Onbb	EXO	GERDA	UZH Contribution	Summary

GERDA / EXO

Francis Froborg

Universität Zürich

CHIPP Planery Meeting 23. August 2010

 Onbb
 EXO
 GERDA
 UZH Contribution
 Summary

 ●
 0000000
 0000
 00000
 0

Neutrinoless Double Beta Decay Status

3 Big Questions in ν Physics

- Absolute mass scale
- Mass hierarchy
- Majorana vs. Dirac

$0 u\beta\beta$ As Possibility To Anwer Them

- Several isotopes known which show $2\nu\beta\beta$
- Best upper limit with $m_{ee} \lesssim 0.3 \text{eV}$ from HdM & IGEX; NEMO3 and CUORICINO with comparable sensitivity
- Claim of signal from parts of HdM at $\langle m_{\beta\beta} \rangle = 0.44 \text{ eV}$ NIM A 522 (2004) 371-406

EXO searches for neutrino-less double beta decay using ¹³⁶Xe

- Ton scale implementation either as liquid or gas phase TPC
- Relatively large Q value (2457.8 keV) and straight forward enrichment technique
- 136Ba daughter tagging either in-situ or in external RF cage

EXO-200 is the first phase using 200 kg of 80% enriched Xe

- Major R&D effort precursory to the ton-scale experiment
- Exploration of the quasi-degenerate region with ¹³⁶Xe
- Allowed double beta decay never observed in Xe ($T_{1/2} > 1022$ y Bernabei et al., 2002)
- No Ba ion tagging but massive progress for radioactive background reduction

Detector	Mass	Efficiency	Run time	Energy resolution	Background	Half-life, limit at	Effective Majorama
Detector	[ton]	[%]	[year]	at Q value [%]	[events]	90% CL [year]	mass [meV]
EXO-200	0.2	70	2	1.6	40	6.4E+25	130
EXO conservative	1	70	5	1.6	0.5	2E+27	24
EXO aggressive	10	70	10	1	0.7	4.1E+28	5.3

Onbb	EXO	GERDA	UZH Contribution	Summary
0	0000000	0000	00000	0
EXO-200) Detector			

- Liquid xenon TPC with two cylindrical drift volumes
 - \bullet Charge collection using 114 by 114 wire planes (at 60 $^\circ$ pitch)
 - Scintillation light readout using 37 groups of 7 bare LAAPD (Large Area Avalanche Photodiodes) at both end caps
- High purity copper cryostat with external refrigeration-based cooling

Onbb	EXO	GERDA	UZH Contribution	Summary
○	○○●○○○○○	0000		O
Radio-Purit	y Survey			

- Large effort to determine the residual radioactive contamination of the materials employed for the construction of EXO-200 detector
 - Mass spectrometry (MS)
 - Neutron activation analysis (NAA)
 ⇒ Very sensitive but expensive, potential background from main elements
 - Alpha counting (evaluation of the 210Pb concentration in the shield lead)
 - Glow discharge MS (GD-MS), inductively coupled plasma MS (ICP-MS)

 \Rightarrow ICP-MS has better sensitivity when pre-concentration procedures are employed but the samples have to be soluble in acids (preferably HNO3)

• Direct gamma counting

 \Rightarrow Large mass samples and long duration exposures are necessary

• Published database of over 300 characterized materials

Nucl. Instr. Meth. A 591, 3, 490 (2008)

• Detailed Monte Carlo simulation of expected background

• Strong anti-correlation between ionization and scintillation signals in liquid xenon!

• $\frac{\Delta E}{F} = 1.4\%$ @ Q = 2457.8 keV

$Ba^{++} \rightarrow Ba^+$ conversion expected

Ionization potentials:

- $Xe^+ = 12.13 \text{ eV vs. } Ba^+ = 5.21 \text{ eV}$
- $Xe^{++} = 21.21 \text{ eV vs. }Ba^{++} = 10.00 \text{ eV}$
- Solid Xe band gap: $E_G = 9.22 \pm 0.01 \text{ eV}$ (Phys. Rev. B10 4464 1974)
- Liquid Xe ionization potential close to EG: 9.28 to 9.49 eV range (J. Phys. C: Solid State Phys. Vol. 7 1974)

 EXO
 GERDA
 UZH Contribution
 Summary

 0
 0000000
 0000
 00000
 0

Probe Insertion R&D

Test cryostat for probe insertion in liquid Xe TPC and COMSOL based simulations of the electric field configuration

Francis Froborg

- Use of atomic resonances to selectively obtain a high yield for Ba ionization
- Lasers tuned to specific Ba atomic transitions push the atom to a highly excited state from which it decay to a lower energy ionized state
- $\bullet~$ Reached efficiency $\sim 10^{-3}$
- New setup targeting single ion detection in preparation

Cryogenic probe carrying an optical fiber for both excitation and light collection

- $\bullet~$ Current detection limit $\sim 105~ atoms$
- Exploring avenues for single atom and / or ion detection:
 - Increasing laser intensity by 102
 - Increasing fluorescence light collection by 104

 Onbb
 EXO
 GERDA
 UZH Contribution
 Summary

 O
 00000
 0000
 00000
 0

 The GERmanium Detector Array (GERDA)
 Overview
 0

Naked High purity ⁷⁶Ge crystals placed in LAr

Phase I goals

Exposure 15 kg y Background 10^{-2} cts/(keV kg y) Half-life $T_{1/2} > 2.2 \times 10^{25}$ y Majorana mass $m_{ee} < 0.27$ eV

Phase II goals

Exposure 100 kg y Background 10^{-3} cts/(keV kg y) Half-life $T_{1/2} > 15 \times 10^{25}$ y Majorana mass $m_{ee} < 0.11$ eV

Onbb	EXO	GERDA	UZH Contribution	Summary
	0000000	0000	00000	
Progress				

Summer/autumn 09 Integration test of Phase I detector string, FE, lock, DAQ

Nov/Dez 09 Liquid argon filling

May 10 Deployment of FE & detector mock/up, followed by first deployment of a non-enriched detector

June 10 Water tank filling

- June 10 Commissioning run with ^{nat}Ge detector string
 - Test all subsystems
 - Determine background

Oct 10 Operation of enriched detectors

Onbb	EX0	GERDA	UZH Contribution	Summary
First results	;			

- 3 ^{nat}Ge detectors operating stable
- Energy resolution achieved so far: 4.0-4.4 keV FWHM @ 2.6MeV
- Good agreement of ²²⁸Th calibration data with Monte Carlo simulations

Onbb	EXO	GERDA	UZH Contribution	Summary
	0000000	0000	00000	
First results	;			

 228 Th calibration data + pulsar

Onbb	EXO	GERDA	UZH Contribution	Summary
	0000000	0000	00000	
UZH Co	ontribution			

Calibration system

- Hardware
- Analysis pipeline
- Database
- Web interface

Phase II detectors

- R&D for Broad-Energy Germanium detectors (BEGe's)
 - \Rightarrow Chosen as the Phase II detector technology

Onbb	EXO	GERDA	UZH Contribution	Summary
	0000000	0000	0000	
The Ca	libration Syste	m		

Overview

Phase I

- 3 custom made ²²⁸Th sources with $A \simeq 20$ kBq with low n rate
- Park position in the lock of the experiment
- Sources shielded by 5 cm of Ta
- Manual lowering system built by LNGS
- 1 calibration run of \sim 30 min per detector layer

GERDA / EXO

Onbb	EXO	GERDA	UZH Contribution	Summary
	0000000	0000	00000	

Database

- Storing calibration parameters
- Possibility to blind data
- Monitor stability of parameters

 Exo
 GERDA
 UZH Contribution
 Summary

 0
 00000000
 0000
 0000
 0

 Broad-Energy Germanium Detectors
 0
 0
 0

The detector

- p-type detector with small p⁺ readout electrode
- Good pulse shape discrimination between single-site (SSE) and multi-site events (MSE)
- Good energy resolution

The material

- 37.5 kg of 86% enr Ge in form of GeO₂ stored underground
- Full production cycle tested successfully with 34 kg of ^{depl}Ge

Depleted BEGe characterization

- Energy resolution: FWHM of 1.6 keV @1.3 MeV
- Pulse shape discrimination: 10% survival of MSE with 90% acceptance of SSE in DEP
- Long term stability: No instabilities found since May 2010

Onbb	EXO	GERDA	UZH Contribution	Summary
	0000000	0000	00000	•
Summary				

EXO

- EXO-200 installed and commissioned!
- Data taking starting this fall!
- Various techniques are explored for barium tagging in preparation of EXO full

GERDA

- Taking data with ^{nat}Ge
- Testing subsystems
- Start taking data with ^{enr}Ge in October
- BEGe's chosen as Phase II detector technology
- Production starts beginning of next year