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Talk outline

e Introduction to EMRIs
e EMRI event rates
e EMRI parameter estimation precision
e Impact of eLISA configuration on EMRI measurements
e EMRI science
- astrophysics
- fundamental physics

- cosmology



Extreme-mass-ratio inspirals

e An extreme mass ratio inspiral (EMRI) is the inspiral of a
compact object (a white dwarf, neutron star or black hole) into a
SMBH. Not main sequence stars, as these will be tidally
disrupted before gravitational radiation becomes significant.

e Originate in dense stellar clusters through direct capture, binary
splitting, tidal stripping of giant stars or star formation in a disc.

e For black holes with mass in the range 10* My < M < 10" M,
EMRIs will generate gravitational waves detectable by eLISA.

e In “standard” picture, EMRIs begin when an object is captured

by the central black hole on a very eccentric orbit. Expect
EMRI orbits to be both eccentric and inclined in eLISA band.

e Complex gravitational waveforms include three fundamental
frequencies - orbital frequency, perihelion precession frequency
and orbital plane precession frequency:



EMRIs - Event Rates

e To estimate EMRI event rates need several ingredients

- Mass function of black holes:

for 10*Ms < M <107 M, the
BH mass function is not well
constrained observationally.

- 'Traditionally have assumed a
flat distribution

dN
dln M

— 0.002 Mpc~°

- Uncertainty in slope +/-0.3.
Models for MBH mergers
favour slopes close to -0.3.
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EMRIs - Event Rates
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e Consider two cases

- a numerically
simulated population,
evolved consistently
from pop III seeds:
slope ~ -0.3

- a pessimistic analytic
model: slope = 0.3



EMRIs - Event Rates

e To estimate EMRI event rates need several ingredients

- EMRI rate per galaxy numerical simulations suggest rate of
black hole mergers (Hopman 2009, Amaro-Seoane & Preto 2011)

v ~0.19
— 400Gyr !
P yt (3 X 106M@>

- But cannot have such a high rate over whole cosmic history for
light massive black holes to avoid overgrowth. Assume maximum
of one e-fold of mass from EMRI accretion.



EMRIs - Event Rates
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EMRIs - Event Rates

e To estimate EMRI event rates need several ingredients

- EMRI rate per galaxy numerical simulations suggest rate of
black hole mergers (Hopman 2009, Amaro-Seoane & Preto 2011)

v ~0.19
— 400Gyr !
P yt (3 X 106M@>

- But cannot have such a high rate over whole cosmic history for
light massive black holes to avoid overgrowth. Assume maximum
of one e-fold of mass from EMRI accretion.

- Host galaxy mergers also disrupt stellar cusps - massive black
hole is not available as EMRI host until cusp has regrown.

- Black hole spin/inclination influence capture cross-section -
enhanced rate for spinning black holes and prograde EMRIs
(Amaro-Seoane et al. 2013).



EMRIs - Event Rates
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EMRIs - Event Rates

e To estimate EMRI event rates need several ingredients

- Compact object properties

- Mass: consider only black 01
holes. Assume m = 10M 4 2 NN
(usual assumption) or, given 0.01 AR
GWi50914, m = 30M . ;

- Eccentricity distribution:
assume capture through

diffusion. Eccentricities
mostly moderate at plunge.
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random at capture, but
prograde EMRIs
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Model summary

e Summary of models

e Model A: consistent poplII MBH population, pessimistic
cusp re-growth (10 Gyr), m = 10M,.

e Model B: consistent poplII MBH population, reference
cusp re-growth (6 Gyr), m = 10Mg,

e Model C: consistent poplII MBH population, reference
cusp re-growth (6 Gyr), m = 30M,.

e Model D: consistent popIII MBH population, optimistic
cusp re-growth (2 Gyr), m = 10M,

e Model E: consistent poplII MBH population, no cusp
destruction, m = 10M,.

e Model F: conservative MBH population, no cusp
destruction, m = 10M .



Intrinsic Population
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Intrinsic Population
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EMRIs - Event Rates

e Final ingredient is detectability criterion. Assume need SNR > 20
for detection. Compute SNR using analytic kludge waveform
model (Barack & Cutler 2004).

e Consider three different LISA configurations.
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EMRIs - Event Rates

e 1 Gm, 4-link configuration could see O(1) to O(1000) events,
depending on model and uncertain astrophysical rate. Uncertainty
from model is a factor of ~-20. Remaining factor -§0 from rate.

e Gain relative to 1 Gm, 4-link configuration shown in Table below.

1 2.0 0.2 14 28 44

Model A

Model B 1 2.1 o.1 14 20 41
Model C 1 2.1 3.5 5.2 7.0 8.4
Model D 1 2.5 0.4 11 21 32
1 2.5 5.3 11 19 28

1 2.0 5.0 12 21 31



Observed Population - 1 Gm
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Observed Population - 1 Gm
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Observed Population - 1 Gm
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Observed Population - MBH mass
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Observed Population - redshift
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Observed Population - model B
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EMRI Science - Astrophysics

e EMRI observations probe quiescent black holes at low to
moderate redshift, which are hard to observe electromagnetically:.

e EMRI observations will provide very precise parameter
measurements for every observed event.
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EMRI Science - Astrophysics

e EMRI observations probe quiescent black holes at low to
moderate redshift, which are hard to observe electromagnetically:.

e EMRI observations will provide very precise parameter
measurements for every observed event.
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EMRI Science - Astrophysics

e EMRI observations probe quiescent black holes at low to
moderate redshift, which are hard to observe electromagnetically:.

e EMRI observations will provide very precise parameter
measurements for every observed event.
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EMRIs - Parameter Estimation

e Very weak dependence on mission configuration, at fixed S/N.
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EMRIs - Parameter Estimation

e Very weak dependence on mission configuration, at fixed S/N.
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EMRI Science - Astrophysics

0.35 S — .
e Can use set of observed EMRI Optimisti LISA, 10 spin ——
1 03 | Pessimistic LISA, no spin %~ . 4
events to probe the properties ressmistoLBA sem E —
: 025 e
of black holes in the LISA xS
> 0.2 g .
range. T X
3 0.15%
e Model BH mass function as a
power law il
il e e
d ln M it AM O-0.3 -0.2 -0.1 0 0.1 0.2 0.3
. | T ommeet o —— )
e Previous theoretical work gave UL pessitien LiSA o spn k- -
. Pessimistic LISA, spin &b LK
A(ln A) = 1.14/10/Nops e
A(a) = 0.354/10/Nobe =
e Can repeat this analysis on our
modelled EMRI populations.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3



EMRI Science - BH Mass Function
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EMRI Science - BH Mass Function
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EMRI Science - BH Mass Function
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EMRI Science - BH Mass Function
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EMRI Science - Fundamental physics

e EMRIs are exquisite probes
of fundamental physics.

e Key LISA science goal is to

1.2

test the “no-hair theorem” == Model A
I Model B

M; +iS; = M (ia)’ || Meaeio

08 I Model E

e Can detect deviations in —
quadrupole moment from no-  *
hair prediction at level of s
0.0001.

0.2}

e These tests just rely on N |
accurate tracking of EMRI e ’
phase over many cycles - any
LISA configuration can do

this to high precision.



EMRI Science - Cosmology

e A single EMRI event with an electromagnetic counterpart (and
hence a redshift measurement) will give the Hubble constant to
an accuracy of ~3%. N events give an accuracy of ~3 /v N%.

e Even without a counterpart, can estimate Hubble constant
statistically (McLeod & Hogan 08)

- Let every galaxy in the LISA error box “vote” on the Hubble constant.



Science - Cosmology
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EMRI Science - Cosmology
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EMRI Science - Cosmology

e A single EMRI event with an electromagnetic counterpart (and
hence a redshift measurement) will give the Hubble constant to
an accuracy of ~3%. N events give an accuracy of ~3 /v N%.

e Even without a counterpart, can estimate Hubble constant
statistically (McLeod & Hogan 08)

- Let every galaxy in the LISA error box “vote” on the Hubble constant.

- If ~20 EMRI events are detected at z < 0.5, will determine the
Hubble constant to ~1%.

e Analysis assumed typical distance uncertainties for Classic
LISA. Pessimistically, eLISA could have a factor 2 larger distance
error; ~20 events at z < 0.5 would provide ~2% Hubble
measurement, ~80 events would provide 1% precision

e Any of the LISA configurations should deliver this science.



e EMRIs are an exciting LISA source and we would expect to see
hundreds or thousands of events, for any LISA configuration, and
measure the parameters of every event very precisely.

e Irrespective of configuration, EMRIs have fantastic potential for

e Astrophysics: probe quiescent massive black holes, measure
black hole mass function;

e Fundamental physics: testing the black hole no-hair theorem;
e Cosmology: determining the Hubble constant.

e Some important open questions need to be addressed

e re-assess the level of the EMRI confusion background;

e understand what EMRI observations can tell us about the
physical parameters driving theEMRI black hole mass function.



