ν & DBD	GERDA	Calibration System	Outlook
0000	00	00000	00

The Calibration System for the GERDA Experiment

Francis Froborg

Universität Zürich

DPG Frühjahrstagung 19. März 2010

ν & DBD	GERDA	Calibration System	Outlook
0000	00	00000	00
Status			

ν&ι ○●○	DBD	GERDA OO	Calibration System	Outlook
Do	ouble Beta Deca	ау		
	2 uetaeta			
	• $(Z, A) \rightarrow (Z + 2,$ • $\Delta L = 0$	$A) + 2e^- + 2\bar{\nu}_e$	w c v	

•
$$\left|T_{1/2}^{2\nu}\right|^{-1} = G^{2\nu}(Q_{\beta\beta}, Z) |M_{2\nu}|^2 \sim \left|10^{20} \text{ y}\right|^{-1}$$

0 uetaeta

•
$$(Z, A) \rightarrow (Z + 2, A) + 2e^{-}$$

• $\Delta L = 2$
• $\left|T_{1/2}^{0\nu}\right|^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta}^2 \rangle \sim |10^{25} \text{ y}|^{-1}$
• $\langle m_{\beta\beta} \rangle = \left|\sum_i U_{ei}^2 m_i\right|$
• $\langle m_{\beta\beta} \rangle = \left|\sum_i U_{ei}^2 m_i\right|$

ν & DBD	GERDA	Calibration System	Outlook
0000	00	00000	00
Signature			

Measuring the energy of both electrons

- $2\nu\beta\beta$: Continuous energy spectrum
- $0\nu\beta\beta$: Sharp peak at Q value of decay

$$Q = E_{mother} - E_{daugther} - 2m_e$$

• Schechter & Valle (1982): Measuring $0\nu\beta\beta \Rightarrow \nu$ Majorana particle

ν & DBD	GERDA	Calibration System	Outlook
0000	00	00000	00
Heidelberg-Mosco	w Experiment		

- 5 HPGe crystals with 71.7 kg y
- Peak at Q value:

$$T_{1/2}^{0
u} = 1.2 imes 10^{25} y$$
 (4 σ)
 $\langle m_{etaeta}
angle = 0.44 \, \mathrm{eV}$

- Problem: Confidence depends on background model and energy region selected for analysis
 - \Rightarrow New experiments with higher sensitivity needed

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

 v & DBD
 GERDA
 Calibration System
 Outlook

 00000
 ●0
 Colored
 00

 The GERmanium Detector Array (GERDA)
 0
 00

 Overview
 0
 0

Naked High purity ⁷⁶Ge crystals placed in LAr

Phase I goals

Exposure 15 kg y Background 10^{-2} cts/(keV kg y) Half-life $T_{1/2} > 2.2 \times 10^{25}$ s Majorana mass $m_{ee} < 0.27$ eV

Phase II goals

Exposure 100 kg y Background 10^{-3} cts/(keV kg y) Half-life $T_{1/2} > 15 \times 10^{25}$ s Majorana mass $m_{ee} < 0.11$ eV

ν & DBD	GERDA	Calibration System	Outlook
0000	00	00000	00
GERDA			
Status of the Experiment			

ν & DBD	GERDA	Calibration System	0
0000		00000	
The Calibrat	ion System		

Goals

Phase I

- Calibrate energy scale & pulse shapes
- Monitor stability of corresponding parameters
- Low background

Boundary Conditions

- Fixed xy positions of the sources
- Maximum diameter of < 4 cm
- Park position in the lock of the detector

Parameters

- Type, strength and z position of sources
- Shielding material and geometry for parking position

tlook

ν & DBD	GERDA	Calibration System	Outlook
0000		0000	
The Source			

ν & DBD 0000	GERDA OO	Calibration System	Outlook
Design			

- Source shield in parking position by a Tantalum absorber (cylinder and ring)
- Manual lowering system
- System succesfully tested at LNGS in Jan 2010
- Upgrade on motorized lowering system in progress

ν & DBD	GERDA	Calibration System	Outlook
0000		00000	
γ Background			

Linear Attenuation

- Take flux of sources in 1 year
- Flux reduction because detector covers just small area but source radiates isotropically
- γ with highest energies have 2.6 MeV (36%) and 2.1 MeV (64%)
- Calculate linear attenuation of 250 cm of LAr and 6 cm of Ta absorber

Monte Carlo Simulation

- Photon beam downwards 1m above detector array
- Rescale hits in ROI to flux calculated above

Result for 3 20kBq sources

$$\begin{split} B(2.6) &= 2.008 \times 10^{-5} \ \mathrm{cts}/(\mathrm{keV \ kg \ y}) & B(2.1) = 0.054 \times 10^{-5} \ \mathrm{cts}/(\mathrm{keV \ kg \ y}) \\ B &= 2.062 \times 10^{-5} \ \mathrm{cts}/(\mathrm{keV \ kg \ y}) \end{split}$$

ν & DBD	GERDA	Calibration System	Outlook
0000		00000	
Neutron Ra	ackground		

(α -n) Background

- MCS to estimate background contribution
- Neutron flux measured for specially produced source (see talk by M. Tarka)

 $B\sim 6 imes 10^{-4}$ cts/(keV kg y)

Activated Isotopes

- MCS to get isotopes activated by neutrons during calibration and in parking position
- Estimate background contribution

ν & DBD	GERDA	Calibration System	Outlook
0000		00000	0
Analysis			

- Each calibration run produces \sim 400 GB of data
- Extract parameters for energy calibration as well as pulse shapes
- Convert raw data into MGDO objects containing also the parameters in an easy accesible form for further analysis
- Store information also in a database
- Web based visualization of parameters showing also stability over time

ν & DBD	GERDA	Calibration System	Outlook
0000		00000	00
Summary			

- 3 ²²⁸Th sources with 20kBq used for calibration
- Sources shielded in their parking position by 6cm of Tantalum
- Background from sources in parking position on an acceptable level
- System for Phase I ready
- Upgrade for lowering system in progress
- Analysis software in progress