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Why anti-particles?

If DM annihilates (or decays)
into charged particles
we might observe them

Most galactic cosmic rays (GCRs)
are particles: p, N, e

S/B better anti-particle channels
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What we know about GCRs...

——————— —

Three fundamental observations:

1. Particles, that are under-abundant in the solar system,
are produced as secondaries by spallation.

2. The local interstellar spectrum is a power law in rigidity;
secondary spectra are softer than primary ones.

3. The arrival directions of GCRs are distributed isotropically.



Isotropy

* charged particles interact resonantly with magnetic inhomogeneities
= pitch-angle scattering
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* isotropises distribution function
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* leads to (rigidity-dependent) spatial diffusion
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Propagation Setup
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GCR sources

supernova remnants as
candidate sources of GCRs:

* energetics

* theory: R1

* evidence for high-energy
electrons
Koyama , Nature 378
(1995) 255

Also sources of hadronic
cosmic rays?

Eriksen

Apd 728 (2011) L28+
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Secondary-to-primary ratios

H.S. Ahn , Astropart. Phys. 30 (2008) 133

* secondaries not from sources but
from spallation in ISM, e.g.

C + prgy or Hegsy — B+ X

* primary produced with spectrum:
Cx Rt o
©
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* diffusion rigidity dependent: 2
DH X R(S
* propagated spectra: -
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Ratio

Residuals

Parameter studies

transport equation can be solved (semi-)analytically (USINE)
or fully numerically (GALPROP, DRAGON)
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R. Trotta et al.,, Apd 729 (2011) 106
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Parameters

diffusion coefficient Dy;

— spectral index: 0=20.3...09

— normalisation Do ~ 8 x 10*2® cm?s™! = 0.3kpc? My]r_1
halo height zn = 3...10kpc
convection velocity u=0...20kms™"

. . —1
reacceleration velocity VA = 0...50kms

solar modulation
— force-field approximation: ® = a few hundred MeV

— importance up to TeV energies?!

— charge-sign dependence?



Discrepant hardening

A.D. Panov , astro-ph/0612377
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spectral break also

observed with high

significance (2

95% C.L.) in ~
>

protons .

(@ 230 GeV, C

2.85 = 2.67) K

and Helium :f’

(@ 240 GeV, x

2.77 = 2.48) T

O. Adriani

Science 332, 69

(2011)
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vF, [erg cm2s1]

E’dF/dE (eV cm™s™)
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Breaks in source spectra

.1C443: Abdo et al,, ApJ 712 (2010) 459
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Anisotropies

Abdo et al., PRL 101 (2008) 221101
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e for D | XX R? (dlpole—) anisotropy IC59 Dipole + Quadrupole Fit Residuals (20° Smoothing)
should also increase o R;
however, observationally much
smaller

* even more puzzling, at tens of
TeV several experiments have
observed anisotropies at the level
of 10 on scales down to 5°
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Anti-protons

idea: background for p/mimilar to other secondary-to-primary ratios

current data can be fit well in usual propagation setup

potentially quite robust constraints on DM annihilation cross section

O Adriani et al., arXiv:1007.0821v1 [astro ph. HE]
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Background uncertainties

based on Bringmann & Salafi, PRD 75 (3007),085006
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Example 1

e annihilation into bbwith thermal cross section
(ov) = 3 x 1072?% cm? s~ s ruled out for light DM

J. Lavalle, PRD 82 (2010) 081302
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Example 1

KRA
KOL
Evoli et al, PRD 85 (2011) 123511
—R4] i | CON
|
i
R ]
* light DM to explain/check _os b 4 .
U i ‘\‘ / //'
DAMA, CoGent 3 o /////%/// ______
e assume DM is scalar and has = '
) —______-—'"""—-_____

scalar contact interactions with L N
quarks .

* if couplings proportional to
Yukawa couplings = thermal
annihilation cross-sections

_28 | | | | |
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Example 2

pure wino LSP

+ decays predominantly WoW° — WHw—

for 100 GeV masses either underabundant or non-thermal production

Evoli et al, PRD 85 (2011) 123511
T T
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Example 2

KRA
* pure wino LSP KOL
. ~ o~ 3 THN
* decays predominantly WW°? — WTW
* for 100 GeV masses either underabundant or non-thermal production CON
Evoli et al, PRD 85 (2011) 123511 Evoli et al, PRD 85 (2011) 123511
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Log F [normalized units]

Where do p come from?

contribution from galactocentric rings

KRA
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THN

CON

R [kpc]

Evoli et al., PRD 85 (2011) 123511




Ratio

0.8r
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0.4r
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Where do p come from?

contribution from distances R, — secondary pbar

100 GeV
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Evoli et al., PRD 85 (2011) 123511



Where do p come from?

KRA

KOL
contribution from distances R, — DM induced pbar THN

CON
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Example 3
- .
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Caveats

non-standard diffusion models, e.g. z-dependent diffusion coefficient
Perelstein & Shakya, PRD 83 (2011) 123508; Evoli et al.,, PRD 85 (2011) 123511

break in primary spectra: local source = error in secondary prediction up to
30% at 1 TeV Donato & Serpico, PRD 83 (2010) 023014

nearby clumps/subhalos:
Lavalle et al., A&A 479 (2008) 427

+
B, fore

T
B for p

10

Max, Inter and Min boost configurations

Max, Inter and Min boost configurations Min: cored, inner NFW, M = 10%,0.= 1.8

. . _ 6 _
B Min: cored, inner NFW, M, =10", 0 =1.8 B inter: NFW, inner NFW, M =10°, 0= 1.9
B inter: NFW, inner NFW, M =10°, .= 1.9

- Max: NFW, inner Moore, Mmin = 10'6, o=2

- : Max: NFW, inner Moore, Mmin = 10'6, a=2

E [GeV] T [GeV]



Electroweak corrections

Ciafaloni

JCAP 03 (2011) 019

naively might expect electroweak

corrections to be negligible:
oo In M2 /M2;0r s ln® M?/ME

for 100 GeV typically of O(0.1) %
even at a few TeV only O(30) %

but:

— evade helicity suppression
see e.g. Bell, Dent, Jacques, Weiler

— prevents leptophilic or
hadrophobic models

— changes spectral shape
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plp

XX — WHE WL with M =10 TeV

1072

1073

1074

1073

Electroweak corrections

Ciafaloni et al., JCAP 03 (2011) 019
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Autumn 2008

Adriani et al. Nature 458, 607-609 (2009) Tylka, PRL 63 (1989) 840
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M.Pospelov and A.R1tz, ;' 2. - 1810 87: Slightly Non-Minimal
DM - Y.Nomura and J.Thaler, 0810.% , Harnik : . :
i 1.0172: Hidden Vector - Yin,

Yuan, Liu, Zhang, Bi, Zhu, 0811.C hiwata, S.Matsumoto, T.Moroi,
0811.0250: Superparmcle:- M - Y.F [8)¢ ‘P.Fox, E.Poppitz, 0811.0399:
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E.Nakamura, S. Stha.l, T'I‘Y pos1te Messenger - E.Ponton,
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A.Strumia, 0811.4153: Decaying DM in Cc K. '0811.4429: Multicomponent DM - M.Ibe,
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K.Shirai, T.T.Yanagida, 0812.2374: Hidden- - D.Hooper, A.Stebbins, K.Zurek, 0812.3202:
Nearby DM clump - C.Delaunay, P.Fox, G.Perez, , %'iDllnu from Earth - Park, Shu, 0901.0720: Split-
UED DM - .Gogoladze, R.Khalid, Q.Shafi, m, 923: cMSSM DM with additions - Q.H.Cao, E.Ma,
G.Shaughnessy, 0901.1334: Dark Matter: the ] 'connectnon - B.Nezri, M.Tytgat, G.Vertongen,
0901.2556: Inert Doublet DM - C.-H.Chen, C‘-Q. I€:! ;Zhundov 0901.2681: Fermionic decaying DM -
J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901 2926 Ca.sca.de annihilations (light non-abelian new
bosons) - PMeade, M.Papuceci, T.Volansky, 090L1. 2925 "DM sees the light - D.Phalen, A.Pierce, N.Weiner,
0901.3185: New Heavy Lepton - T.Banks, J. fF.Forlan, 0901.3578: Pyrma baryons - Goh, Hall, Kumar,
0902.0814: Leptonic Higgs - K.Bae, J.-H. Huh', J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from
flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z2 parity - ...




Galactic Propagation of e-

Transport equation
AN (7, 1)
dt

= V(DVN(7,t)) — == (b(E)N (7, 1)) +Q(F, t)

energy losses

* Inverse Compton Scattering on CMB, IR, UV/opt.

* Synchrotron Radiation on
galactic magnetic fields

2
b(E):dE:327rc<62> (c (wph—l—H—Q)EQZﬁEQ

dt 9 mc? mc)? 8T




Falling Positron Fraction

energy loss time

= = (3B)™!

dE Delahaye et al., A&A 501 (2009) 821
o= e

= N(E) ~ 7 (E)Q(E)
~ ETIQ(E)

fraction of the positron signal

average path length A ~ v2Dt
t)
El
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Positron fraction e*/(e*+e-)

10-2

Background uncertainties

secondary positrons

HEAT 94+95+2000 A

MASS 91 O
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—_ e
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based on Delahaye et al., A&A 501 (2009) 821
[\ T 77Tl T L T oo rTr

TOA Positron energy [GeV]

enveloppe from
0(1000) models that
reproduce B/C

uncertainties due to
— propagation model
— primary fluxes

— nuclear cross-sections

however, still decreasing
with energy where it
should be increasing



Not subtracting backgrounds

Cirelli, Panci & Serpico, Nucl. Phys. B 840 (2010) 284

* derive bound by requiring that DM signal alone is not exceeding observed ¥ -rays

* no backgrounds considered — very conservative!
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Not subtracting backgrounds
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Subtracting backgrounds

Zaharijas, et al., IDM 2010

model backgrounds with GALPROP and perform joined likelyhood analysis

problem: fit always favours presence of DM component

limit defined as 3 0 above fitted DM component

choose model parameters that give the weakest limit
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Adriani et al. Nature 458, 607-609 (2009)
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Anti-deuterons

Donato, Fornengo, Salati, PRD 62 (2000) 043003

never observed in CRs
background expected to be small

coalescence: need pand nto be aligned in momentum space and their
relative momentum close to the deuteron binding energy

_____________________
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Monte Carlo
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Baer & Profumo JCAP 12 (2005) 008



Astro vs DM

Donato, Fornengo, Salati, PRD 62 (2000) 043003

spallation of p or He

CoM boosted w/r to galactic frame

expected to peak at few GeV/n

tertiary from inelastic reactions

or produbtion by spallation of
could affect the spectrum

p

DM annihilation
DM atrest = pand ndistributed
isotropically

* peaks at lower energy

e correlation of pand nin jets from
DM annihilation can increase
signal



slide from R. Ong

e GAPS Detection Technique

» Conventional method of magnetic mass spectrometer is not optimal for GAPS.
(Very large magnets with thin detector materials are needed for a deep survey).

/ D Mori et al., ApJ 566 (2002) 604
D

Atomic Transitions
Auger e* ~~~_

L 30keV  67keV
T n=7//‘/\/\' Y

1. Once D is slowed down and stopped in the target, — Thse Y Ladder

2.  an excited exotic atom is formed, e Deexcitations

3. which deexcites with emitting X-rays, n=2 An=1, Al=1

4, and annihilates with producing a pion shower. o B - 1 1

T E, =(z2fMR, i~

» Detection principle was verified and T = o o

high X-ray yield was shown in accelerator 7c+/ N - Nuclear

tests (KEK antiproton beam, '04 - '05). Annihilation



Astro vs DM

(m? s sr GeV/n)!

. Donato, Fornengo, Maurin, PRD 78 (2008) 043506
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onclusion

indirect searches (in particular in p can give
additional constraints on some models

indirect searches in antiparticles suffer from
uncertainties in GCR diffusion models

need data from upcoming experiments to
improve our understanding of these models



