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Direct detection: the basics

Flux of DM | — Target nucleus

\

Detector
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Direct detection: the basics

DM
-
Phonon/Heat \ - Scintillation
Nucleus
lonization

Aim: Detect the nuclear recoil energy
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The differential event rate

« The rate for spin-independent scattering:

- Agg F*(ER) - Px9(Vmin, t)

« This depends on many parameters!
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The differential event rate

On

1
- A% F?(ER) - et
dER 2 mx,unx eff ( R) /OXg(v y )

7 ™~

Properties of dark matter: From nuclear and particle physics:
Things we would like to know! Usually completely specified

F?(Er) Nuclear form factor

m, DM mass
Aet = fp/fnZ + (A= 2Z)

o DM-neutron
" cross section A 7 Nucleon and proton number
Unyx DM-neutron Ratio of DM coupling to
fps In

reduced mass protons to neutrons.

Usually take: f,/fn =1
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The differential event rate

dR 1 o,
— ‘ Agﬂ-‘ FQ(ER) ' ng(’Umim t)

T = 3
/

From astrophysics:
Determined after choosing your favourite halo model

Local DM density: Local DM velocity distribution:
py ~ 0.3 GeV cm ™ f(v)

o Minimum DM speed for nucleus

Velocity integral: to recoil with energy Er
(©.@)
_ 5. f(v)
9{Umin, £) = /vmm v v Ui = 4 | Y Er
21N
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Usual choice: SHM
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*  (Truncated) Maxwell-Boltzmann velocity distribution

( ’U2
NO exXp <__2) UV < Vesc

0 UV > Vesc

«  Canonical values are vy = 220 kms ™' and vese = 544 kms ™!

. 200 kms_l < o < 250 kms_l McMillan, Binney: 0907.4685
« Typical ranges are: ~ 0~
498 kms ™ < vege < 608 kms ™ RAVE survey: 0611671
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Usual approach

« Specify everything except m, and o,

« For each value of m,, find the limit/best fit value for o,
and produce a plot. eg:

Brown, Henry, Kraus, CM:1109.2589

Standard choices:
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But...did we make the right choice?

(Dark matter only) N-body simulations show
deviations from a Maxwell-Boltzmann distribution:

Aquarius Project AGA
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Vogelsberger et al: 0812.0362
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Kuhlen et al: 0912.2358
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Usual approach: limitations

Can all experiments be
brought into line with a
different choice of
astrophysical parameters?

Brown, Henry, Kraus, CM:1109.2589
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Usual approach: limitations

Can all experiments be
brought into line with a
different choice of

astrophysical parameters?

A naive option is to repeat

ad infinitum with different
parameters

Is there an alternative?

Hooper, Kels0:1106.1066
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. Fox, Liu & Wei
A different approach arX1011.4915

« Basic idea: there is a 1-1 map between energy and minimum
speed...

myEr
Umin =
21N
« ...rewrite the rate equation in terms of Vmin
dR ~ ~ 20, A% 12 F?(E
= Cy Py Umin 9(Vmin, t) (CX _ 49n eﬂ?:uNQ (ER) )
dvmin mX:unX

« In this form we can:

1. Map the experimental signal from one experiment to
another while factoring out astrophysical parameters

2. Infer the form of 9(vmin) from measured data - learn
about halo properties from the data

3. Set halo-independent exclusion bounds on positive signals
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‘DAMA and CoGeNT

Mapping CoGeNT onto DAMA ™

CM:1107.0741
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DAMA measure a modulation in an energy range which we map
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‘DAMA and CoGeNT

Mapping CoGeNT onto DAMA g™

CM:1107.0741

«  DAMA measure a modulation in an energy range which we map
. D D 1 high
L0 Umin SPaCe: [Ey, Eyign] — [Umin: Vmin |

min’ “min

«  CoGeNT probe the same vyin Space in the energy range:

D

u m
[E10W7 Ehlgh] g = [Elovw Ehlgh]

:“DmN

o |
. +++ +++++++++++

[ m, =7GeV ]
20 O70<ER<24keV

Counts / 30 days

Time [days from 3™ Dec 2009]
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‘DAMA and CoGeNT

Mapping CoGeNT onto DAMA g™

CM:1107.0741

DAMA measure a modulation in an energy range which we map
. D D 1 high
to Umin SPace. [ElowaEhigh] — [U nins U i ]

min’ “min

CoGeNT probe the same vn,in Space in the energy range:
D

Mcm
[Elovw Ehlgh] 2 O = [Elovw Ehlgh]
:“DmN
vhigh
The rate at a given experiment is R = C, p, Vmin Vmin ¢(Vmin, t)

low
min

By construction, all astrophysical parameters will cancel in the ratio:

v

DAMA ~“DAMA ~“DAMA
R _ CX _ RDAMA _ CX CoGeNT
RCoGeNT é’CoGeNT expected éCoGeNT obs
X X

From the observed rate at CoGeNT, we can calculate the expected
rate at DAMA and compare with the rate DAMA actually observe -
they should be the same!
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Mapping CoGeNT onto DAMA

0.010

Modulation
amplitude and
peak day from
2-6 keV DAMA
data

0.007

0.005

0003t

0.002F

1
A

Expected modulation amplitude and
peak day at DAMA, determined from a
fit to the CoGeNT data in the energy

range: uzm¥i
[E10W7 Ehlgh] C o [Elovw Ehlgh]
uHmy

Modulation Amplitude at DAMA [cpd/kg/keV]
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Mapping CoGeNT onto DAMA

0.010

The CoGeNT un-
modulated rate _
mapped onto DAMA. _
Amplitudes near this \S“K
line require a large
modulation fraction

Modulation
amplitude and
peak day from
2-6 keV DAMA
data

0.007 1

/kg/keV]

d

A

0003t

0.002F

1
A

SHM predicts ~10%
modulation fraction

Modulation Amplitude at DAM

Peak Day

Expected modulation amplitude and \ SHM predicts Peak
peak day at DAMA, determined from a Day = 152

fit to the CoGeNT data in the energy

range: gcmﬁ v

[E10W7 Ehlgh] Elow? Ehlgh]
HHm
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Mapping CoGeNT onto DAMA

0.010

0.007 1

cpd/kg/keV]

= 0.005}

0003t

0.002F

Modulation Amplitude at DAMA

0.001

Peak Day

What did we learn?

« Both experiments are in reasonable agreement (although
CoGeNT region is very large)

« The SHM will not give a good fit to both experiments - need to
dramatically boost the modulation fraction
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‘Resolving astrophysical uncertainties
in dark matter direct detection’

I n fe rri n g g (vmlﬂ ) Frandsen, Kahlhoefer, CM, Sarkar,

Schmidt-Hoberg:1111.0292

PxOn

. If we measure dR/dEg, we can infer §(vmin) = - - §(VUmin)
X
— 24y dR
Umin) =
g Agff F2 (ER) dER measured

. Example use spectra measured by CoGeNT and CRESST-II
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Inferring g(vmin

accepted events / keV

counts / 0.05 keV 0.33 kg 442 days
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Inferring g(vimin)

« CoGeNT and CRESST-II
probe different regions
of vmin SPace

(when m, =9 GeV) B my =9 GV fulfp=1
10 E l Staxlldard Halo I ]
CoGeNT F—t—
« The SHM provides a CRESSTII (2) s
reasonable fit to the data T 10724} .
Z 0 NI
1026 - , 1 N

300 500 700

Umin [kl’l’l S—l}
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Inferring §(vmin)

« CoGeNT and CRESST-II
probe different regions
of vmin SPace

(when m, =9 GeV)

« The SHM provides a
reasonable fit to the data

Th [cmz]

)
B CoGeNT abs 90%
B CRESST lo
10-42k |~ XENON10090% o |
~ - XENON10-52 90% S8
== CDMS Ge low 90% .
~ —- CDMS Si SUF 90%
-« CRESST-II 90%
1074 E | —— SIMPLE 90% SHM

.....................
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Inferring §(vmin)

« CoGeNT and CRESST-II
probe different regions
of vmin SPace

(when m, =9 GeV) - my=9GeV  fu/fp=1
: Nodified Halg —orreeree
+ The SHM provides a R CRESSTLIT (1) — —
reasonable fit to the data 7 1= J
A N
«  We can see what changes E - i > o
are required to get better = | N
agreement: introduce a ' "
modified halo model — . . IR
- Warning: this is purely 300 500 700
ad-hoc at this stage Umin [km ™"
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Inferring §(vmin)

« CoGeNT and CRESST-II
probe different regions
of vmin SPace

(when m, =9 GeV)
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E
‘% 10 E . TS
b 2 RN —
« We can see what changes F W CoGeNTuie50% 5
are required to get better e e R
agreement: introduce a [ |- CDMs siSUR o ‘
modified halo model g s J . MM
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Constraining §(vmin)

« Set constraints from experimental null results

- Constraints set by choosing §(vmin) = §(v0)©(vo — Vmin) T2

1011.1915

my =9GeV fp,/fp =1

10_23 o 1 T T T
:
nod
T e
107 W XENON100
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= CDMS Ce
— 102 CDMS Si SUF ========
2 CDMS Ge low r=erereeee
E SIMPLE
= [ CRESST-II ========"
> —26 CoGeNT F—+—
107k CRESST-II (1) i
- CRESST-II (2) —%—
10—27 . L . L N . L Ty,
200 400 600 800 1000

Umin [km s_l]

« No halo model can sufficiently reduce the XENON and CDMS
constraints!

Christopher M¢Cabe IPPP - Durham University 15



Conclusions

« The usual method of analyzing direct detection experiments
has limitations when comparing positive signals

« Introduced complementary approaches for analyzing
experimental data that

- factorize out astrophysical parameters when comparing
experimental results

- highlight the modifications required to bring results into
agreement

- allow a conservative exclusion bound to be set that any
realistic halo model must satisfy

« Using all methods together allow us to build a deeper
understanding of experimental results
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