Beta Decay

GERDA is searching for the $0v2\beta$ decay. If it is discovered:

- lepton number is violated ($\Delta L = 2$)
- requires physics beyond the Standard Model
- a likely mechanism is "massive Majorana neutrino exchange", see e.g. [2]

Standard Model $2\nu 2\beta$ decay:

- known for: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U, ¹³⁰Ba, ¹³⁶Xe
- ► $T_{1/2}(2\nu)$ in the range of 10^{18-24} yr

► ⁷⁶Ge:
$$T_{2\nu} = 1.8^{+0.14}_{-0.10} \cdot 10^{25} \text{ yr}$$
 [1]

[1] GERDA Collaboration, J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

[2] W. Rodejohann, Int. J. Mod. Phys. E20, 1833-1930 (2011)

Manuel Walter The GERDA Experiment for the Search of Onbb Decay

The GERDA Experiment (Phase I)

Experimental setup:

- bare Ge diodes enriched to 86 % of ⁷⁶Ge:
 - directly immersed in a 5.5 m high 64 m³ liquid Ar cryostat: cooling and shielding
- water Cherenkov detector (590 m³, 8.5 m heigh), veto muons, absorb neutrons, γ rays
- plastic scintillator to veto muons going through the cryostat neck

Manuel Walter

Experimental signature:

► peak at $Q_{\beta\beta} = m(A, Z) - m(A, Z - 2)$ = 2039 keV for ⁷⁶Ge

Mockup of the GERDA experiment [GERDA Collab., Eur. Phys. J. C 73 (2013) 2330]

Sensitivity and Timeline

Sensitivity:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2 \cdot N_{A}}{n_{\sigma}\sqrt{2}} \frac{f_{76} \cdot \varepsilon}{m_{A}} \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$
$$= const \cdot \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

- M = detector mass
- t = livetime
- BI = background index
- ΔE = energy resolution, excellent in Ge
- => background reduction directly increases the sensitivity

Phase I background reduction

- careful material selection
- cut detector coincidences
- block ⁴²K ions from drifting to the detectors using minishrouds
- use pulse shape discrimination
 Timeline:
 - March 2008: cryostat installation
 - May 2010: start of commissioning
 - Nov 2011 May 2013: Phase I
 - currently: Phase II upgrade

	Mass	BI	Exposure	$T_{1/2}^{0 u}$
Two Phases:	[kg]	$[cts/(keV \cdot kg \cdot yr)]$	[kg∙yr]	Sensitivity [yr]
I (finished) II (expected)	18 35	10 ⁻² 10 ⁻³	21.6 100	$2 \cdot 10^{25} \ 1.4 \cdot 10^{26}$

Manuel Walter

The GERDA Experiment for the Search of Onbb Decay

Background Sources

$\boldsymbol{\alpha}$ decays on the p+ surface

- have specific pulse shapes
- the outer n+ electrode of the detectors is not active => does not see α events

β decay of ^{42}K (from ^{42}Ar) on the surface or close to the detector

- can penetrate the n+ electrode
- have specific pulse shape, some deposit energy in LAr
- β decay of ^{60}Co inside the detectors
 - in coincidence with γ => multi site event (MSE)

γ rays from $^{208}\text{Tl},\,^{214}\text{Bi}$ from various set-up components

large fraction of multi site events

The GERDA Experiment for the Search of Onbb Decay

Phase I Background & Datasets

Increased background after removal of two nat-coaxial and insertion of BEGe's:

- Silver: enriched coax data taken in June and July 2012
- Gold: all other enriched coax data
- BEGe data kept separately, due to different energy resolution and background
- natural detectors

dataset	exposure [kg∙yr]		
Golden	17.90		
Silver	1.30		
BEGe	2.40		

data taken with blinded ROI

Manuel Walter

The GERDA Experiment for the Search of Onbb Decay

GERDA Phase I Background at Q_{BB}

Background Models:

- minimum model containing only known and visible background sources
- alternative (maximum model) containing the same isotopes but more possible locations
- both models predict a flat background at Q_{BB}

Manuel Walter The GERDA Experiment for the Search of Onbb Decay

For $0\nu 2\beta$ analysis:

 use an interpolation of the background by a constant excluding known γ peaks at 2104 (²⁰⁸Tl SEP) and 2119 keV (²¹⁴Bi).
 Value is consistent with model predictions

table:

BI before and after Pulse Shape Discrimination (PSD) in ROI

Phase I Results

PSD	Dataset	Obs.	Exp. bkg
no	golden	5	3.3
	silver	1	0.8
	BEGe	1	1.0
yes	golden	2	2.0
	silver	1	0.4
	BEGe	0	0.1

Profile Likelihood Method

- best fit $N_{0v} = 0$
- no excess over background
- 90% C.L. lower limit:

 $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{yr}$

Empty: rejected by PSD Filled: accepted by PSD

Bayesian Approach

- flat prior for 1/T_{1/2} in [0; 10⁻²⁴] yr⁻¹
- ▶ best fit $N_{0v} = 0$
- 90% credibility interval:
- ► $T_{_{0\nu}} > 1.9 \cdot 10^{_{25}} \text{ yr}$

GERDA Collaboration, Phys. Rev. Lett. 111 (2013) 122503

Manuel Walter

The GERDA Experiment for the Search of Onbb Decay

Comparison with other Experiments

Claimed observation of $0\nu 2\beta$ decay $T_{0\nu} = 1.19 \cdot 10^{25}$ yr [1]:

- ▶ prediction for GERDA: 5.9 ±1.4 signal cts over 2.0 ±0.3 bkg cts in Q_{BB} ±2 σ
- SERDA observed 3 cts in $Q_{_{\beta\beta}} \pm 2\sigma$, 0 cts in $Q_{_{\beta\beta}} \pm 1\sigma$

 \Rightarrow claim disfavoured with 99% probability

Combining with HdM 2001 and IGEX 2002:

►
$$T_{1/2}$$
 > 3.0 · 10²⁵ yr (90%) C.L.

combined ⁷⁶Ge limit on effective Majorana neutrino mass: $m_{\beta\beta} < 0.2 - 0.4 \text{ eV}$ (depends on nuclear matrix element and phase space factor)

[1] Phys. Lett. B 586,198 (2004)

[2] Phys. Rev. C86:021601 (2012)

[3] Nature (2014), doi:10.1038/nature13432

Manuel Walter

The GERDA Experiment for the Search of Onbb Decay

Searches with ¹³⁶Xe

- KamLAND-Zen (combined):
 - $T_{0v} > 2.6 \cdot 10^{25} \text{ yr [2]}$

► Exo-200:

- ► T_{0v} > 1.1 · 10²⁵ yr [3]
- ► m_{ββ} < 0.19 0.45 eV

Phase II Upgrades

Additional 20 kg of BEGe detectors

- ► total mass ≈ 35 kg
- enhanced PSD performance
- factor 1.5 better energy resolution
- improved preamplifier and contacting
- radio cleaner holder

Active liquid Ar Veto

significant γ background reduction

Low n-flux custom calibration sources

Total background reduction by 1 order of magnitude:

10⁻³ counts/(keV·kg·yr)

Manuel Walter

Pulse Shape Discrimination

BEGe and Coaxial geometry result in different el. fields and pulse shapes

require different PSD methods

- simulated SSE
 current pulse in
 coaxial detector
- Iow PSD capabilities

use Artificial
 Neural Network

- simulated SSE current pulse in BEGe
- high PSD capabilities
 - cut based method

PSD with BEGe detectors

Manuel Walter The GERDA Experiment for the Search of Onbb Decay

Phase II Upgrade: Liquid Ar Veto

Principle:

- background events in Ge often in coincidence with a Compton scatter or a second γ in liquid Ar
 - => produces scintillation of 128 nm
- VUV light is shifted to blue light and detected by PMTs and SiPMs

Expected suppression factors:

- ▶ ⁶⁰Co: 27
- ²²⁶Ra chain: 4.6
- ²²⁸Th chain: 1180

Veto setup:

- each detector string surrounded by transparent nylon
- top and bottom PMT array
- central fibre cylinder

Liquid Ar Veto

Top and bottom array:

- 3" R11065-20 mod PMTs
 - 9 top + 7 bottom
- Cu cylinder lined with Tetratex®
 - coated with wavelength shifter
 TPB (Tetraphenyl Butadiene)

Manuel Walter

The GERDA Experiment for the Search of Onbb Decay

Central part:

- nylon cylinders coated with TPB + PS
- large cylinder of TPB coated BFC-91A fibres
 - read out by SiPMs

Conclusion and Outlook

Phase I:

- ► $T_{0v} > 2.1 \cdot 10^{25}$ yr (90% C.L.)
- combined with HdM 2001 and IGEX 2002:
 - $T_{0v} > 3.0 \cdot 10^{25} \text{ yr} (90\%) \text{ C.L.}$
 - ⊳m_{ββ} < 0.2-0.4 eV

Phase II:

- 20 kg of additional BEGe detectors
- liquid Ar veto
- ► Exposure goal: 100 kg·yr
- background rate:
 1 · 10⁻³ cts/(keV·kg·yr)
- ► design sensitivity: $T_{0v} \approx 2 \cdot 10^{26}$ yr
- start in 2015

Manuel Walter

The GERDA Experiment for the Search of Onbb Decay

The Gerda Collaboration

Thank you for your attention!

Backup Slides

Manuel Walter The GERDA Experiment for the Search of Onbb Decay

Detectors

Coaxial detectors (Phase I)

- 5 enr-Ge ("ANG") detectors from Heidelberg-Moscow (HdM), 3 enr-Ge ("RG") from IGEX, 3 nat-Ge from GeniusTest Facility (GTF)
- detectors reprocessed at Canberra before being used
- two detectors turned off because of high leakage current
 - ► \Rightarrow total mass of remaining enriched detectors: 14.6 kg
- ► ~2‰ FWHM at 2.6 MeV

BEGe detectors (design for Phase II, BEGe = Broad Energy Germanium)

- ~1‰ FWHM at 2.6 MeV
- enhanced Pulse Shape Discrimination (PSD)
- ~ 20 kg of BEGe's successfully produced and tested in 2012
- 5 BEGe's inserted in GERDA in July 2012
- one showed instabilities in the energy calibration and was not used

Phase I Data Taking

High average live time fraction.

- spikes due to calibration.
- Total exposure of enriched Ge detectors 21.6 kg yr [1].

Data was taken with a blinded energy window of $Q_{\beta\beta} \pm 20 \text{ keV}$ (FWHM $\approx 4.5 \text{ keV}$):

- background models and analysis methods were developed.
- unblinding of side bands: background models verified and analysis methods frozen.
- final unblinding performed on 14th of June and the analysis applied.

Detector Stability

Manuel Walter The GERDA Experiment for the Search of Onbb Decay

Scanning the Inverse Hierarchy

Need to reach a sensitivity of ~ 10^{28} yr on T_{0v} in order to test IH [1]

GERDA Phase II will reach ~ $2 \cdot 10^{26}$ yr

[1] P. S. Bhupal et al., arXiv:1305.0056v2

Manuel Walter

The GERDA Experiment for the Search of 0nbb Decay

Minimum Background Model

Alpha background & Maximum Model

In the range of 3.5 to 5.3 MeV a decrease of the event rate with time is observed with $T_{1/2}=138.4 \pm 0.2$ d (statistical uncertainty only), which is compatible with the half life of ²¹⁰Po of 138.38 d.

Maximum Model:

use same isotopes as for the Minimum Model but more possible source positions to fit the background

higher ⁴²K contribution

Manuel Walter

Controversial Claim

Claiming a 4.2 σ confidence level of the observation of $0\nu\beta\beta$ in 76 Ge.

Extending the energy window increases the background and decreases the signal count by up to 40 %. [2]

2006 limit is not considered:

 half-life can be reconstructed only with ε_{PSD}=1

[1] H.V. Klapdor-Kleingrothaus et al.,

Phys. Lett. B586, 198 (2004).

[2] O.Chkvorets, PhD thesis, Universität

Heidelberg, arXiv:0812.1206

Manuel Walter The GERDA Experiment for the Search of 0nbb Decay

Noise Dependency of Rejection Efficiency

Surface event rejection

high noise

Iow noise