ν & DBD	GERDA	Calibration System	Outlook
0000	00	000000	00

The Calibration System for the GERDA Experiment

Francis Froborg

Universität Zürich

Doktorandenseminar 30. August 2010

ν & DBD	GERDA	Calibration System	Outlook
0000		000000	
Neutrino Physics			

ν&Γ ○●○	DBD	GERDA OO	Calibration System	Outlook
Do	ouble Beta Deca	ау		
	2 uetaeta			
	• $(Z, A) \rightarrow (Z + 2, A)$ • $\Delta L = 0$	A) + 2 e^- + 2 $\bar{\nu}_e$	w v v	

•
$$\left|T_{1/2}^{2\nu}\right|^{-1} = G^{2\nu}(Q_{\beta\beta}, Z) |M_{2\nu}|^2 \sim \left|10^{20} \text{ y}\right|^{-1}$$

$0\nu\beta\beta$

•
$$(Z, A) \rightarrow (Z+2, A) + 2e^{-}$$

• $\Delta L = 2$
• $\left| T_{1/2}^{0\nu} \right|^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta}^2 \rangle \sim |10^{25} \text{ y}|^{-1}$
• $\langle m_{\beta\beta} \rangle = \left| \sum_i U_{ei}^2 m_i \right|$

ν & DBD	GERDA	Calibration System	Outlook
0000		000000	
Signature			

Measuring the energy of both electrons

- $2\nu\beta\beta$: Continuous energy spectrum
- $0\nu\beta\beta$: Sharp peak at Q value of decay

$$Q = E_{mother} - E_{daugther} - 2m_e$$

• Schechter & Valle (1982): Measuring $0\nu\beta\beta \Rightarrow \nu$ Majorana particle

ν & DBD	GERDA	Calibration System	Outlook
0000	00	000000	00
Heidelberg-Mosco	w Experiment		

- 5 HPGe crystals with 71.7 kg y
- Peak at Q value:

$$T_{1/2}^{0
u} = 1.2 imes 10^{25} y$$
 (4 σ)
 $\langle m_{etaeta}
angle = 0.44 \, \mathrm{eV}$

- Problem: Confidence depends on background model and energy region selected for analysis
 - \Rightarrow New experiments with higher sensitivity needed

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

 Deb occo
 GERDA
 Calibration System occo
 Outlook occo

 Occo
 Occo
 Occo
 Occo
 Occo

 The GERmanium Detector Array (GERDA)
 Overview
 Occo
 Occo

Naked High purity ⁷⁶Ge crystals placed in LAr

Phase I goals

Exposure 15 kg y Background 10^{-2} cts/(keV kg y) Half-life $T_{1/2} > 2.2 \times 10^{25}$ y Majorana mass $m_{ee} < 0.27$ eV

Phase II goals

Exposure 100 kg y Background 10^{-3} cts/(keV kg y) Half-life $T_{1/2} > 15 \times 10^{25}$ y Majorana mass $m_{ee} < 0.11$ eV

ν & DBD	GERDA	Calibration System	Outlook
0000	$\circ \bullet$	000000	
Progress			

Summer/autumn 09 Integration test of Phase I detector string, FE, lock, DAQ

Nov/Dez 09 Liquid argon filling

May 10 Deployment of FE & detector mock/up, followed by first deployment of a non-enriched detector

June 10 Water tank filling

- June 10 Commissioning run with ^{nat}Ge detector string
 - Test all subsystems
 - Determine background

Oct 10 Operation of enriched detectors

&	DI	3D	
00			

GERDA

Calibration System

Outlook

The Calibration System

Overview

- 3 custom made ²²⁸Th sources with A ~ 20 kBq with low n rate
- Park position in the lock of the experiment
- Sources shielded by 6 cm of Ta
- Manual lowering system built by LNGS
- 1 calibration run of \sim 30 min per detector layer

Calibration of Gerda

 A DBD
 GERDA
 Calibration System
 Outlook

 0000
 00
 00
 00

 Mounting & Testing the System
 00

Vacuum test

- 90° angle leaking
- After glueing with two-component glue leak rate of 10⁻⁷ mbar l/s reached

External Lowering Cycles

- Several lowering cycles down to 10 m went smoothly
- Oscillations could be traced back to ventilation at experimental site

Lowering into GERDA

- When entering LAr boiling leads to oscillations
 - \rightarrow Wait until system cools down
- Several lowering cycles went well

Upgrade

Motorization plus smaller improvements in progress

Monte Carlo Simulations

MAGE

- Geant4 based framework
- Developed together with Majorana collaboration
- Includes detailed GERDA geometry as well as all relevant physics processes

Geometry

- 8 enr Ge and 4 nat Ge detectors in 4 strings
- ²²⁸Th source embedded in gold sphere placed in stainless steel capsule
- Ta cylinder with r = 17.5 mm and h = 60 mm

Simulations

- Full ²²⁸Th decay chain simulated
- 100 ms gap between different isotopes to prevent pile ups

ν & DBD	GERDA	Calibration System	Outlook
0000	00	000000	00
γ Background			

Linear Attenuation

- Take flux of sources in 1 year
- Flux reduction because detector covers just small area but source radiates isotropically
- γ with highest energies have 2.6 MeV (36%)
- Calculate linear attenuation of 250 cm of LAr and 6 cm of Ta absorber

Monte Carlo Simulation

- Photon beam downwards 1m above detector array
- Rescale hits in ROI to flux calculated above

Result for 3 20kBq sources

$$B_{\gamma} = 0.3 imes 10^{-5}$$
 cts/(keV kg y)

ν & DBD	GERDA	Calibration System	Outlook
0000		000000	
n Background			

Inelastic Scattering

- Sources4A to estimate neutron flux produced by (α-n) reactions
- MCS to estimate background contribution in ROI:

$$B_n = 2.4 \times 10^{-5} \text{ cts/(keV kg y)}$$

Activated isotopes

- MCS to isotopes activated by neutrons during calibration and in parking position
- Only crucial isotope: ⁷⁷Ge *T*_{1/2} = 11.3 h, *E*_{γ,max} = 2.35 MeV
- MCS to estimate background contribution in ROI:

$$B_{77\,Ge} = 0.7 \times 10^{-5} \text{ cts/(keV kg y)}$$

Total Background (n & γ)

$$B_{tot} = 3.4 \times 10^{-5} \text{ cts/(keV kg y)} \Rightarrow \text{Well below Gerda limit}$$

ν & DBD	GERDA	Calibration System	Outlook
0000	00	000000	00

First Calibration Results

- 3 nat Ge detectors operating stably
- Energy resolution achieved so far: 3.8 keV FWHM @ 2.6MeV
- Good agreement of ²²⁸Th calibration data (MCA) with Monte Carlo simulations
- Further investigations especially on ADC data necessary

Calibration run with ²²⁸Th source: MCS vs data

ν & DBD	GERDA	Calibration System	Outlook
0000	00	000000	0
Outlook Data Analysis			

Energy Calibration

- Compare data with MCS
- Test and optimize different energy reconstruction algorithms
 ⇒ Important to achieve best possible energy resolution

$$\Rightarrow T_{1/2}^{0
u} \propto \langle m_{etaeta}
angle^{-2} \propto {\it const} \, \sqrt{rac{M imes t}{\Delta E imes B}}$$

Pulse Shape Analysis

- Distinguish between single-site and multi-site events
 ⇒ Background reduction
- Test different sets of parameters to determine optimal procedure

ν & DBD	GERDA	Calibration System	Outlook
0000		000000	00
Summary			

- Calibration system installed and tested successfully
- Upgrade on its way
- Background contribution from calibration sources with $B = 3.4 \times 10^{-5} \text{ cts}/(\text{keV kg y})$ well below GERDA limit
- First data taken with ^{nat}Ge detectors in good agreement with MCS
- enr Ge detectors will be submerged in Oct
- Future work will focus on data analysis