

Background Studies for the XENON100 Experiment

Alexander Kish Physics Institute, University of Zürich

> Doktorandenseminar August 30, 2010 UZH

The XENON dark matter search program

Target Volume 62 kg Total 171 kg of LXe

First result PRL arXiv:1005.0380

2011 - 2015

¹ Target Volume ~10 kg Fiducial volume 5.4 kg Phys. Rev. Lett. 100 021303 (2008)

Phys. Rev. Lett. **100** 021303 (2008) Phys. Rev. Lett. **101** 091301 (2008)

Alexander Kish

Doktorandenseminar

30

35

40

Sources of electron recoil background

- natural radioactivity in the detector and shield materials
- ²²²Rn contamination in the air
- intrinsic contamination of ²²²Rn, ⁸⁵Kr
- cosmogenic xenon activation during storage at the Earth surface

Sources of nuclear recoil background

- (α,n) and spontaneous fission
- muon-induced neutrons

Location of the XENON100 experiment

X E N O N Dark Matter Project

Radioactive contamination in the detector materials

- all materials screened
 for radioactive contamination
- screening facility at LNGS (2.2kg Ge)
- detailed GEANT4 model

p.6

Radioactive contamination in the detector materials

• BG prediction with GEANT4 simulations

- 40 kg fiducial volume cut 88% BG reduction
- Additional BG reduction with the veto cut (average energy threshold 100 keV):
- entire target volume ~40%
- 40 kg fiducial volume ~70%

Radon in the air of the shield cavity

- ²²²Rn in the air at the experimental site and inside the shield cavity
- monitored with radon detectors
- at the experimental site > 300 Bq/m³
- shield cavity purged with N₂
- inside the shield < 1 Bq/m³
- BG rate < 10⁻³ events kg⁻¹ day⁻¹ keV⁻¹

Intrinsic contamination: ²²²Rn

- Intrinsic radon contamination
- ' β - α ' delayed coincidence analysis
- upper limit 21µBq/kg

²¹⁴Po peak at 7.8 MeV is not visible in combined (S1+S2) energy scale

Intrinsic contamination: ⁸⁵Kr

- ⁸⁵Kr in LXe:
- natural Kr contains 10⁻¹¹ of ⁸⁵Kr
- ' β - γ ' delayed coincidence analysis
- ^{nat}Kr concentration (143⁺¹³⁰₋₉₀) ppt (mol/mol)
- krypton contamination is reduced by cryogenic distillation

krypton concentration 150 ppt
 ↓
 BG rate 2.9 events kg⁻¹ day⁻¹ keV⁻¹

- Material screening + delayed coincidence analysis \rightarrow BG model
- Background model is in a good agreement with the measured spectrum

- measured spectrum in combined (S1+S2) energy scale
- 40 kg fiducial volume cut
- active veto cut
- MC smeared with measured energy resolution

(2% σ/mean at 662keV)

Cosmogenic xenon activation at the Earth's surface

- simulated with the COSMO and ACTIVIA packages
- many isotopes long lived ($T_{1/2}$ > 100 days), decay with emission of low energy gammas and electrons
- disagreement in production rates when using ACTIVIA and COSMO
- disagreement with a simulation with TALYS D.M. Mei, Z.B. Yin, S.R. Elliott, Astrop. Phys. 31, 417 (2006)
- discrepancy with the measured background spectrum

isotope	Half-life time	activation (1 year) [µBq/kg]	
		ACTIVIA	COSMO
<u>³H</u>	12.34 years	22.762	22.165
22 <u>Na</u>	2.60 years	0.257	0.230
45 <u>Ca</u>	165 days	0.528	0.464
<u>49 V</u>	330 days	1.587	1.374
<u>54 Mn</u>	312 days	1.485	1.274
55 <u>Fe</u>	2.70 years	0.367	0.307
57 <u>Co</u>	271 days	1.030	11.840
<u>60</u> <u>Co</u>	5.27 years	0.148	1.395
<u>65</u> <u>Zn</u>	244.1 days	2.485	27.824
<u>68</u> <u>Ge</u>	270.8 days	1.042	12.373
75 <u>Se</u>	118.5 days	3.957	42.535
<u>88 Y</u>	106.6 days	1.587	12.523
<u>93m</u> <u>Nb</u>	13.61 years	0.111	0.624
<u>101</u> <u>Rh</u>	3.30 years	3.493	
102 <u>Rh</u>	206 days	4.407	
102m Rh	2.90 years	1.324	
110mAg	252 days	0.608	
<u>109</u> Cd	1.24 years	16.360	
<u>113</u> <u>Sn</u>	115 days	47.285	0.073
119m <u>Sn</u>	250 days	0.478	0.663
<u>121m</u> <u>Te</u>	154 days	231.996	151.157
<u>123m</u> <u>Te</u>	119.7 days	12.507	11.177
<u>127m</u> <u>Te</u>	109 days	11.119	11.094
134 <u>Cs</u>	2.06 years	2.705	2.738

p.12

- Neutron production in (α ,n) and spontaneous fission reactions, due to contamination of ²³⁸U, ²³⁵U and ²³²Th
- neutron production spectra generated with SOURCES4A
- simulation with GEANT4

Predicted BG rate in 40 kg fiducial volume (energy range 8.7-32.6 keV_{nr}) from the detector and shield materials < 0.29 events/year

• Muon-induced neutrons:

MUSIC: transport muons from the Earth's surface down to the underground laboratory MUSUN: generate angular distribution and energy spectra at the experimental site GEANT4: propagate muons into the detector environment

• predicted BG rate (XENON10 energy range, 4.5-26.7 keV_{nr}) in the 50 kg fiducial volume < 0.27 events/year

Material	Contribution to the total recoils rate [%]
Rock	0.04
Concrete	0.11
Polyethylene	1.8
Copper	37.6
Pb	4.6
Stainless steel	6.6
LXe	38.8
PTFE and PMTs	10.5

• Achieved background level is in the fiducial volume two orders of magnitude lower than in XENON10, and any competing Dark Matter experiment

- Further reduction of krypton contamination is expected after cryogenic distillation
- The BG model is in a good agreement with the measured spectrum
- Study of the electronic recoil background will be published soon
- Simulations of nuclear recoil background are being finalized