

sa pathfinder

LISA science performance in the context of LISAPathfinder first results and simulation for LISA

Antoine Petiteau (APC – Université Paris-Diderot)

On behalf of the LISAPathfinder collaboration & the simulation working group

LISASymposium 11 - Zurich 8th September 2016

Outline

- LISAPathfinder results
- LISA sensitivity curve for various configurations
- (Partial) LISA science performances:
 - Verification binaries, Galactic binaries, SMBHBs, EMRIs, BHB, cosmological backgrounds
- The simulation working group
- The Data Processing Center
- Conclusion

LISAPathfinder results

Best average results from LISAPathfinder adapted to LISA (no actuation, ...) [talk from Stefano Vitale]

LISAPathfinder results

 Best average results from LISAPathfinder adapted to LISA (no actuation, ...) [talk from Stefano Vitale]

DIDEROT

LISAPathfinder results

- Best average results from LISAPathfinder
 - + confidence interval (large uncertainty at low frequency)

LISAPathfinder results

- Best average results from LISAPathfinder
 - + confidence interval (large uncertainty at low frequency)

DIDEROT

LISA high frequency noise

Several versions ...

Configuration	Units	LISA2011M	LISA2011	LxA5MxNxP2D40	LxA5MxNxP2D40	LxA2MxNxP2D30
Model		YB2011M	YB2011	GOAT	AEI2015 [4]	AEI2015 [4]
Armlength	$\times 10^9$ m	5	5	5	5	2
Telescope diameter	cm	38	38	40	40	30
Shot noise	pm/√Hz	7.7	7.7	7.49	6.38	4.54
Relative Intensity Noise	pm/\sqrt{Hz}	1	1		3.03	2.16
Electrical noise	pm/\sqrt{Hz}	1	1		3.03	2.16
Optical path noise	pm/\sqrt{Hz}	7	7		1.00	1.00
Metrology noise	pm/\sqrt{Hz}	5.2	5.2		1.02	1.02
Pilot tone noise	pm/\sqrt{Hz}	0	0		2.57	2.57
$\sqrt{S_{OMS,m}}$	pm/\sqrt{Hz}			5.15		
Margin		1/0.65	1	1	1	1
$\sqrt{\mathbf{S_{IMS,m}}}$	pm/\sqrt{Hz}	18.0	11.7	7.49	8.20	6.19

[4] Barkes et al. 2015

Work in progress to improve the "high frequency" noise budget within the Simulation Working Group

LISA high frequency noise

Several versions ...

Configuration	Units	LISA2011M	LISA2011	LxA5MxNxP2D40	LxA5MxNxP2D40	LxA2MxNxP2D30
Model		YB2011M	YB2011	GOAT	AEI2015 [4]	AEI2015 [4]
Armlength	$\times 10^9$ m	5	5	5	5	2
Telescope diameter	cm	38	38	40	40	30
Shot noise	pm/√Hz	7.7	7.7	7.49	6.38	4.54
Relative Intensity Noise	pm/\sqrt{Hz}	1	1		3.03	2.16
Electrical noise	pm/\sqrt{Hz}	1	1		3.03	2.16
Optical path noise	pm/\sqrt{Hz}	7	7		1.00	1.00
Metrology noise	pm/\sqrt{Hz}	5.2	5.2		1.02	1.02
Pilot tone noise	pm/\sqrt{Hz}	0	0		2.57	2.57
$\sqrt{S_{OMS,m}}$	pm/\sqrt{Hz}			5.15		
Margin		1/0.65	1	1	1	1
$\sqrt{\mathbf{S_{IMS,m}}}$	pm/\sqrt{Hz}	18.0	11.7	7.49	8.20	6.19

[4] Barkes et al. 2015

Work in progress to improve the "high frequency" noise budget within the Simulation Working Group

LISA high frequency noise

Several versions ...

Work in progress to improve the "high frequency" noise budget within the Simulation Working Group

Sensitivity in characteristic strain

LISA : science performances in the context of LPF & simulation - A. Petiteau - LISASymposium - 8th September 2016

Sensitivity in characteristic strain

LISA : science performances in the context of LPF & simulation - A. Petiteau - LISASymposium - 8th September 2016

Sensitivity in characteristic strain

DIDEROT

LISA : science performances in the context of LPF & simulation - A. Petiteau - LISASymposium - 8th September 2016

Sensitivity in characteristic strain

LISA : science performances in the context of LPF & simulation - A. Petiteau - LISASymposium - 8th September 2016

Sensitivity in characteristic strain

LISA : science performances in the context of LPF & simulation - A. Petiteau - LISASymposium - 8th September 2016

Sensitivity in characteristic strain

L = 5 Gm

Comparison with GOAT configuration

L = 5 Gm

LPF→LISA: Verification binaries

Few tens of galactic binaries are known from electromagnetic observation => guarantee sources ~ 12 "delected" after 2 years More sources from GAIA

L = 5 GmName 5 years 6 months 2 years 1 year 6 links 6 links 6 links 6 links RXJ0806 191 245 347 549 V407Vul 39 58 82 130 V407Vul. 59 84 40 132 ESCet 57 78 110 173 73 113 160 253 AMC . 147 209 330 108ib CR 52 39 73 100 116 1.9 3.4 4.8 7.6LDIa Cen 56 69 98 155 DSSJ0926 5.9 8.1 11 18 3.2 2.14.5 7.1 CPEri 1.9 2003aw 1.6 2.7 4.3 0.93 SDSSJ1240 0.801.3 2.1SDSSJ0804 0.62 0.81 1.1 1.8 0.98 SDSSJ1411 0.340.69 1.5 GPCom 2.4 3.3 4.6 7.3 SDSSJ0902 0.37 0.52 0.73 1.2 0.15 0.28 0.400.64 SDSSJ1552 0.94 CE315 1.1 1.5 2.4 SDSSJ0106 1.2 1.5 2.2 3.5 0.67 1.5 2.4 SDSSJ1053 1.1 SDSSJ0923 3.7 4.8 6.8 11 0.99 2.13.0 SDSS_J1436 WD0957 2.8 4.4 6.3 0.28 SDSSJ0755 0.19 0.40SDSSJ0849 0.25 0.31 0.44 SDSSJ0022 0.16 0.19 0.2.43 SDSSJ0849 0.16 0.19 0.2 0.08 0.22 SDSSJ2119 0.10 0.0 SDSSJ1234 0.05 0.05 .12 4U1820 12 17 37 4U0513 5.4 1.2 2.42S0918 6.8 10 22 5.1 7.2 4U1543 3.4 11 1.7 2.4 3.9 4U1850 1.2

M15X

PSRJ0737

0.96

0.42

1.1

0.62

1.6

0.88

2.5

1.4

L = 2 Gm

	Name	6 months	1 year	2 years	5 years
		6 links	6 links	6 links	6 links
	RXJ0806	96	124	175	277
	V407Vul	17	25	35	56
	V407Vul.	17	25	36	57
	ESCet	24	33		74
	AMCVn	30	46	6	102
	HPLib	44	60		133
	CRBoo	16	2	29	47
	KLDra	0.77	4.4	1.9	3.1
	V803Cen	23			62
	SDSSJ0926	2.4	3.2	4.6	7.3
	CPEri	0.85	13	1.8	2.9
	2003aw	0.65	J. 77	1.1	1.7
	SDSSJ1240	6.2	0.37	0.53	0.83
	SDSSJ0804	0.22	0.32	0.46	0.73
	SDSSJ1 11	0.15	0.28	0.39	0.62
	GPCom	98	1.3	1.8	2.9
	SDS . 202	0.15	0.21	0.29	0.46
	SDSS. 15.	0.06	0.11	0.16	0.26
		0.38	0.44	0.62	0.98
	S. SSJ. 6	0.49	0.62	0.88	1.4
	SDS, 11053	0.27	0.44	0.62	0.97
	SSJ0923	1.5	1.9	2.7	4.3
	SDSS_J1436	0.40	0.86	1.2	1.9
	WD0957	1.1	1.8	2.5	4.0
	SDSSJ0755	0.08	0.11	0.16	0.25
	SDSSJ0849	0.10	0.13	0.18	0.28
	SDSSJ0022	0.06	0.08	0.11	0.17
	SDSSJ0849	0.06	0.08	0.11	0.17
	SDSSJ2119	0.03	0.04	0.05	0.09
	SDSSJ1234	0.02	0.02	0.03	0.05
	4U1820	4.9	7.0	9.8	16
	4U0513	0.49	0.98	1.4	2.2
	2S0918	2.8	4.1	5.7	9.1
	4U1543	1.4	2.0	2.9	4.6
	4U1850	0.50	0.70	0.99	1.6
- 8th	M15X	0.39	0.45	0.64	1.0
	PSRJ0737	0.17	0.25	0.35	0.56

LPF→LISA: Galactic binaries

Verification binaries

L = 5 Gm

Θ

100

20

Francois Arago Co

L = 2 Gm

LPF→LISA: Galactic Binaries

- About 60 millions of binaries in the Galaxy (White Dwarfs, Neutron stars)
- ► With LISAPathfinder-LISA, we can

	5 Gm	2 Gm
detect	~22600	~15700
have a 2D localization	~9400	~5000
have a 3D localization	~2170	~1400
measure the first frequency derivative (at 20%)	~4100	~3000
measure the second frequency derivative (at 20%)	few	few

DIDEROT

LPF→LISA: Galactic binaries

L = 2 Gm

François Arago

L = 5 Gm

Characteristic strain amplitude

LISA : science performances in the context of LPF & simulation - A. Petiteau - LISASymposium - 8th September 2016

LPF→LISA: Galactic binaries

Θ

tion tim

 10^{-16}

Confusion noise from unresolved sources

L = 5 Gm

Resolved galactic binaries (2 yr obser

Verification binaries (2 yr obs

 \odot

 10^{-2}

 10^{-1}

100

0

Frequency [Hz]

 10^{-3}

 10^{-4}

L = 2 Gm

0

 10^{-16}

With LPF-LISA, we observe :

- SMBH binaries at very high redshift (z > 15)
- nearby SMBH binaries with very high redshift (> 1000)

► With LPF-LISA, we observe :

- SMBH binaries at very high redshift (z > 15)
- nearby SMBH binaries with very high redshift (> 1000)

With LPF-LISA, we observe :

- SMBH binaries at very high redshift (z > 15)
- nearby SMBH binaries with very high redshift (> 1000)

L = 2 Gm

Francois Arago Cer

L = 5 Gm

LPF→LISA: EMRIs

- 10⁶ 10 M_{Sun} at 1 Gpc (generated by C.
 Sopuerta): signal for one LISA arm on top of LISAPathfinder noise
- Coherent signal over a year

<image><section-header>

Work in progress by the EMRI WG on the event rates, etc

LPF→LISA: EMRIs

- 10⁶ 10 M_{Sun} at 500 Mpc (generated by C.
 Sopuerta): signal for one LISA arm on top of LISAPathfinder noise
- Coherent signal over a year

<image>

LPF→LISA: EMRIs

L = 2 Gm

Francois Arago Cer

Black Hole Binaries

Black hole binaries of few tens solar masses (as GW150914)
With LPF-LISA : work in progress ...

Black Hole Binaries

Performance of LISA for BHB (model independent) : PRELIMINARY result : SNR contour plot

Configuration: GOAT version of L6A2M5N2P2D28: L = 2 Gm, 5 years Need to be updated for LPF-

LISA

Incination (degrees) : 10-red, 45-green, -blue 0.0 -0.5GW151226 -10Log10 redshift GW150914 -1.5 50 50 -2.050 -2.5-3.0L 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Log10 of total intrinsic mass (M_{\odot})

DIDEROT

LPF→LISA: Cosmological backgrounds

L = 5 Gm

François Arago Centr

LPF→LISA: Cosmological backgrounds

L = 5 Gm

L = 2 Gm

François Arago Centr

► LPF→LISA: Cosmological backgrounds

Power Law Sensitivity introduced by Thrane & Romano 2013

L = 5 Gm

► Power Law Sensitivity introduced by Thrane & Romano 2013

L = 5 Gm

L = 2 Gm

Cosmological backgrounds

- The Cosmology Working Group already did studies in the context of eLISA (GOAT configuration):
 - Ex: first order phase transition in the very early Universe

Caprini et al. **JCAP 04, 001** (2016)

• Cosmic strings network

Next step

- Complete this update of science case
- Transfer LISAPathfinder noise budget to LISA
- Improve the modeling of the high frequency noise: use
 - split TDI interferometry (M. Otto's PhD)
 - last noise modes
- Complex simulations (dynamics, ...)
- Implement more precise waveforms

Activities of the Simulation Working Group

- About 20 scientists from various European laboratories
- > Diversity of expertises:
 - LISAPathfinder
 - LISA instrumentation
 - GW waveform modeling
 - Data analysis
 - Astrophysics

- ► Led by APC (Paris) and AEI (Hannover)
- Start using LISACode as a basis
- ► Very active group. You are welcome to join !
- LISA : science performances in the context of LPF & simulation A. Petiteau LISASymposium 8th September 2016

Goals:

- End-to-end simulation \rightarrow the mission simulator
- "Quick performance" study for various configurations → final design (required for phase A)
- Accompany the hardware developments (industries & labs.)
- Tool(s) for performance controls

First requirements:

- Close modeling of the instrument subsystems
- Waveform generation for various GW sources
- Noise generation using various types of representation
- Data pre-processing (distinct from simulation)
- Modularity
- Computation speed (> 10-100 times faster than reality)
- Open-source

LISACode is the starting point of the end to end simulator

- 2 complementary simulators:
 - TDISim (check TDI)
 - LISADyn (3D dynamic)
- 30 LISA : science performances in the context of LPF & simulation A. Petiteau LISASymposium

LISACode is the starting point of the end to end simulator

- 2 complementary simulators:
 - TDISim (check TDI)
 - LISADyn (3D dynamic)
- 30 LISA : science performances in the context of LPF & simulation A. Petiteau LISASymposium

The proto Data Processing Center

- Development started after a CNES phase 0 study
- ► Tool for the consortium
- DPC:

- Continuous integration: compilation, quality evaluation, doc., virtual machine for user, ...
- Hybrid infrastructure (regular cluster + cloud)
 - to absorb fluctuations of computation charge.
- Database
- Documentation ? Web-service ?
- The proto-DPC is the framework for eLISA simulations and for future MLDC
 - LISA : science performances in the context of LPF & simulation A. Petiteau LISASymposium 8th September 2016

The proto Data Processing Center

- Development started after a CNES phase 0 study
- Tool for the consortium
- DPC:
 - Continuous integration pompilation, quality evaluation, doc., READY nachine for user, ...
 - Hybrid infrastructure (regular cluster + cloud)
 - to absorb fluctuations of computation charge.
 - Database
 - Documentation ? Web-service ?
- The proto-DPC is the framework for eLISA simulations and for future MLDC

Conclusion

- The excellent LISAPathfinder results enable good performance of LISA for most of the sources => large science case
- Next steps:
 - Consolidate the noise budget:
 - LPF performances at low frequency
 - Improve the simulation of the instrument according to the recent developments
 - Update sources: waveforms + populations [Talk from Stas Babak]
 - Add more parameters estimations

The simulation/data analysis WG is working on these aspects with the support of the proto-DPC.

Thank you

LISA data processing

Phasemeters (carrier, sidebands, distance)

+ Gravitational
 Reference
 Sensor
 + Auxiliary channels

Corrections, calibrations

Resynchronisation (clocks)

Time-Delay Interferometry laser noise reduction

TDI data : 2 uncorrelated channels

GW data analysis

Catalog of GW sources with extracted waveforms

GW sources

- 10-100/yr SMBHBs
- 10-1000/yr EMRIs
- 60 millions Galactic binaries
- Large number of Black Hole binaries
- Cosmological backgrounds
- Unknown sources

DPC CNES Phase 0

- In 2013-2014, CNES did a phase-0 with APC & CapGemini
- Results of this Phase-0 :
 - Doable within a reasonable budget (~ 22 millions euros)
 - <u>Developments & pipelines</u>: First analysis of this kind + potential unknown sources
 Keep flexibility + continuous evolution
 - <u>Infrastructure</u> : fluctuations of the computational charge : permanent sources + transient sources + continuous evolution of codes (full reprocessing phase)

DPC CNES Phase 0

- ▶ Planning for a launch in 2034: pre-start in 2019 & start in 2021
- If advanced launch date, we have to start the DPC almost

NOW !

► In 2015, CNES + APC started development of a proto-DPC

- IT: Maude Le Jeune (project manager), Cecile Cavet, Etienne Marin-Matholaz, Gabriele Mainetti (full time for 1 year) & Suyan Dong (support)
- Scientists/developers : Antoine Petiteau, Jean-Baptiste Bayle, Hubert Halloin, Eric Plagnol, Henri Inchauspé + eLISA simulation WG.

• We started by concentrating on :

- Providing an environment for development with :
 - Common repository (git), wiki, web interfaces
 - Continuous integration (Jenkins & SonarQube)
 - Providing access to reference environment (docker)
- Preliminary study on hybrid infrastructure

eLISA proto-DPC

https://elisadpc.in2p3.fr/

CONTINUOUS INTEGRATION HOMEPAGE

This is the homepage for the eLISA continuous integration service provided by the APC/FACe. From this page you can explore the projects actually processed, look at the results of the integration (Jenkins) and check the quality of the code (SonarQube). Soma pages have restricted access: if you need particular access at some services, please send an email to elisadpc-admin@epc.in2p3.fr

For some projects, the access to the source code is protected but guaranteed to all the people involved in the specific project.

USEFUL LINKS

COLOR I	derive of the		
ESA NO	10/eLISA we	stiade	
IN2P3	Sitlab		
APC He	mepage		
FACe H	lomepaga		
ESA U	SA Pathfind	er website	
CNES I	Phase O Stu	dy	

Project	Build Number	Jankina	SanarQube	Issues	Documentation	Seurce Cede
LISACode	-	build passing	Check quality	Issues	Doxygen	ſ
eLISAToolbox	-	build passing	Check quality	Issues	README	ď
eLISADibits	-	build passing	Check quality	Issues	Daxygen	n
MCS		build passing	Check quality	Issues	Jevedoc	Ê
LISACodeOnTheWeb		build passing	Check quality	Issues	MkDocs	â

Utilisateurs		
Historique des constructions		
e d'attente des constructions	-	

File d'attente des constructions vide

Jenkins

- F

Dashboard

État du lanceur de compilations

1 Au repos

2 Au repos

Jenkins

File

All	Build N	Ionitor	Dashb	oard		
s	м	Nom	du proje	t \downarrow	Dernier	succès
	*	LIS/	ACode		1 j 8 h	- #43
Icône: §	ML		. Anondo		Convertent	DCC de ter

Légende S RSS pour tout S RSS de tous les

C rechercher

ob statistics			MCS	build passing
Santé des jobs	Description			
<u>چ</u>	No recent builds failed		LISACodeOnTheWeb	build passing
2	20-40% of recent builds failed			
2	40-60% of recent builds failed		0	
8	60-80% of recent builds failed		0	
<i>\$</i>	All recent builds failed		0	
	Unknown status		0	
Total des jobs	Tous les jobs		1	

est Statistics Grid							
Job ↓	Success #	%	Failed #	%	Skipped #	%	Total #
OLISACode	0	0%	0	0%	0	0%	0
Total	0	0%	0	0%	0	0%	0

Hybrid infrastructure

Study of a "new solution" : docker

 "Container" (i.e. virtual machine) including everything : compiled codes + environment + light OS.

Provide :

- An easy to use way for user to run tools hosted at DPC
- A reference machine for developers
- Potential solution for hybrid system (standard cluster + cloud) : test case for a technological watch of CNES in collaboration with ATOS

eLISA proto-DPC: next

• Simulation:

- eLISA simulation working group :
 - **Diversity** of expertises: LPF, LISA instrumentation, waveform modeling, astrophysics, ... (about 20 scientists now)
 - APC lead in collaboration with AEI (Hannover)
- LISACode simulator: basis of end-to-end simulator & fully integrated to the proto-DPC (test bench)
- Next/goals :
 - End-to-end simulations \rightarrow mission simulator
 - "Quick" performance study \rightarrow final design, need for the phase A
 - Tool for the performance control

eLISA proto-DPC: next

- Data analysis:
 - Challenge of LISA data analysis: identified large number of sources
 - 2005-2011: series of Mock LISA Data Challenges (progressive increase in complexity):
 - trigger development of DA methods
 - LISA analysis is doable: number of sources can be identified but the number of sources in the data was very limited ...
 - Next: new MLD(C)s: identified maximum number of sources in
 - Full enchilada (large number of sources)
 - Realistic noises (LISAPathfinder, ...)

(e)LISA consortium

