Post-Newtonian Dynamics of Massive Black Holes Triplets

Matteo Bonetti – PhD student Università degli Studi dell'Insubria

Francesco Haardt, Alberto Sesana, Enrico Barausse, Monica Colpi

Standard Cosmological Model

Hierarchical clustering of dark matter halos

Standard Cosmological Model

Hierarchical clustering of dark matter halos

Galaxies form in dark matter halos

Galaxy merger

Galaxies host MBHs

Strong electromagnetic and dynamical activity characterizes central regions of galaxies

The triggers seem to be tiny objects (with respect to the whole galaxy) with mass range

$$M \simeq 10^6 - 10^{10} \,\mathrm{M_{\odot}}$$

Compact objects

Best candidates are Massive Black Holes (MBHs)

Galaxies host MBH

Galaxies merge

Source of GW?

MBHBs evolution essentially consists of 3 steps

- 1) Dynamical friction
- 2) Close encounter binary-stars (hardening)
- 3) Gravitational Waves emission

1) Dynamical friction:

MBHs sink to the center of the merger remnant

where $C \approx f\left(\frac{v_{M_{\rm bh}}}{\sigma}\right)$

2) Close encounters binary-stars:3-body interaction - MBHB hardening

 $\frac{da}{dt} = -\frac{a^2 G \rho}{\sigma} H$ $\frac{de}{dt} = \frac{a G \rho}{\sigma} H K$

Quinlan 1996; Sesana et al. 2006

Begelman, Blanford, Rees, 1980

2) Close encounters binary-stars:3-body interaction - MBHB hardening

Begelman, Blanford, Rees, 1980

$$\begin{aligned} \frac{da}{dt} &= -\frac{a^2 G \rho}{\sigma} H \\ \frac{de}{dt} &= \frac{a G \rho}{\sigma} H K \end{aligned}$$

Quinlan 1996; Sesana et al. 2006

No more efficient without stars!

3) Gravitational waves: MBHB merging

Begelman, Blanford, Rees, 1980

Possible wayouts

- Gas rich galaxies
- Triaxiality of merger remnant

Not mutually exclusive!

> 3 (or more?) - body interaction

Possible wayouts

- Gas rich galaxies
- Triaxiality of merger remnant
- > 3 (or more?) body interaction
 - If dense environnments can yield successive galaxy mergers

Possible wayouts

- Gas rich galaxies
- Triaxiality of merger remnant

- 3 (or more?) body interaction
 - If dense environnments can yield successive galaxy mergers

Formation of triplets of MBHs

Our Goal

Simulate MBH triplets in galactic nuclei with astrophysically and cosmologically motivated initial conditions

Code method:

C++ implementation of Bulirsch-Stoer (BS) algorithm for resolution of Ordinary Differential Equations (ODE)

Physics:

- 3-body Newtonian dynamics + GR corrections up to 2.5PN + interaction with stellar environment, i.e.
 - bulge potential (spherically symmetric)
 - stellar hardening

$$m_1 = 10^8 M_{\odot}$$

$$m_2 = 3 \times 10^7 M_{\odot}$$

$$m_3 = 5 \times 10^7 M_{\odot}$$

$$a_{in} = 1 pc$$

$$e_{in} = 0.2$$

$$a_{out} \simeq 1 kpc$$

$$e_{out} = 0.3$$

$$m_1 = 10^8 \text{ M}_{\odot}$$
$$m_2 = 3 \times 10^7 \text{ M}_{\odot}$$
$$m_3 = 5 \times 10^7 \text{ M}_{\odot}$$
$$a_{\text{in}} = 1 \text{ pc}$$
$$e_{\text{in}} = 0.2$$
$$a_{\text{out}} \simeq 1 \text{ kpc}$$
$$e_{\text{out}} = 0.3$$

$$m_1 = 10^8 M_{\odot}$$
$$m_2 = 3 \times 10^7 M_{\odot}$$
$$m_3 = 5 \times 10^7 M_{\odot}$$
$$a_{\rm in} = 1 \text{ pc}$$
$$e_{\rm in} = 0.2$$
$$a_{\rm out} \simeq 1 \text{ kpc}$$
$$e_{\rm out} = 0.3$$

Definition of the parameter space with astrophysically and cosmologically motivated initial conditions

Mass (MBHs and stellar), inclination, eccentricity

Third body arrival delay (inner semi-major axis, ejected stellar mass)

Definition of the parameter space with astrophysically and cosmologically motivated initial conditions

Systematic survey of the parameter space through simulations

~10.000 simulations 1/2 month/s (hopefully)

Definition of the parameter space with astrophysically and cosmologically motivated initial conditions

Systematic survey of the parameter space through simulations

Coupling the results to a cosmological merger tree + SAM

Find out which region of the parameter space have statistical significance

Thanks for your attention

Thanks for your attention

Kozai-Lidov mechanism

Kozai-Lidov mechanism

$$e_{\max} \simeq \sqrt{1 - \frac{5}{3} \cos^2 i}$$

Initially very inclined orbits can reach high eccentricity!

Kozai-Lidov mechanism - Problems

KL implies libration of the inner orbit argument of pericenter ω

Some processes however force circulation of $\,\omega$

Libration: oscillation about constant value Circulation: monotonic increase from 0 to 2π

Kozai-Lidov mechanism

KL oscillations are strongly suppressed! Triplets too hierarchical!

 $T_{\rm GR} < T_{\rm KL}$

$$T_{\rm KL} \approx \frac{2\pi a_{\rm out}^3 (1 - e_{\rm out}^2)^{3/2} \sqrt{m_1 + m_2}}{G a_{\rm in}^{3/2} m_3}$$

Stellar Hardening

Problem:

Quinlan 1996; Sesana et al. 2006

Orbit-averaged equations

Introduction of a

fictitious force

Integrating out orbital motion

Stellar Hardening

Problem:

Quinlan 1996; Sesana et al. 2006

A, B

Introduction of a

tuned to macth evolution predicted by orbit-averaged equations

Hamiltonians

Newtonian order

$$H_0 = \frac{1}{2} \sum_{\alpha} \frac{|\vec{p}_{\alpha}|^2}{m_{\alpha}} - \frac{G}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{m_{\alpha} m_{\beta}}{r_{\alpha\beta}}$$

1PN order

$$H_{1} = -\frac{1}{8} \sum_{\alpha} m_{\alpha} \left(\frac{|\vec{p}_{\alpha}|^{2}}{m_{\alpha}^{2}} \right)^{2}$$

$$- \frac{G}{4} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{1}{r_{\alpha\beta}} \left[6 \frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} - 7\vec{p}_{\alpha} \cdot \vec{p}_{\beta} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) \right]$$

$$+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{m_{\alpha}m_{\beta}m_{\gamma}}{r_{\alpha\beta}r_{\alpha\gamma}}$$

2.5PN order

$$H_{2.5} = \frac{G}{45} \dot{\chi}_{(4)ij}(\vec{x}_{\alpha'}, \vec{p}_{\alpha'}; t) \chi_{(4)ij}(\vec{x}_{\alpha}, \vec{p}_{\alpha})$$

$$\begin{split} H_{2} &= \frac{1}{16} \sum_{\alpha} m_{\alpha} \left(\frac{|\vec{p}_{\alpha}|^{2}}{m_{\alpha}^{2}} \right)^{3} + \frac{G}{16} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{(m_{\alpha}m_{\beta})^{-1}}{r_{\alpha}\beta} \left[10 \left(\frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} \right)^{2} - 11 |\vec{p}_{\alpha}|^{2} |\vec{p}_{\beta}|^{2} - 2(\vec{p}_{\alpha} \cdot \vec{p}_{\beta})^{2} \right] \\ &+ 10 |\vec{p}_{\alpha}|^{2} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} - 12(\vec{p}_{\alpha} \cdot \vec{p}_{\beta}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) - 3(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})^{2} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} \right] \\ &+ \frac{G^{2}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta} r_{\alpha\gamma}} \left[18 \frac{m_{\beta}m_{\gamma}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} + 14 \frac{m_{\alpha}m_{\gamma}}{m_{\beta}} |\vec{p}_{\beta}|^{2} - 2 \frac{m_{\alpha}m_{\gamma}}{m_{\beta}} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} \\ &- 50m_{\gamma} (\vec{p}_{\alpha} \cdot \vec{p}_{\beta}) + 17m_{\alpha} (\vec{p}_{\beta} \cdot \vec{r}_{\gamma}) - 14m_{\gamma} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) \\ &+ 14m_{\alpha} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) + m_{\alpha} (\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha\gamma}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{G^{2}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta}^{2}} \left[2m_{\beta} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) + 2m_{\beta} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{M_{\alpha}m_{\beta}}{m_{\gamma}} (5(\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha\gamma}) |\vec{p}_{\gamma}|^{2} - (\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha\gamma}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma})^{2} - 14(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma})) \right] \\ &+ \frac{G^{2}}{4} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}}{r_{\alpha\beta}} \left[\frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} - 2(\vec{p}_{\alpha} \cdot \vec{p}_{\beta}) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}}{m_{\alpha}} (p_{\gamma}(p_{\gamma})) + \frac{m_{\beta}m_{\gamma}}{m_{\alpha}} (p_{\alpha}(p_{\alpha})) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}m_{\beta}m_{\gamma}}{(r_{\alpha\beta} + r_{\beta\gamma} + r_{\gamma\gamma})r_{\alpha\beta}} \left[8\frac{m_{\alpha} \cdot \vec{p}_{\gamma} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) \\ &- 3\frac{f^{2}}{m_{\alpha}} \cdot \vec{p}_{\beta} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) + \frac{1}{2} \sum_{\gamma \neq \beta} \frac{m_{\alpha}^{2}m_{\beta}m_{\gamma}}{m_{\alpha}} \\ \\ &- \frac{G^{3}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}^{2}m_{\beta}m_{\gamma}}{r_{\alpha}^{2}r_{\alpha}r_{\gamma}} + \frac{1}{2} \sum_{\gamma \neq \beta} \frac{m_{\alpha}^{2}m_{\beta}m_{\gamma}}{r_{\alpha}^{2}r_{\beta}} \\ \\ &- \frac{G^{3}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}^{2}m_{\beta}m_{\gamma}}{r_{\alpha}^{2}r_{\alpha}r_{\gamma}}} \\ \\ &- \frac{G^{3}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{$$