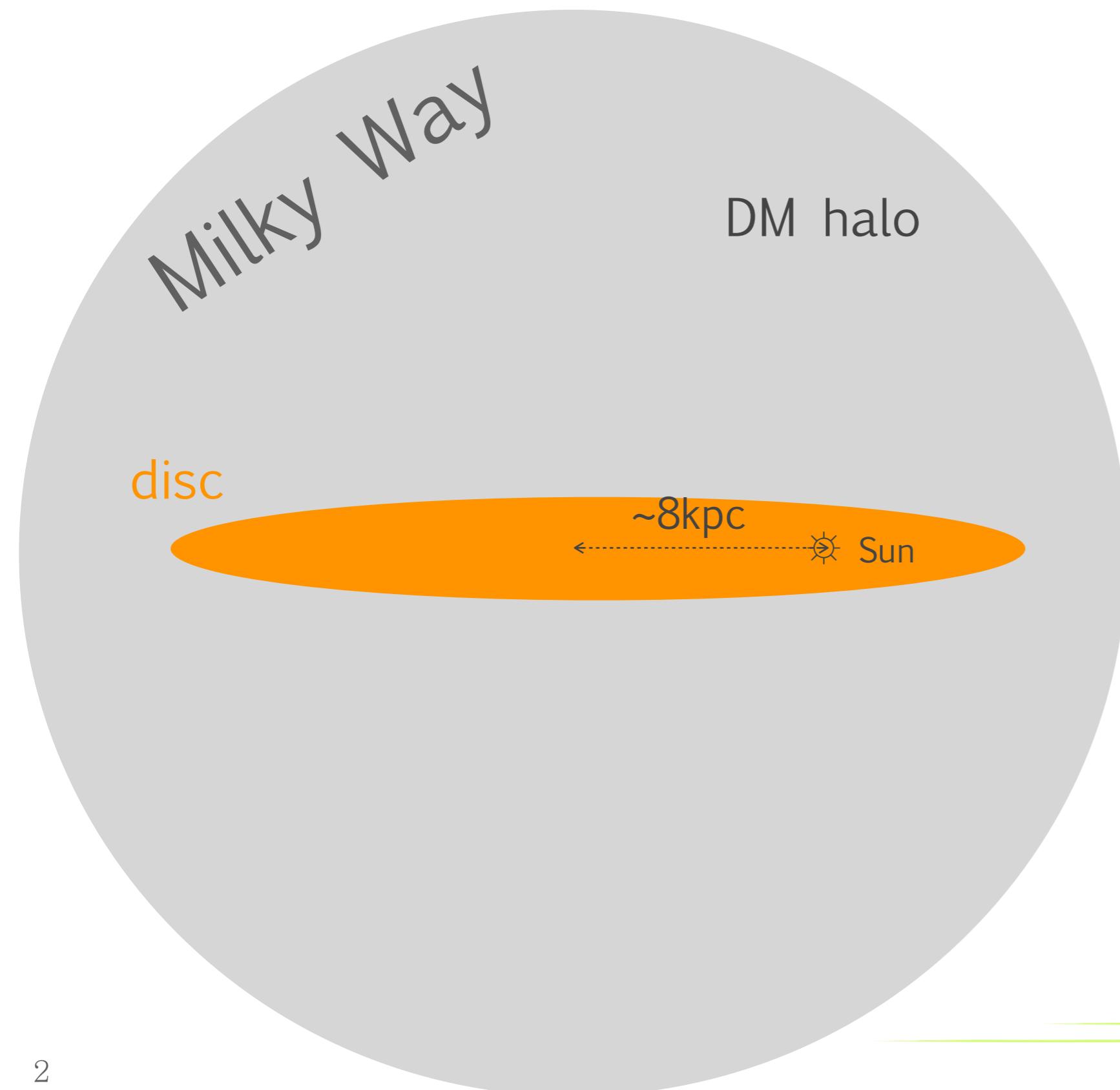


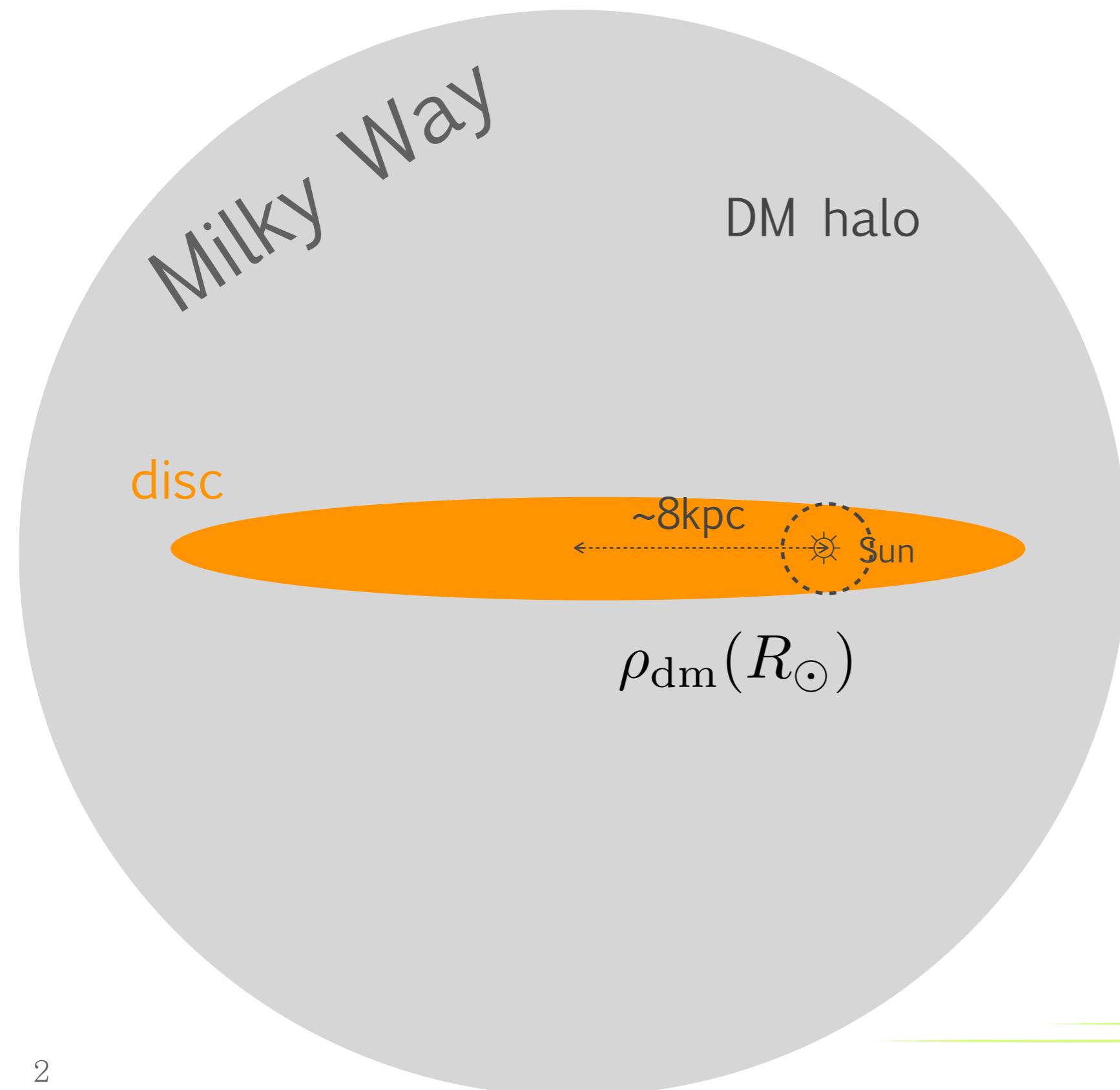
A new measurement of $\rho_{\text{DM}}(R_{\odot})$ from the kinematics of K dwarfs

Silvia Garbari
with Justin Read, George Lake and Chao Liu

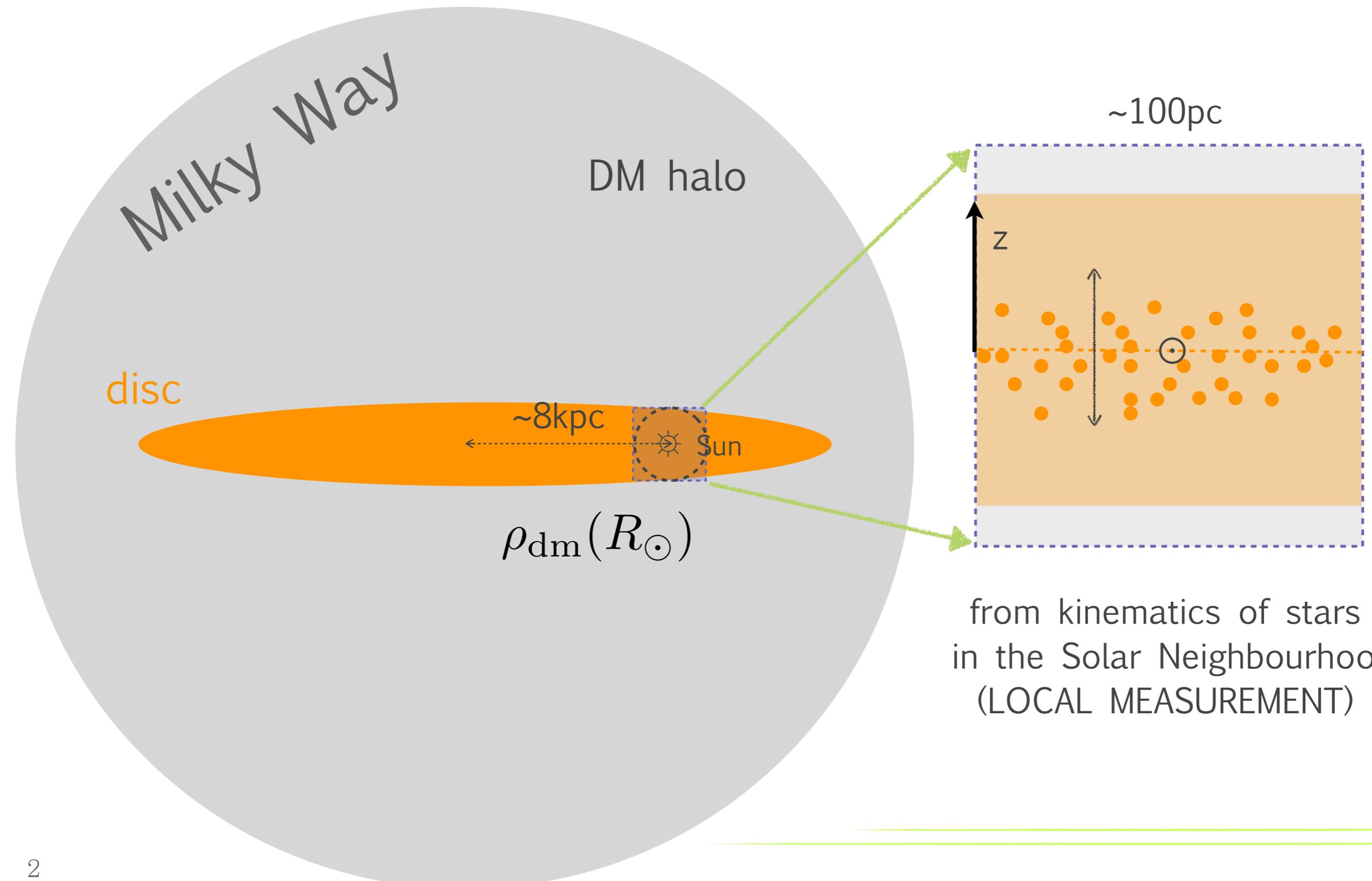
Measuring the local dark matter density $\rho_{\text{DM}}(R_\odot)$



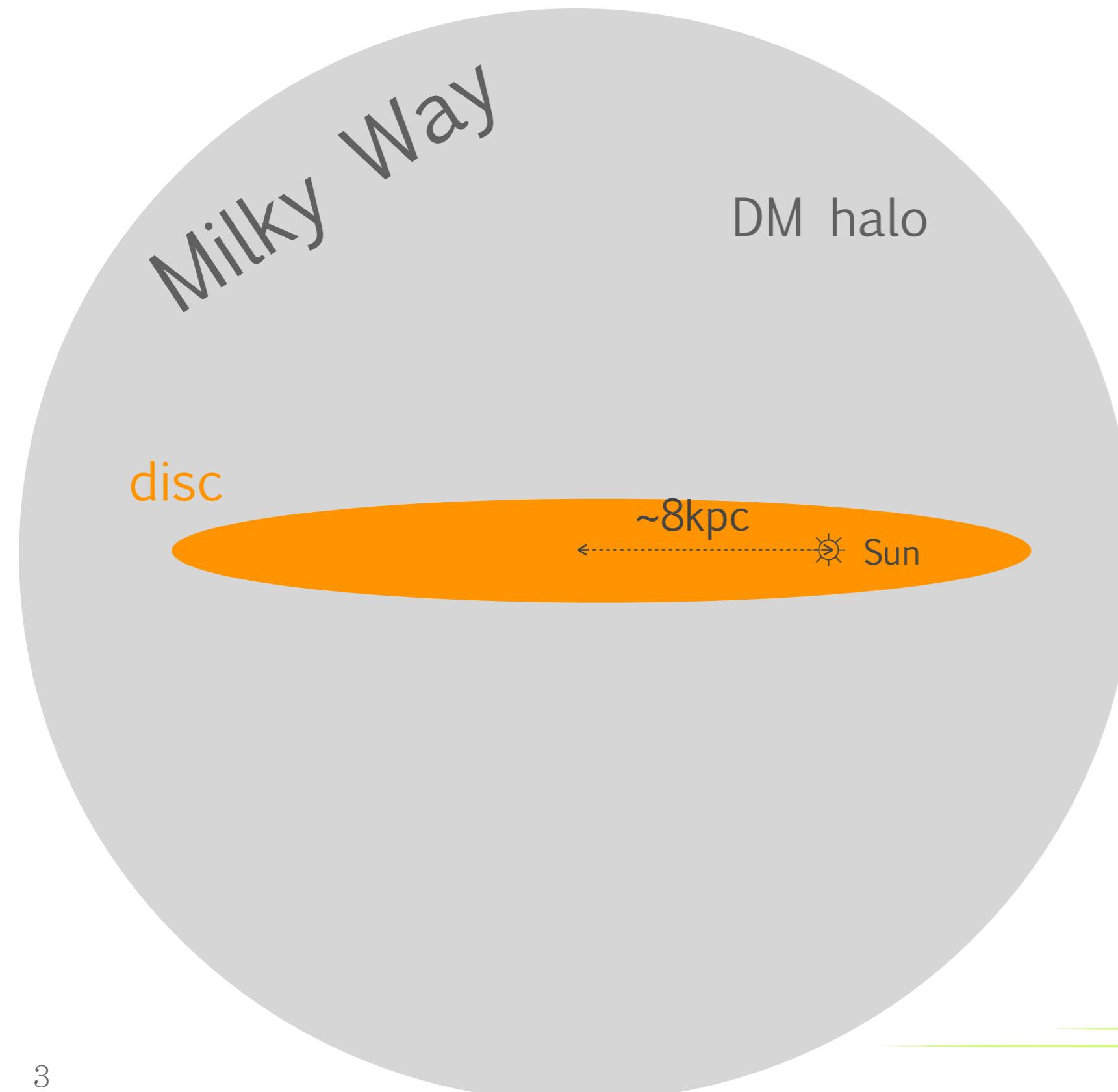
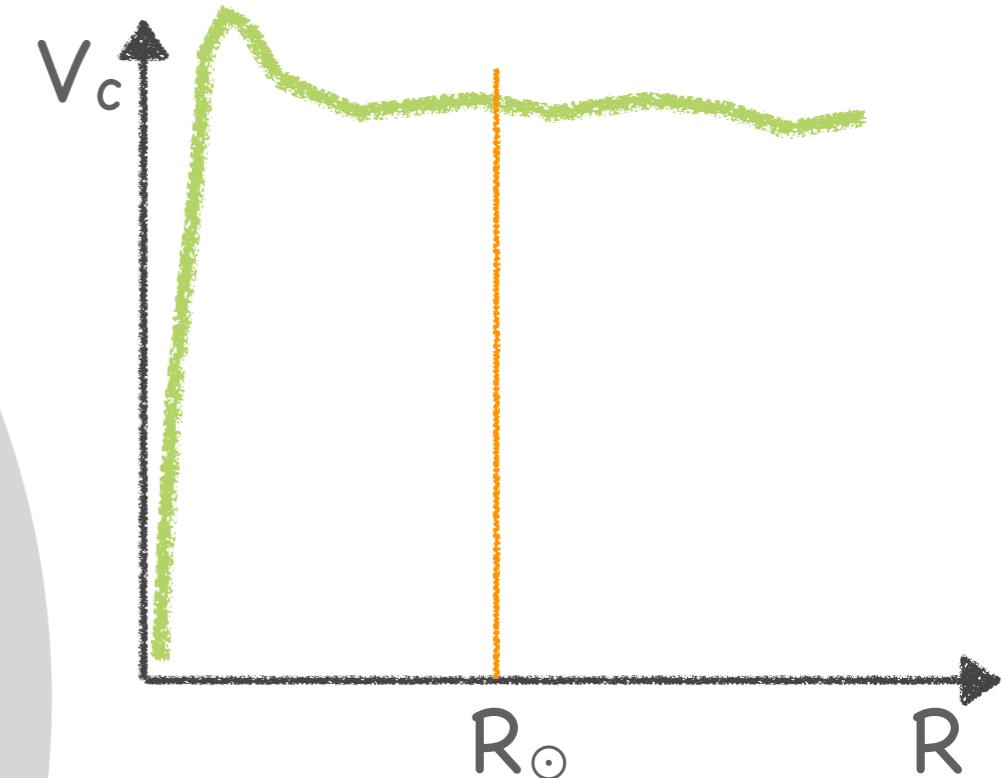
Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$



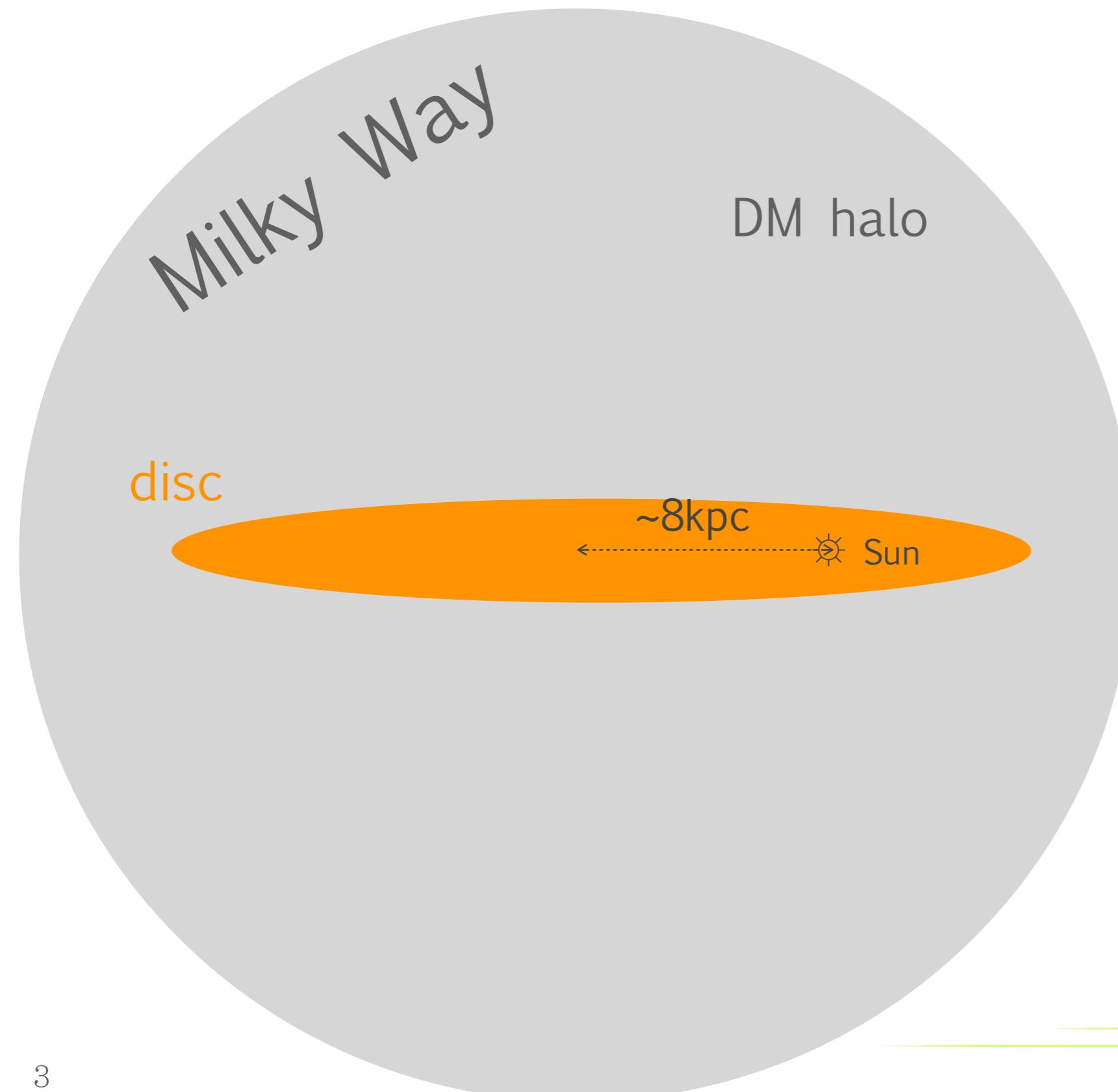
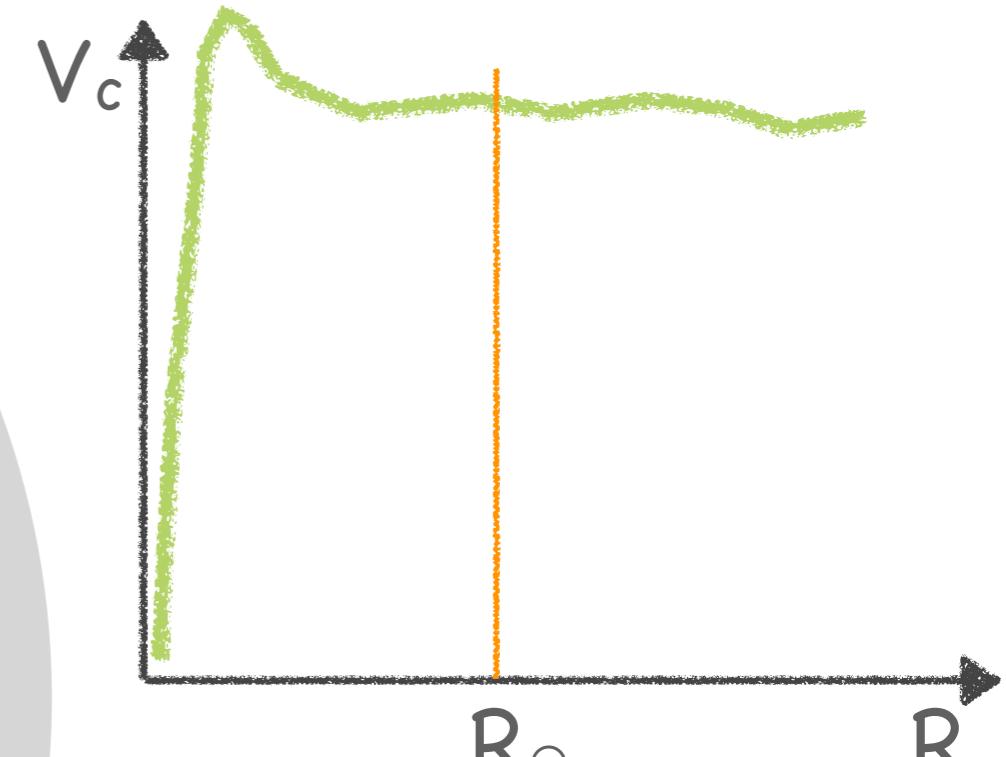
Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$



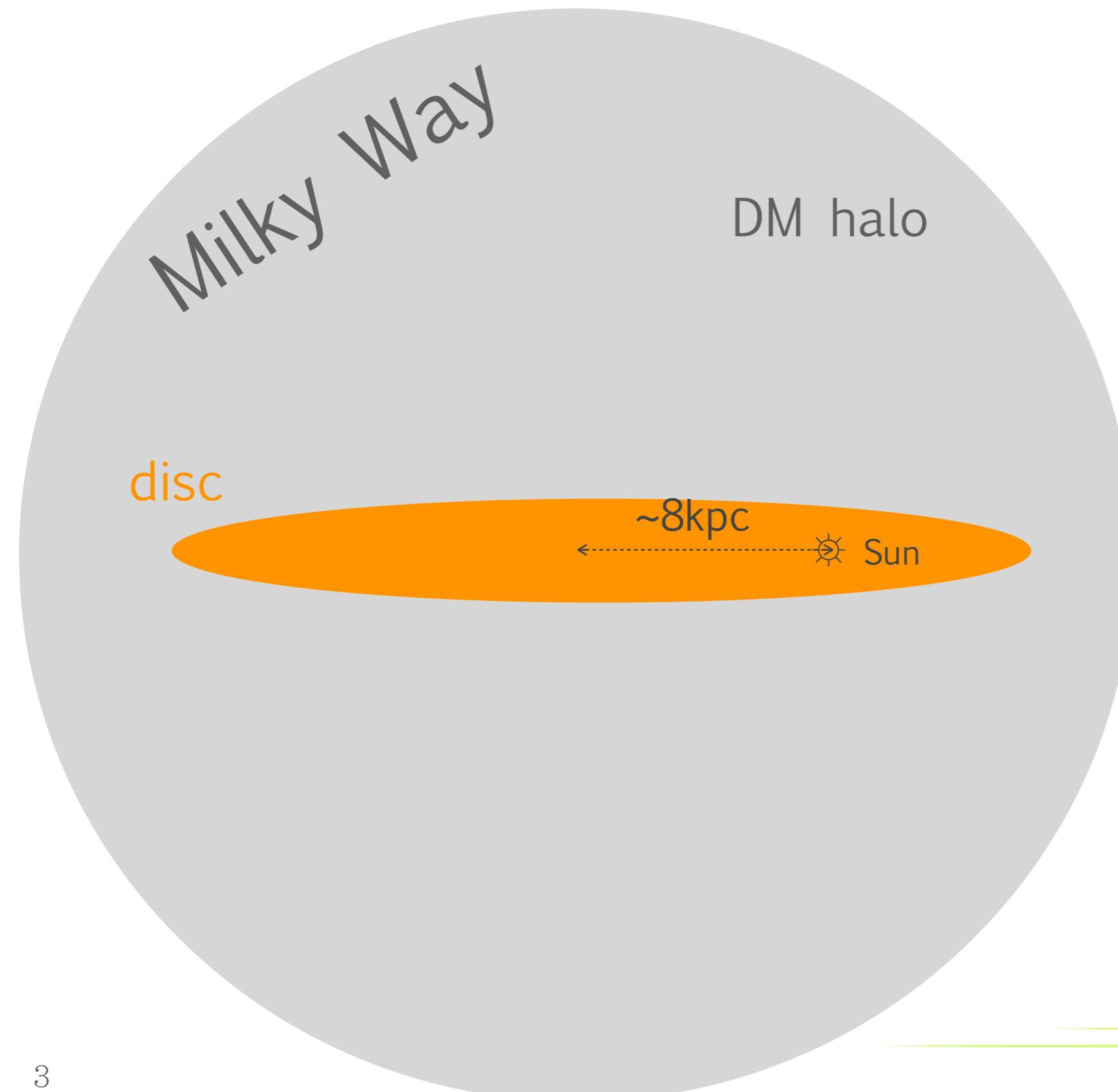
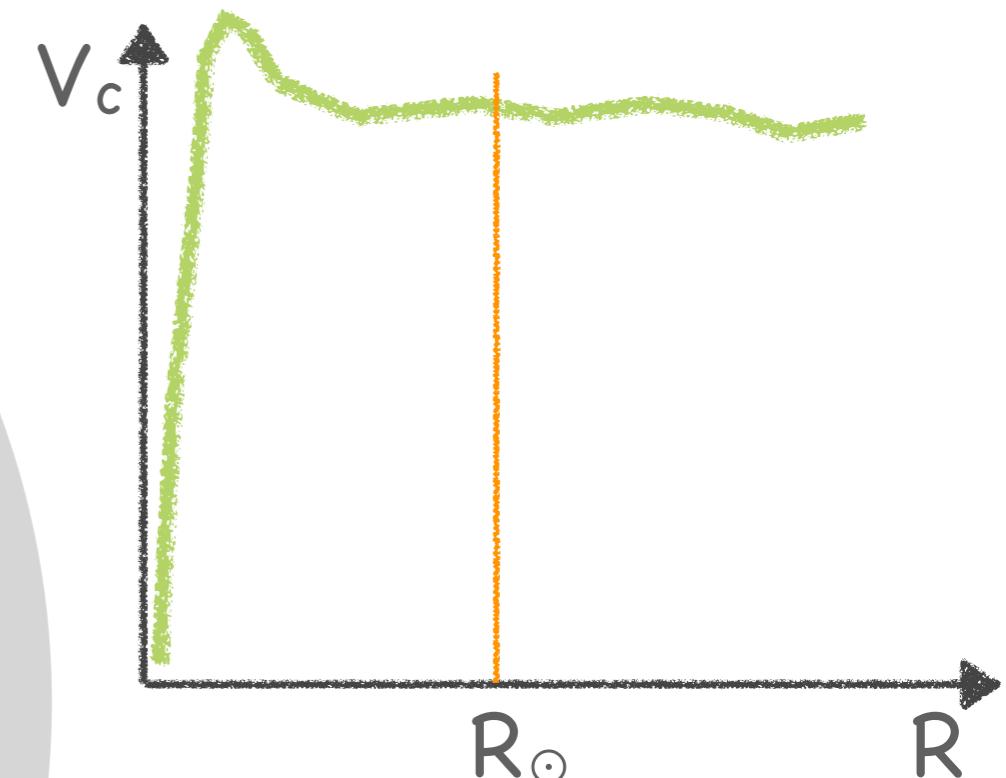
Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$



Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$



Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$

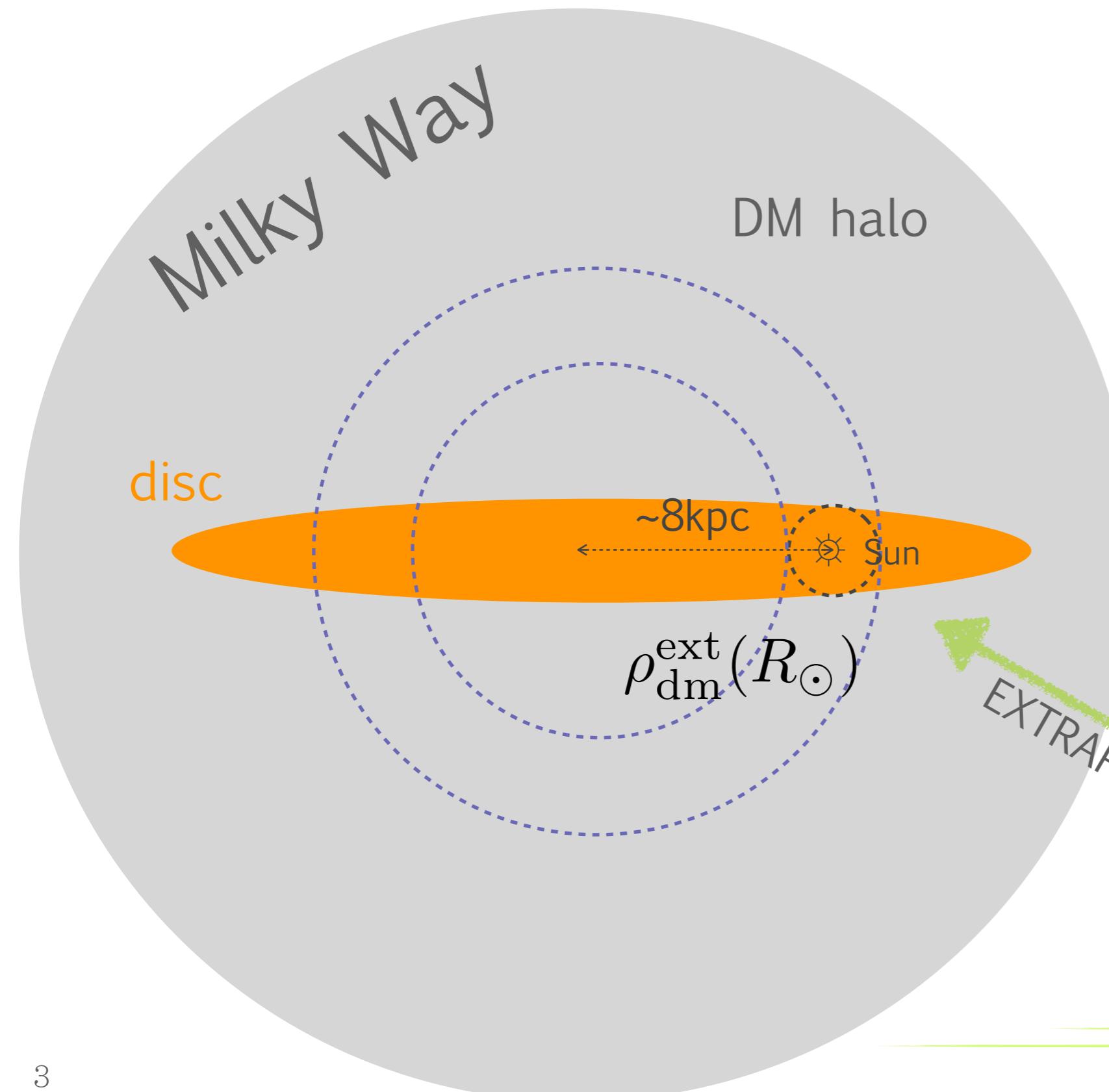
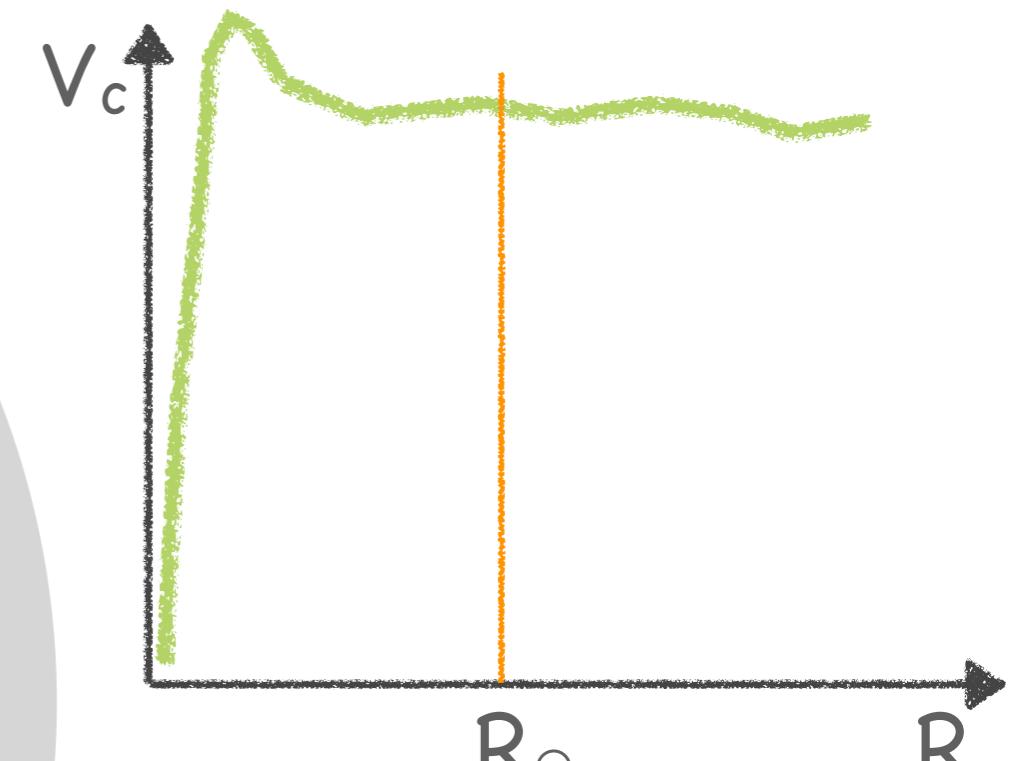


assumptions
on the halo shape

$$V_c^2(R) = \frac{GM}{R}$$

spherical

Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$

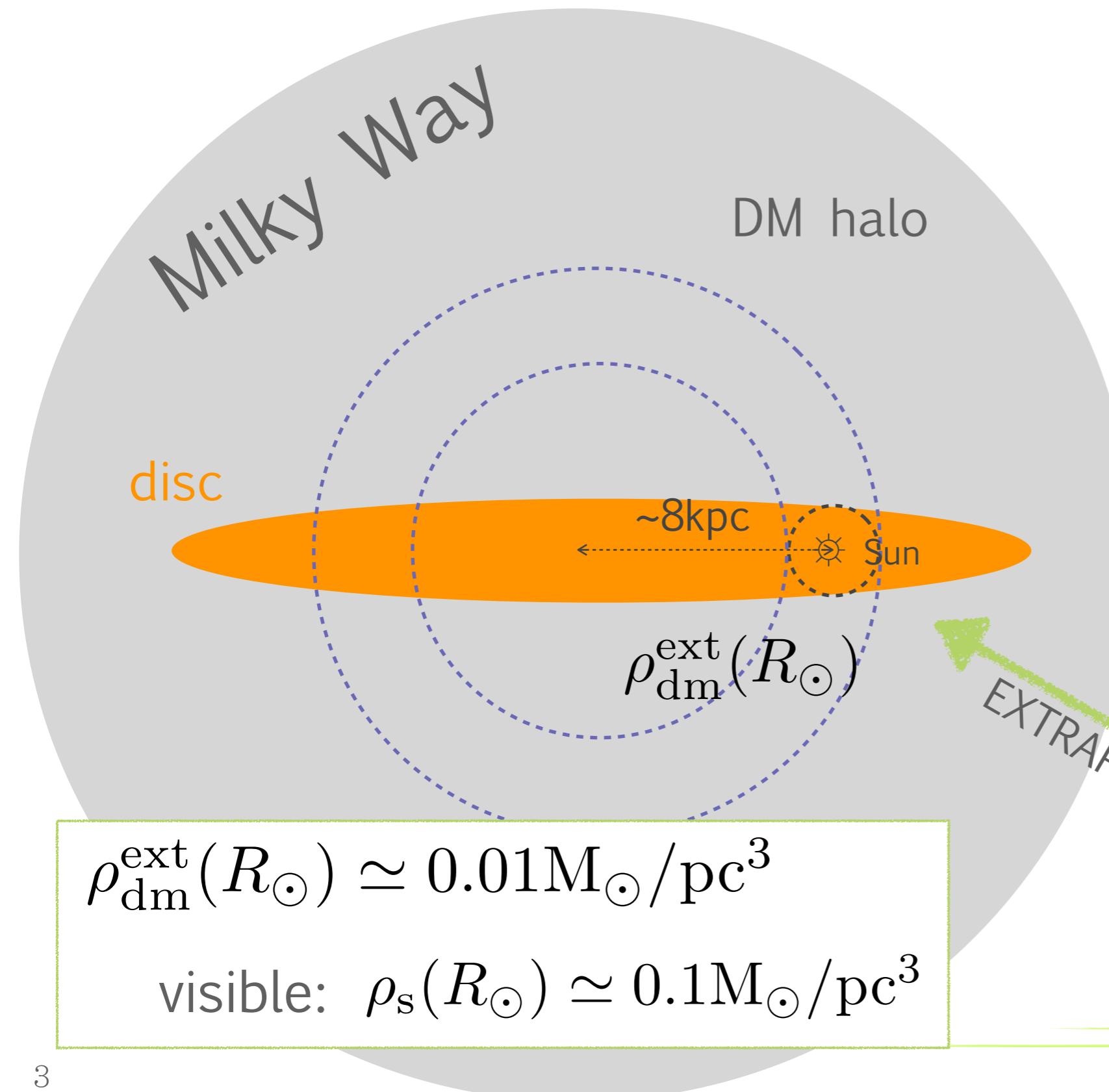
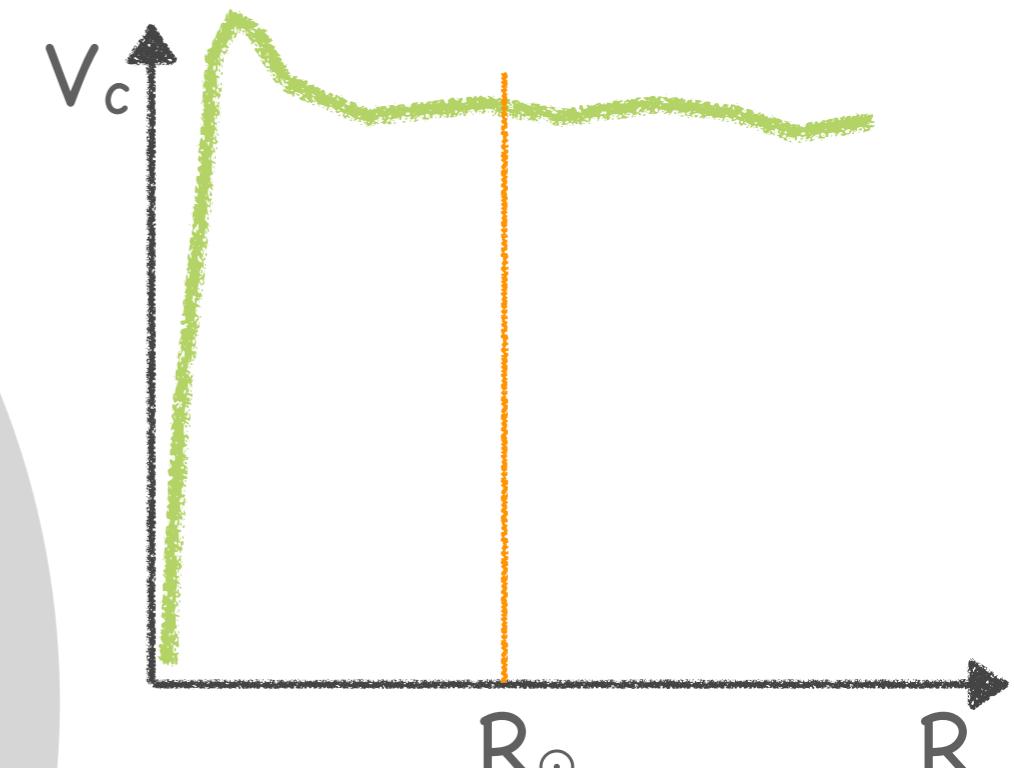


assumptions
on the halo shape

$$V_c^2(R) = \frac{GM}{R}$$

spherical

Measuring the local dark matter density $\rho_{\text{DM}}(R_{\odot})$



assumptions
on the halo shape

$$V_c^2(R) = \frac{GM}{R}$$

spherical

Why is $\rho_{\text{DM}}(R_\odot)$ interesting?

1. Constraints on the shape of the DM Halo of the MW

spherical halo: $\rho_{\text{dm}}^{\text{ext}}(R_\odot) \simeq 0.01 M_\odot/\text{pc}^3$

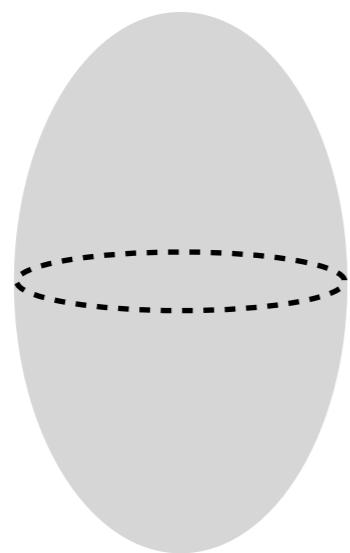
Why is $\rho_{\text{DM}}(R_\odot)$ interesting?

1. Constraints on the shape of the DM Halo of the MW

spherical halo: $\rho_{\text{dm}}^{\text{ext}}(R_\odot) \simeq 0.01 M_\odot/\text{pc}^3$

$$\rho_{\text{dm}}(R_\odot) < \rho_{\text{dm}}^{\text{ext}}(R_\odot)$$

prolate halo



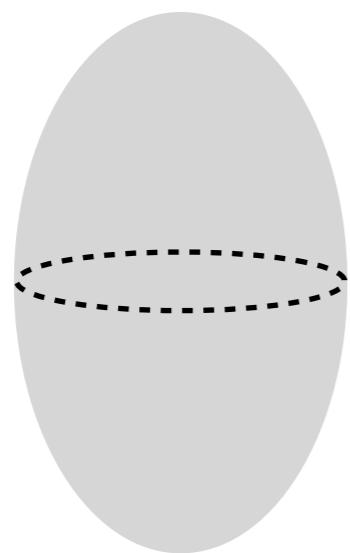
Why is $\rho_{\text{DM}}(R_\odot)$ interesting?

1. Constraints on the shape of the DM Halo of the MW

spherical halo: $\rho_{\text{dm}}^{\text{ext}}(R_\odot) \simeq 0.01 M_\odot/\text{pc}^3$

$$\rho_{\text{dm}}(R_\odot) < \rho_{\text{dm}}^{\text{ext}}(R_\odot)$$

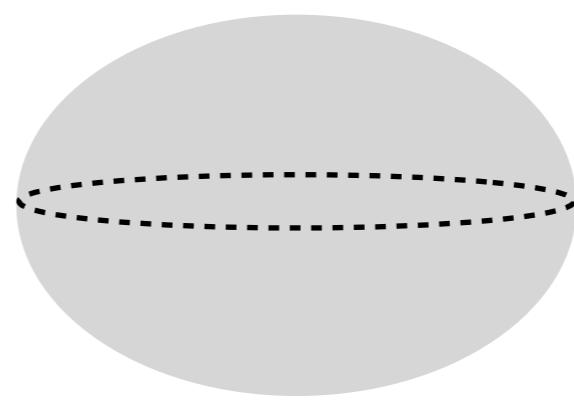
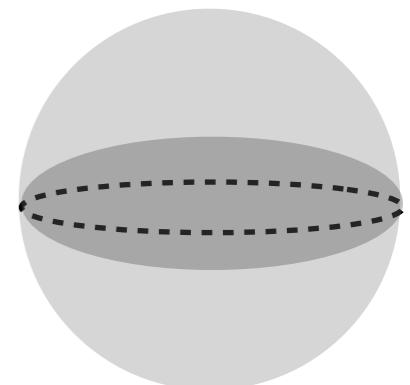
prolate halo



$$\rho_{\text{dm}}(R_\odot) > \rho_{\text{dm}}^{\text{ext}}(R_\odot)$$

oblate halo

(or/and dark disc [Read 2008,2009])



Why is $\rho_{\text{DM}}(R_{\odot})$ interesting?

2. WIMPS detection experiments

if DM=WIMP (Weakly Interacting Massive Particles)

direct detection:

nuclear recoil caused by a WIMP scattering within the detector

Why is $\rho_{\text{DM}}(R_{\odot})$ interesting?

2. WIMPS detection experiments

if DM=WIMP (Weakly Interacting Massive Particles)

direct detection:

nuclear recoil caused by a WIMP scattering within the detector

$$\frac{dR}{dE} \propto \frac{\rho_{\text{dm}} \sigma_{\text{wn}}}{m}$$

Why is $\rho_{\text{DM}}(R_{\odot})$ interesting?

2. WIMPS detection experiments

if DM=WIMP (Weakly Interacting Massive Particles)

direct detection:

nuclear recoil caused by a WIMP scattering within the detector

$$\frac{dR}{dE} \propto \frac{\rho_{\text{dm}} \sigma_{\text{wn}}}{m}$$

what we want to measure

Minimal Assumption Method

$$\frac{df}{dt} = 0 = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}}$$

Minimal Assumption Method

$$\frac{df}{dt} = 0 = \cancel{\frac{\partial f}{\partial t}} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}}$$

hyp. 1: the system is in equilibrium
(steady state)

Minimal Assumption Method

$$\frac{df}{dt} = 0 = \cancel{\frac{\partial f}{\partial t}} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}}$$

hyp. 1: the system is in equilibrium
(steady state)

BUT $f(\mathbf{r}, \mathbf{v})$
is hard to measure

Minimal Assumption Method

$$\frac{df}{dt} = 0 = \cancel{\frac{\partial f}{\partial t}} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}}$$

hyp. 1: the system is in equilibrium
(steady state)

BUT $f(\mathbf{r}, \mathbf{v})$
is hard to measure

Moments =
Jeans equations

$$\frac{1}{R} \frac{\partial}{\partial R} (R \nu_i \bar{v}_R \bar{v}_z) + \frac{\partial}{\partial z} \left(\nu_i \bar{v}_z^2 \right) + \nu_i \frac{\partial \Phi}{\partial z} = 0$$

Minimal Assumption Method

$$\frac{1}{R} \frac{\partial}{\partial R} (R \nu_i \overline{v_R v_z}) + \frac{\partial}{\partial z} \left(\nu_i \overline{v_z^2} \right) + \nu_i \frac{\partial \Phi}{\partial z} = 0$$

Minimal Assumption Method

$$\frac{1}{R} \frac{\partial}{\partial R} (\cancel{R \nu_i \bar{v}_R v_z}) + \frac{\partial}{\partial z} \left(\nu_i \bar{v}_z^2 \right) + \nu_i \frac{\partial \Phi}{\partial z} = 0$$

hyp. 2: tilt term is negligible

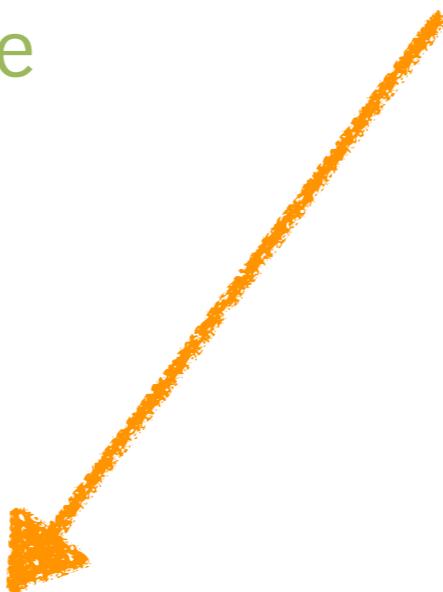
$\Leftrightarrow z_d \ll R_d$ [Bahcall, 1984; Binney&Tremaine 2008]

Minimal Assumption Method

$$\frac{1}{R} \frac{\partial}{\partial R} (\cancel{R \nu_i \overline{v_R v_z}}) + \frac{\partial}{\partial z} \left(\nu_i \overline{v_z^2} \right) + \nu_i \frac{\partial \Phi}{\partial z} = 0$$

hyp. 2: tilt term is negligible

$\Leftrightarrow z_d \ll R_d$ [Bahcall, 1984; Binney&Tremaine 2008]



$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G(\rho_s + \rho_{dm}) = \frac{\partial^2 \Phi}{\partial z^2} + \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi}{\partial R} \right)$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G(\rho_s + \rho_{dm}) = \frac{\partial^2 \Phi}{\partial z^2} + \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi}{\partial R} \right)$$

hyp. 3: ρ_{dm} independent of z

$$\rho_{dm}(z) = \rho_{dm}(0)$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G(\rho_s + \rho_{dm}) = \frac{\partial^2 \Phi}{\partial z^2} + \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi}{\partial R} \right)$$

hyp. 3: ρ_{dm} independent of z

$$\rho_{dm}(z) = \rho_{dm}(0)$$

negligible

$$\frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi}{\partial R} \right) = \frac{1}{R} \frac{\partial V_c^2}{\partial R} = 2(B^2 - A^2)$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G (\rho_{\text{disc}} + \rho_{\text{dm}}) = \frac{\partial^2 \Phi}{\partial z^2}$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G (\rho_{\text{disc}} + \rho_{\text{dm}}) = \frac{\partial^2 \Phi}{\partial z^2}$$

$$\rho_{\text{disc}}(z) = \sum_i^N \nu_{0,i} \exp \left(- \frac{\Phi(z)}{\overline{v_{z,i}^2}} \right)$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G (\rho_{\text{disc}} + \rho_{\text{dm}}) = \frac{\partial^2 \Phi}{\partial z^2}$$

$$\rho_{\text{disc}}(z) = \sum_i^N \nu_{0,i} \exp \left(- \frac{\Phi(z)}{\overline{v_{z,i}^2}} \right)$$

Minimal Assumption Method

Tracer population:

$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp \left(- \int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz \right)$$

Poisson: matter density

$$4\pi G (\rho_{\text{disc}} + \rho_{\text{dm}}) = \frac{\partial^2 \Phi}{\partial z^2}$$
$$\rho_{\text{disc}}(z) = \sum_i^N \nu_{0,i} \exp \left(-\frac{\Phi(z)}{\overline{v_{z,i}^2}} \right)$$

HF method [Holmberg & Flynn, 2000]

hyp. 5: the distribution function is separable

$$f = f_{R,\theta}(v_R, v_\theta, R) \times f_z(v_z, z)$$

HF method [Holmberg & Flynn, 2000]

hyp. 5: the distribution function is separable

$$f = f_{R,\theta}(v_R, v_\theta, R) \times f_z(v_z, z)$$

$$\nu_i(z) = 2 \int_{\sqrt{2\Phi}}^{\infty} \frac{f(v_{z0}) v_{z0} dv_{z0}}{\sqrt{v_{z0}^2 - 2\Phi(z)}}$$

$$v_{z0} = v_z(0)$$

HF method [Holmberg & Flynn, 2000]

hyp. 5: the distribution function is separable

$$f = f_{R,\theta}(v_R, v_\theta, R) \times f_z(v_z, z)$$

$$\nu_i(z) = 2 \int_{\sqrt{2\Phi}}^{\infty} \frac{f(v_{z0}) v_{z0} dv_{z0}}{\sqrt{v_{z0}^2 - 2\Phi(z)}}$$

$$v_{z0} = v_z(0)$$

$$f(v_z(z), z)$$

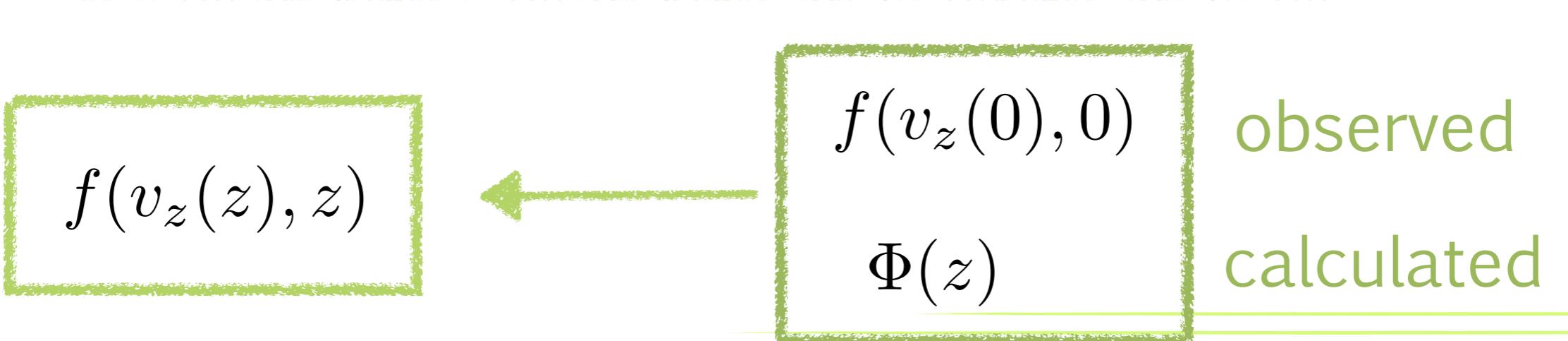
HF method [Holmberg & Flynn, 2000]

hyp. 5: the distribution function is separable

$$f = f_{R,\theta}(v_R, v_\theta, R) \times f_z(v_z, z)$$

$$\nu_i(z) = 2 \int_{\sqrt{2\Phi}}^{\infty} \frac{f(v_{z0}) v_{z0} dv_{z0}}{\sqrt{v_{z0}^2 - 2\Phi(z)}}$$

$$v_{z0}=v_z(0)$$



Testing the methods with simulations

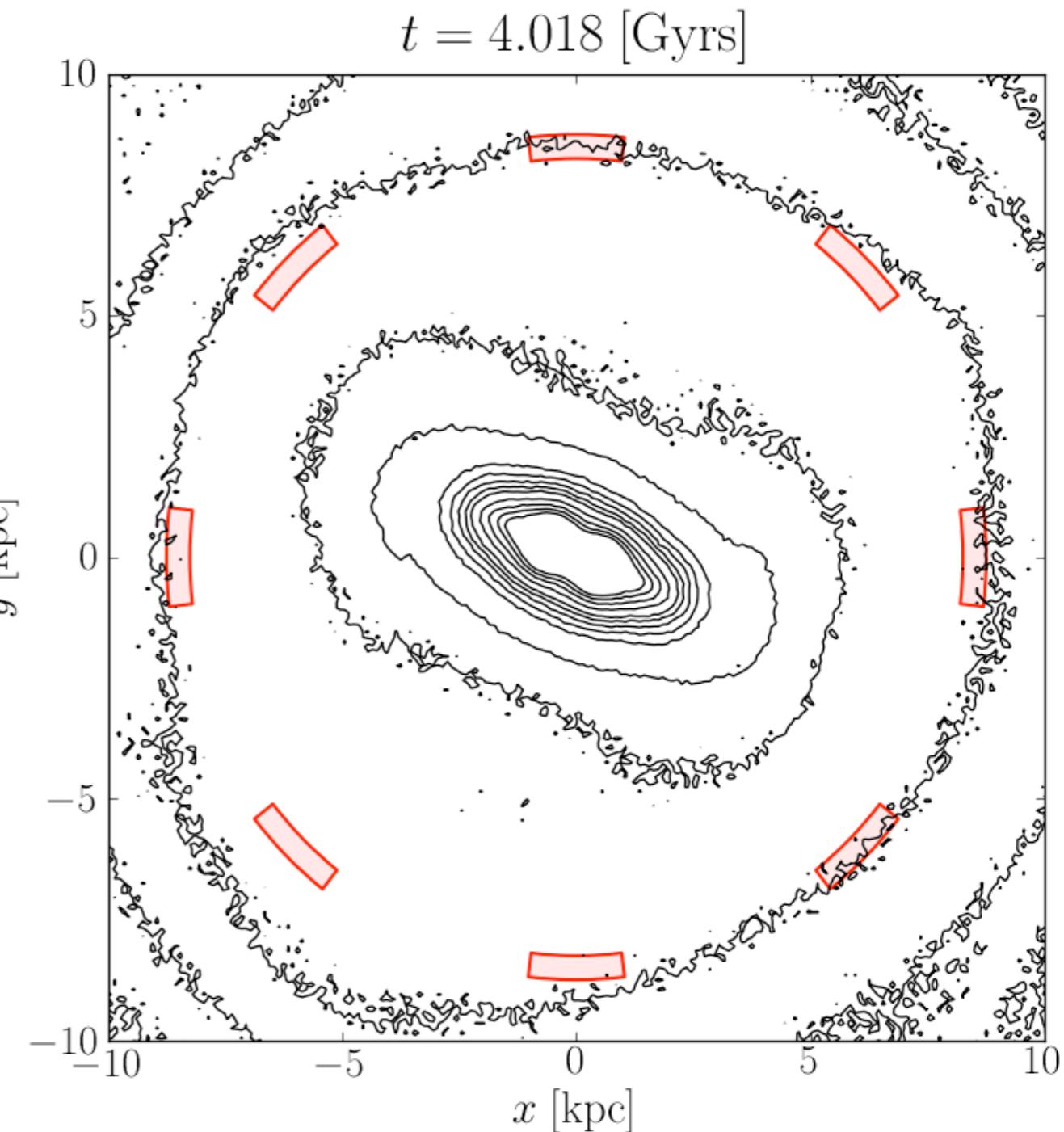
simulation

	N (10^6)	M ($10^{10} M_\odot$)	ε (kpc)	$R_{1/2}$ (kpc)	$z_{1/2}$ (kpc)
Disc	30	5.30	0.015	4.99	0.17
Bulge	0.5	0.83	0.012	–	–
Halo	15	45.40	0.045	–	–

Milky Way

	M ($10^{10} M_\odot$)	$R_{1/2}$ (kpc)	$z_{1/2}$ (kpc)
Thin disc	3.5–5.5 ^a	3.35–9.24	~0.14–0.18
Thick disc	–	5.04–7.56	0.49–0.84
Bulge	~1	–	–
Halo	~40–200	–	–

^aTotal disc mass.



Testing the methods with simulations

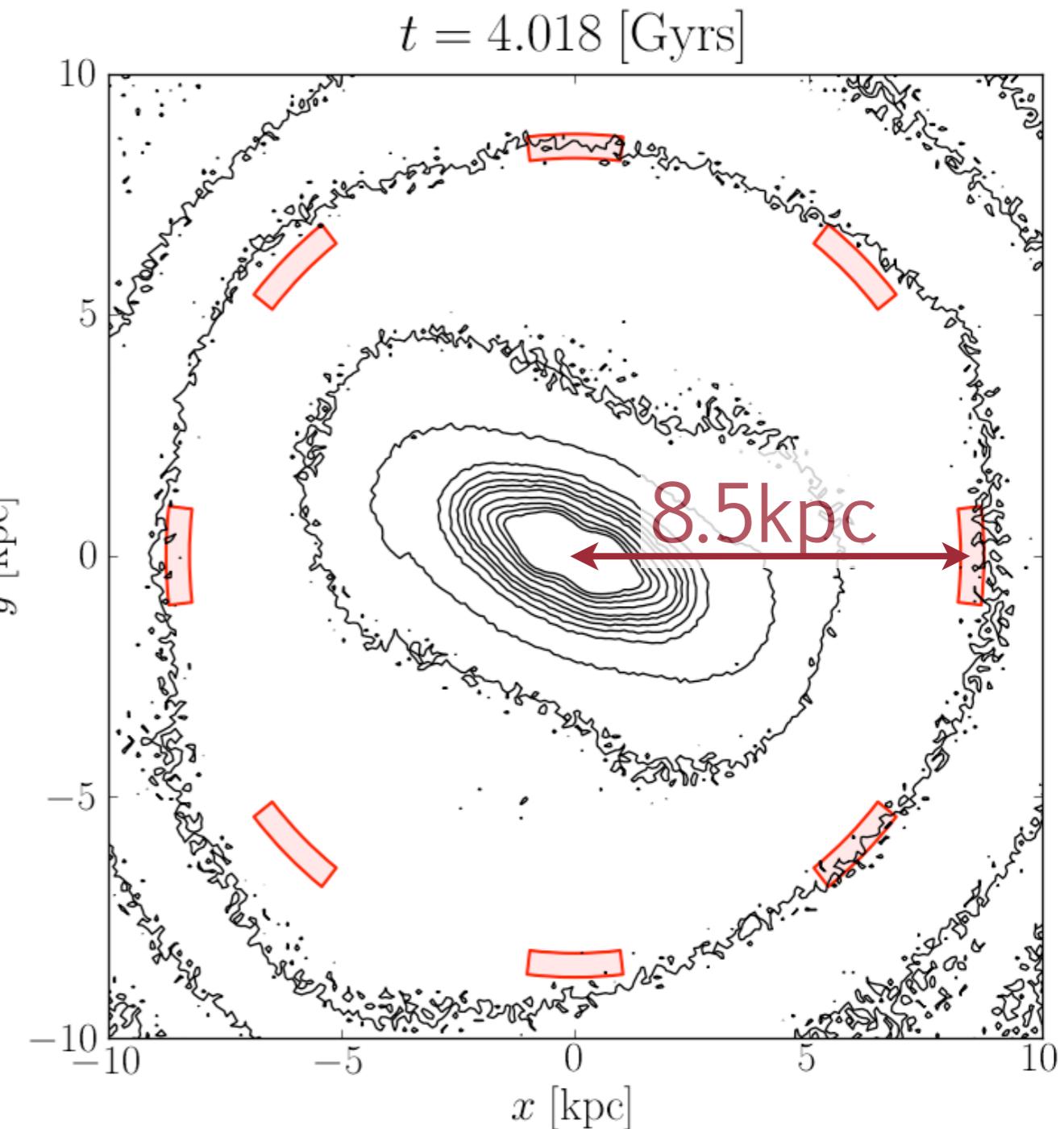
simulation

	N (10^6)	M ($10^{10} M_\odot$)	ε (kpc)	$R_{1/2}$ (kpc)	$z_{1/2}$ (kpc)
Disc	30	5.30	0.015	4.99	0.17
Bulge	0.5	0.83	0.012	—	—
Halo	15	45.40	0.045	—	—

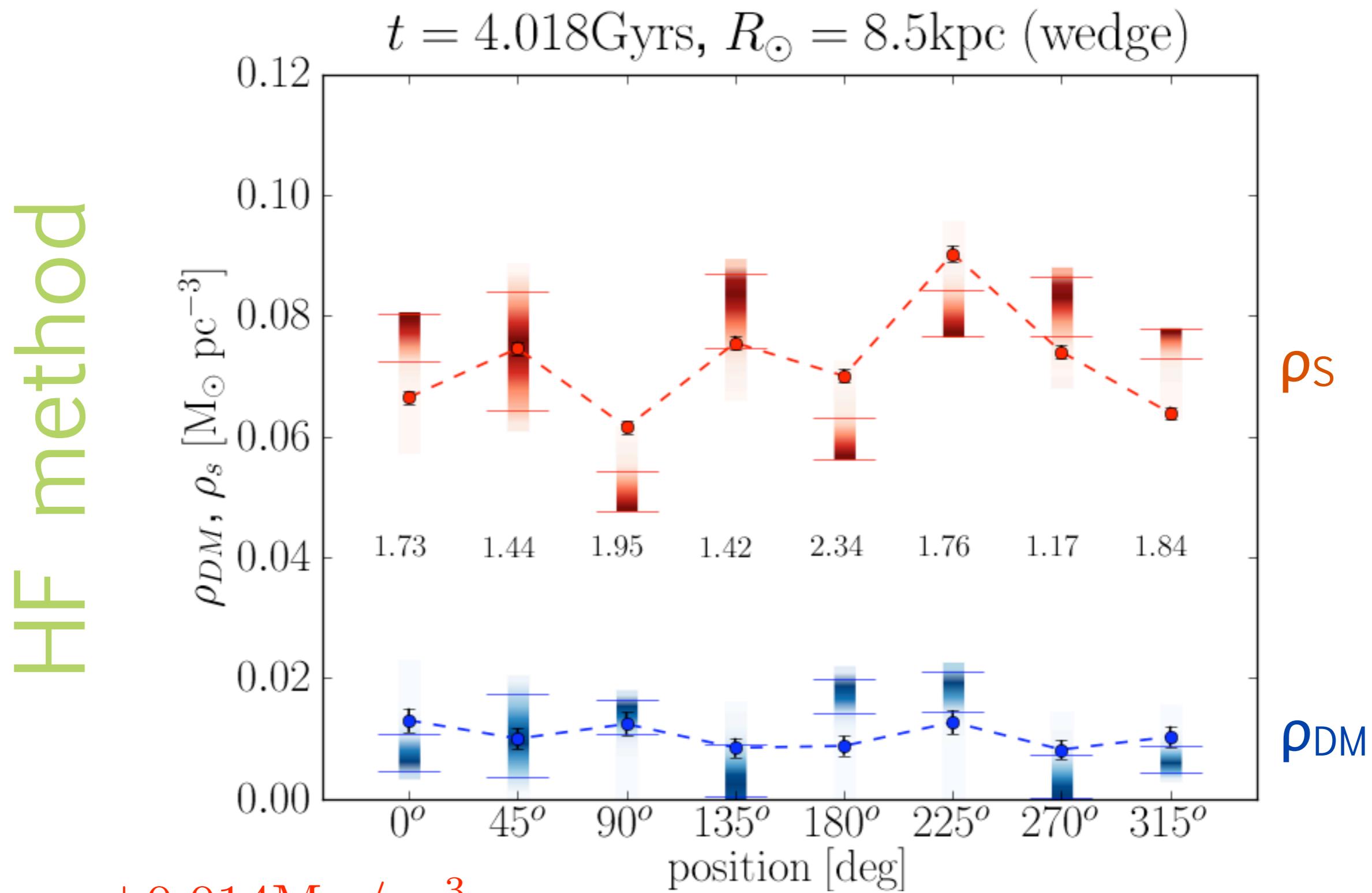
Milky Way

	M ($10^{10} M_\odot$)	$R_{1/2}$ (kpc)	$z_{1/2}$ (kpc)
Thin disc	3.5–5.5 ^a	3.35–9.24	~0.14–0.18
Thick disc	—	5.04–7.56	0.49–0.84
Bulge	~1	—	—
Halo	~40–200	—	—

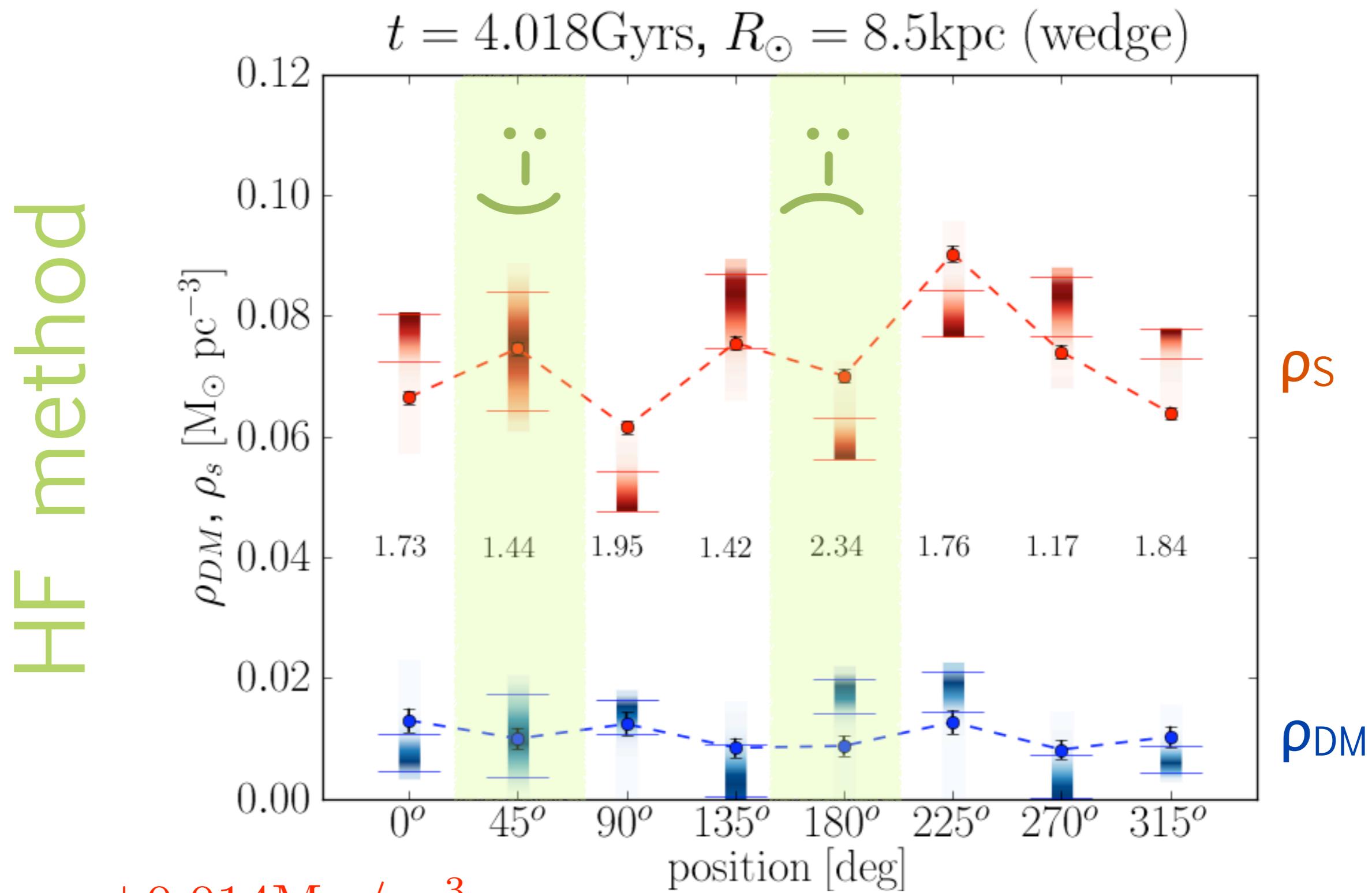
^aTotal disc mass.



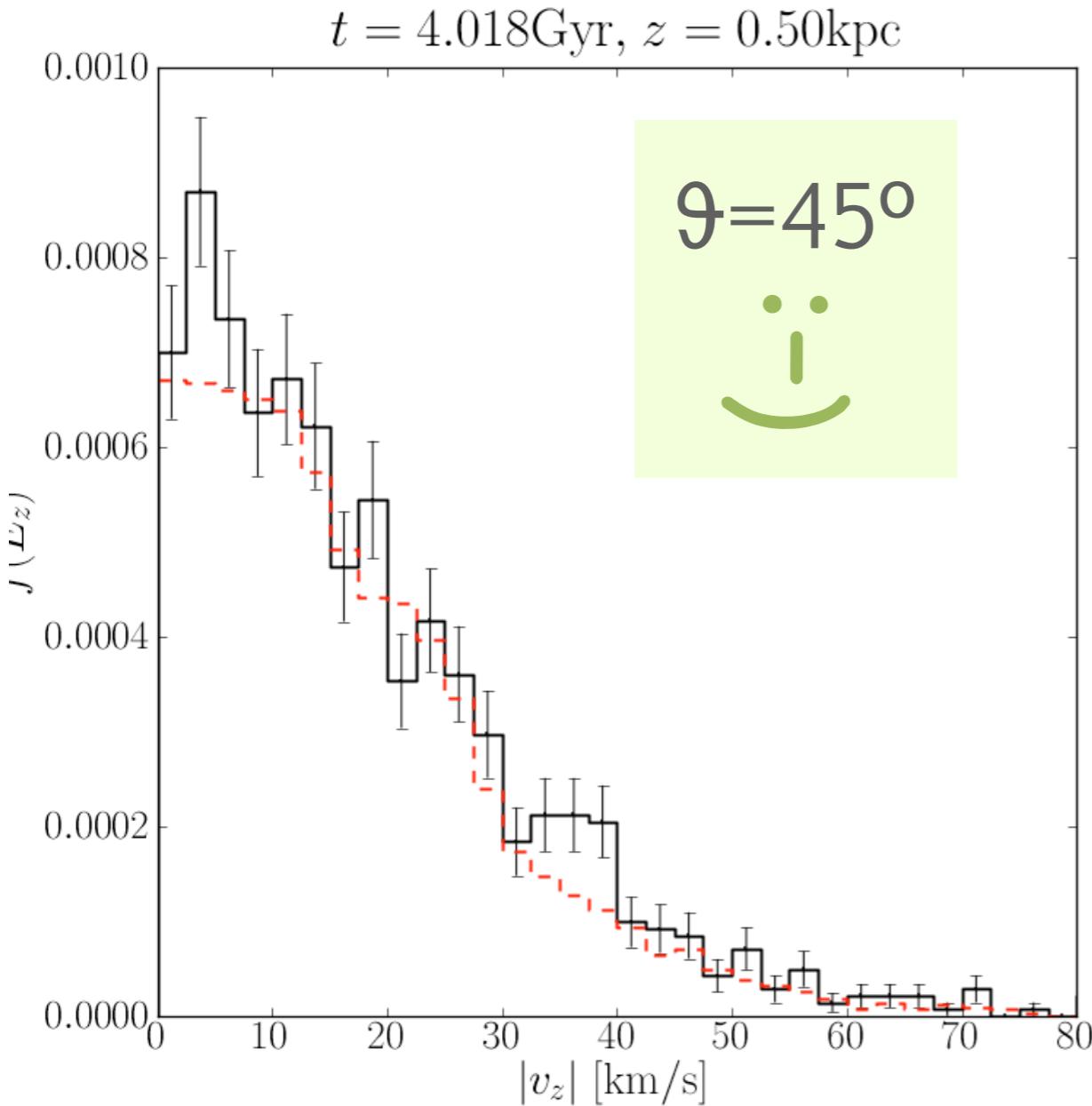
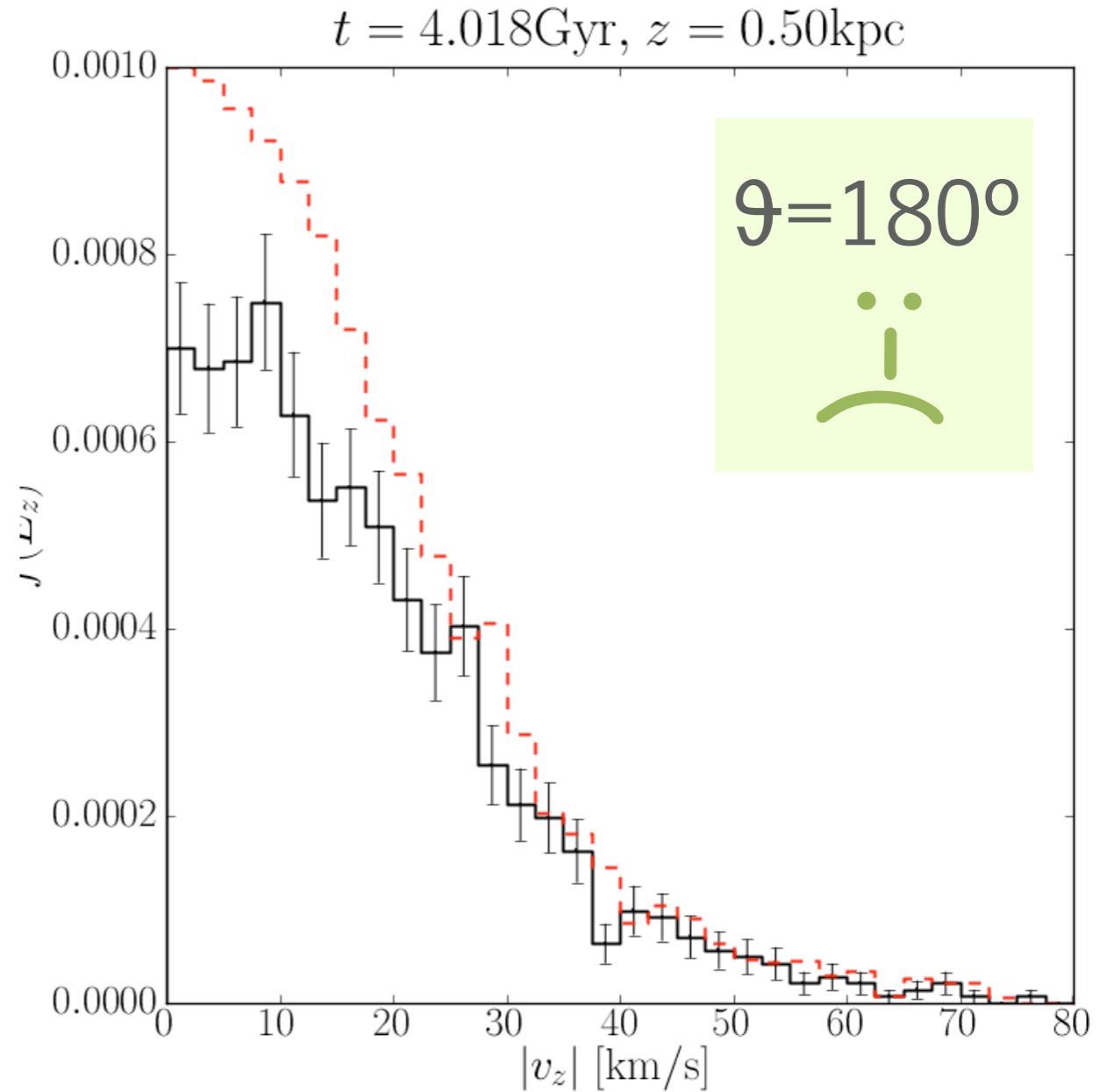
Evolved sim: HF vs MA method



Evolved sim: HF vs MA method

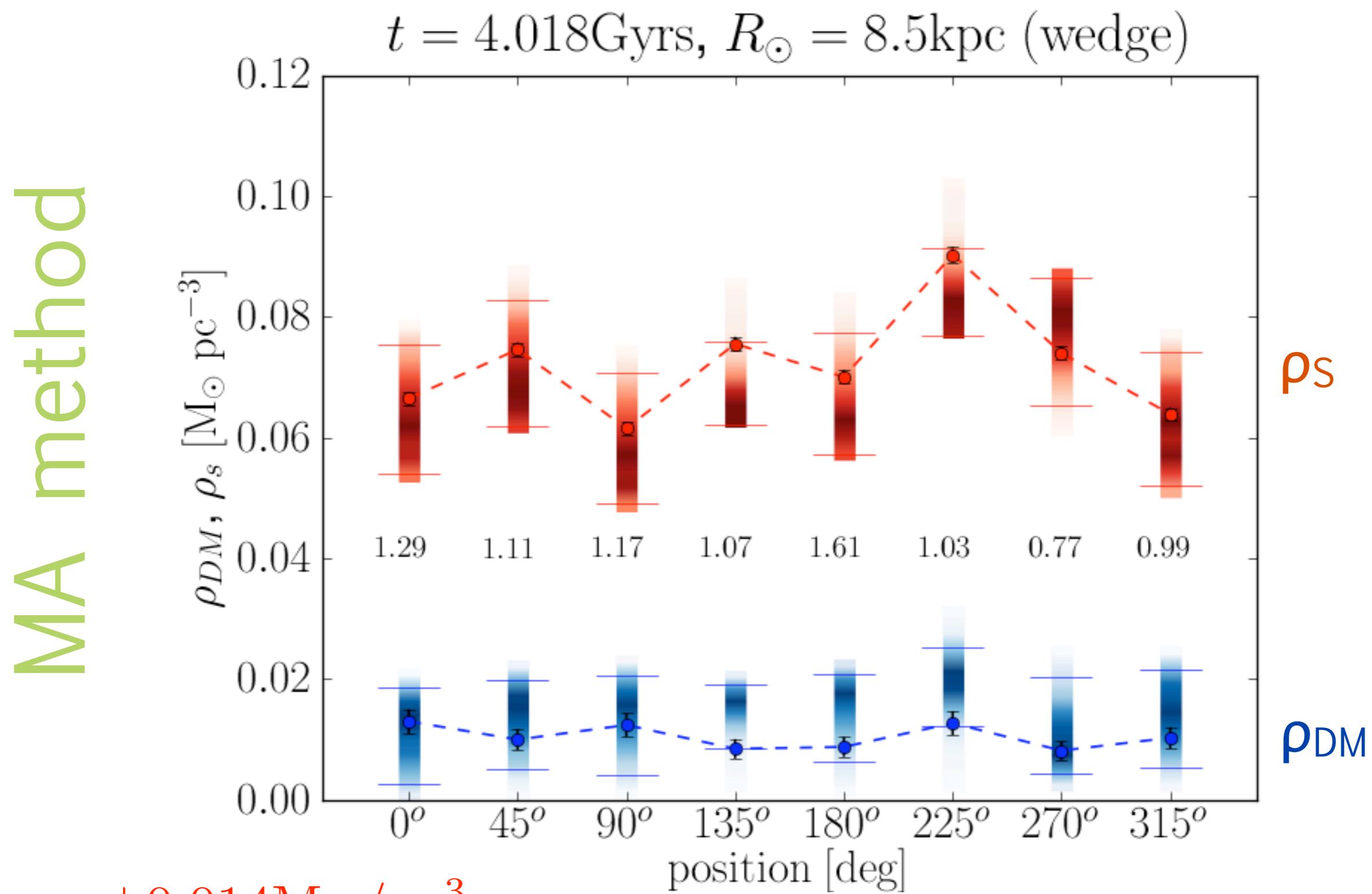


Evolved sim: distribution functions



Evolved simulation

Evolved sim: HF vs MA method



Tracer population

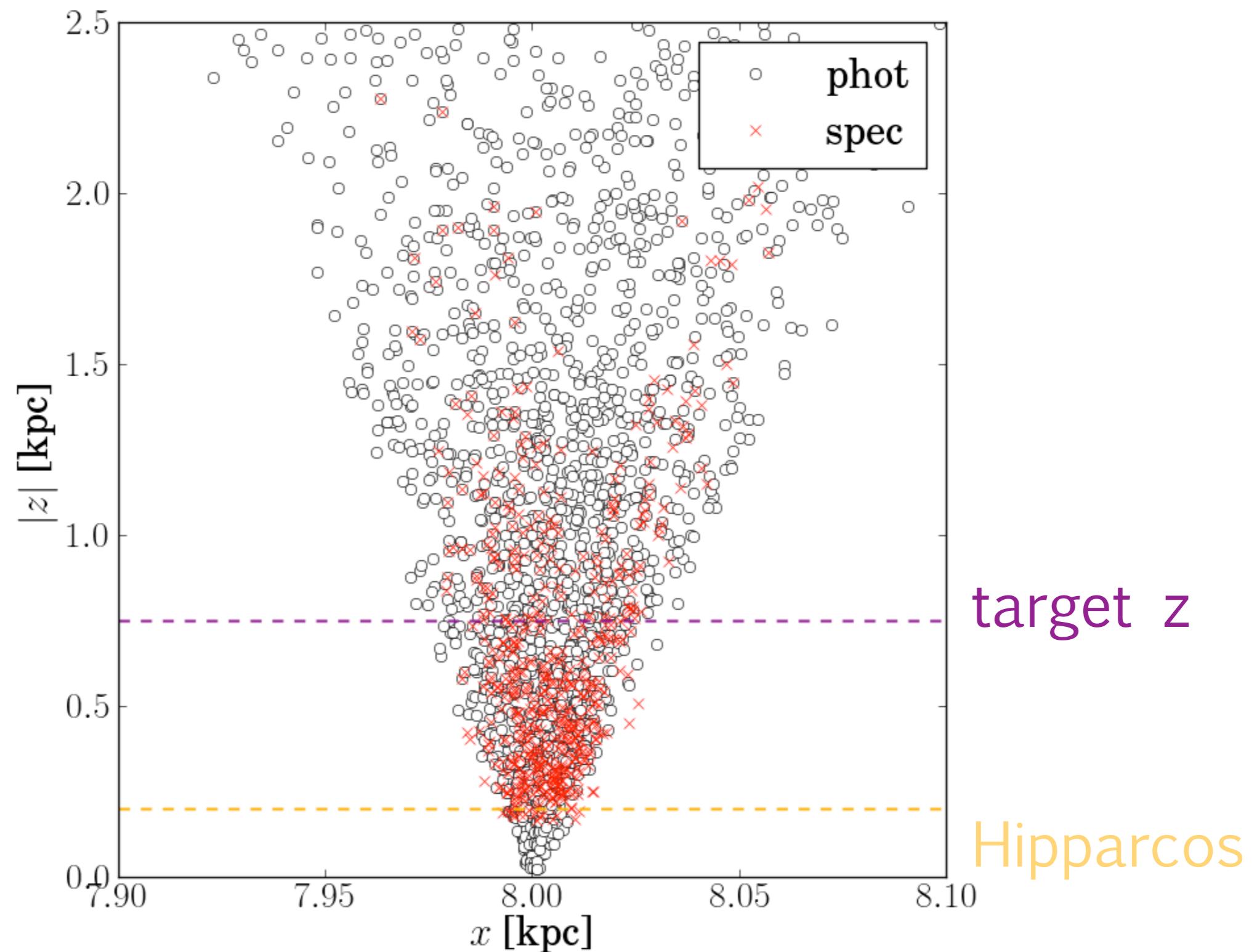
MUST BE:

- * in dynamical equilibrium with the Galactic potential.
- * common stars (to allow useful statistical precision in the result).
- * in a volume complete sample.
- * with reliable distances and vertical velocity available.

DATA: from Kuijken & Gilmore 1989 - K dwarfs

photometric
sample
~2000 stars

spectroscopic
sample ~600
stars

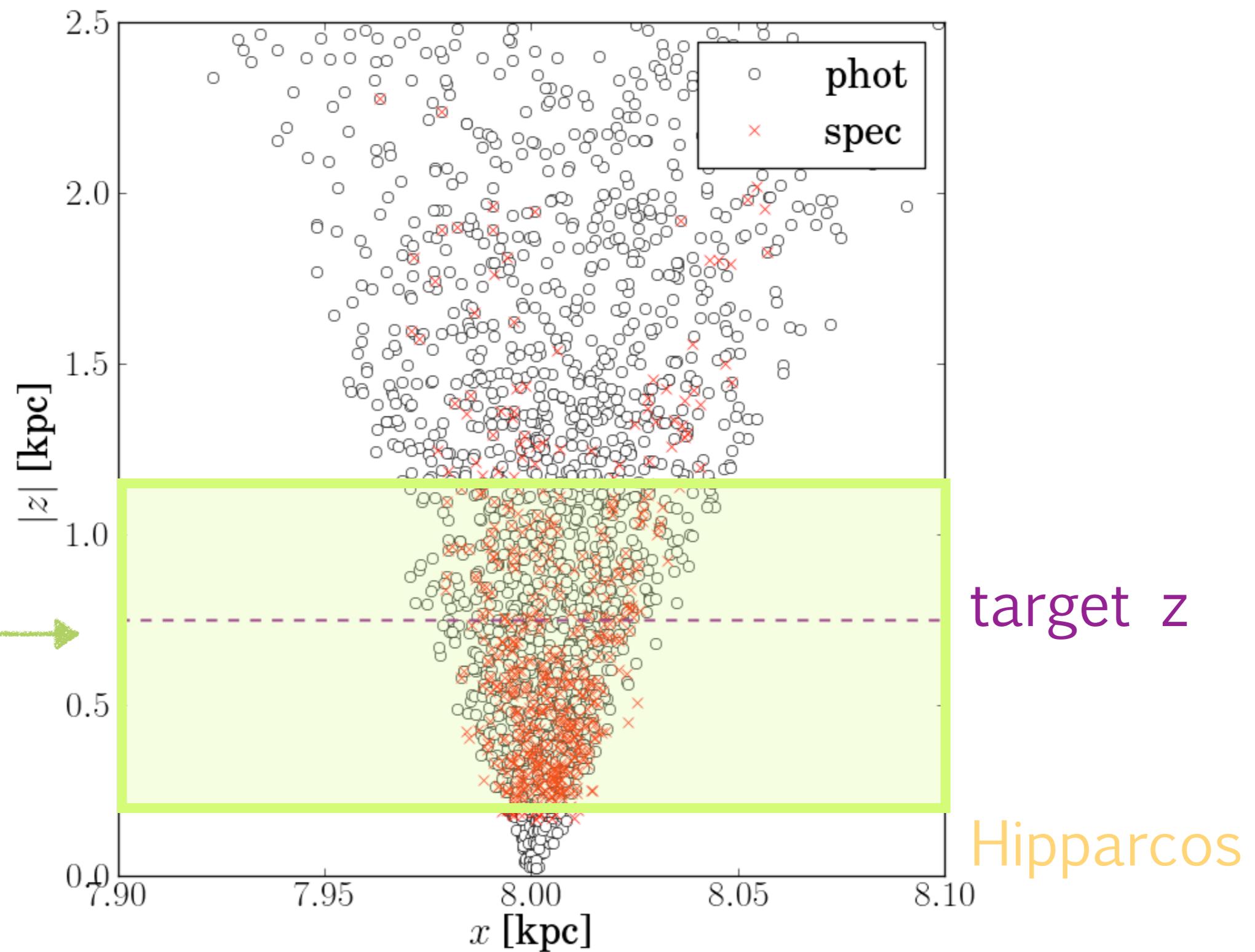


DATA: from Kuijken & Gilmore 1989 - K dwarfs

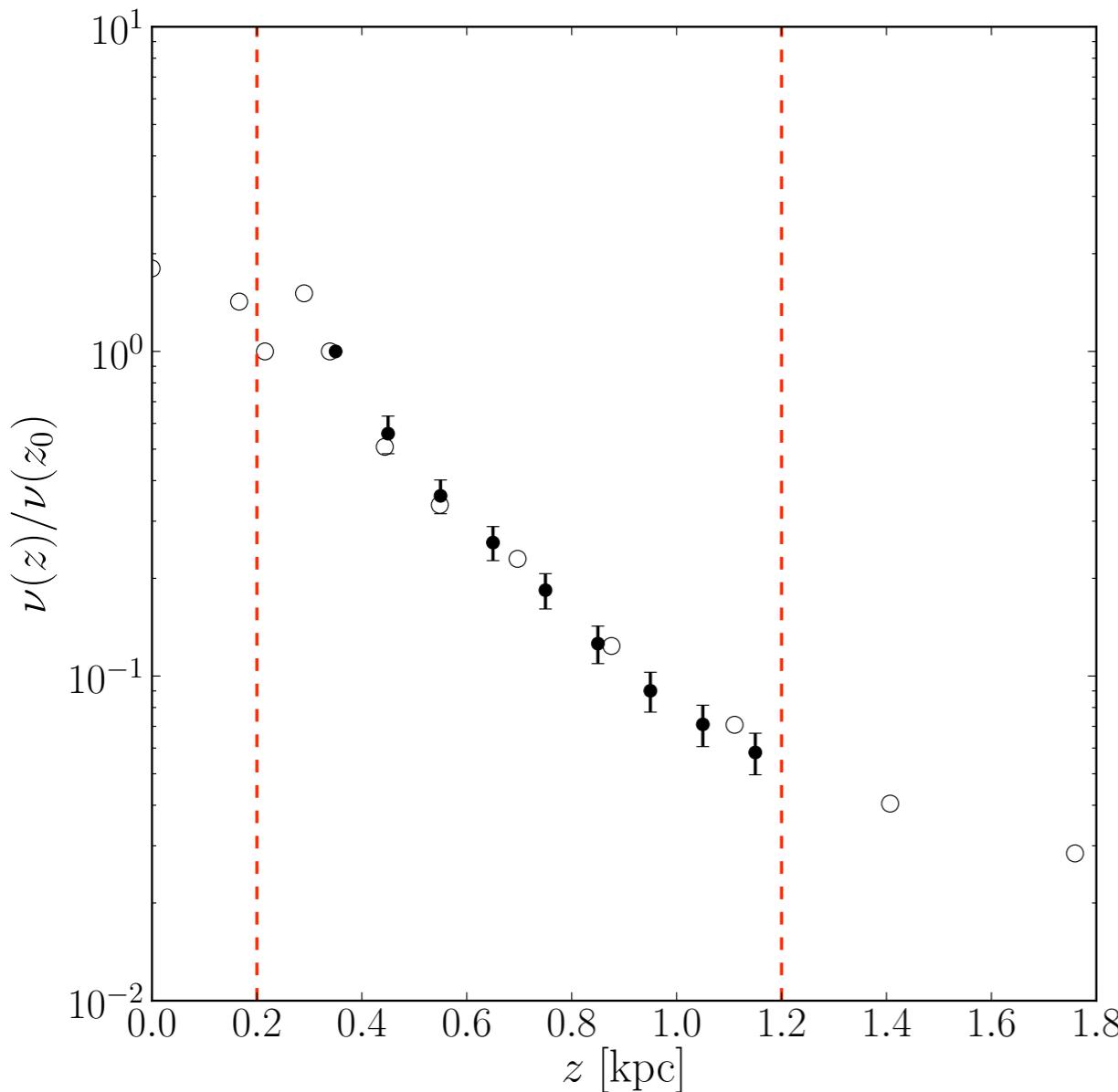
photometric
sample
~2000 stars

spectroscopic
sample ~600
stars

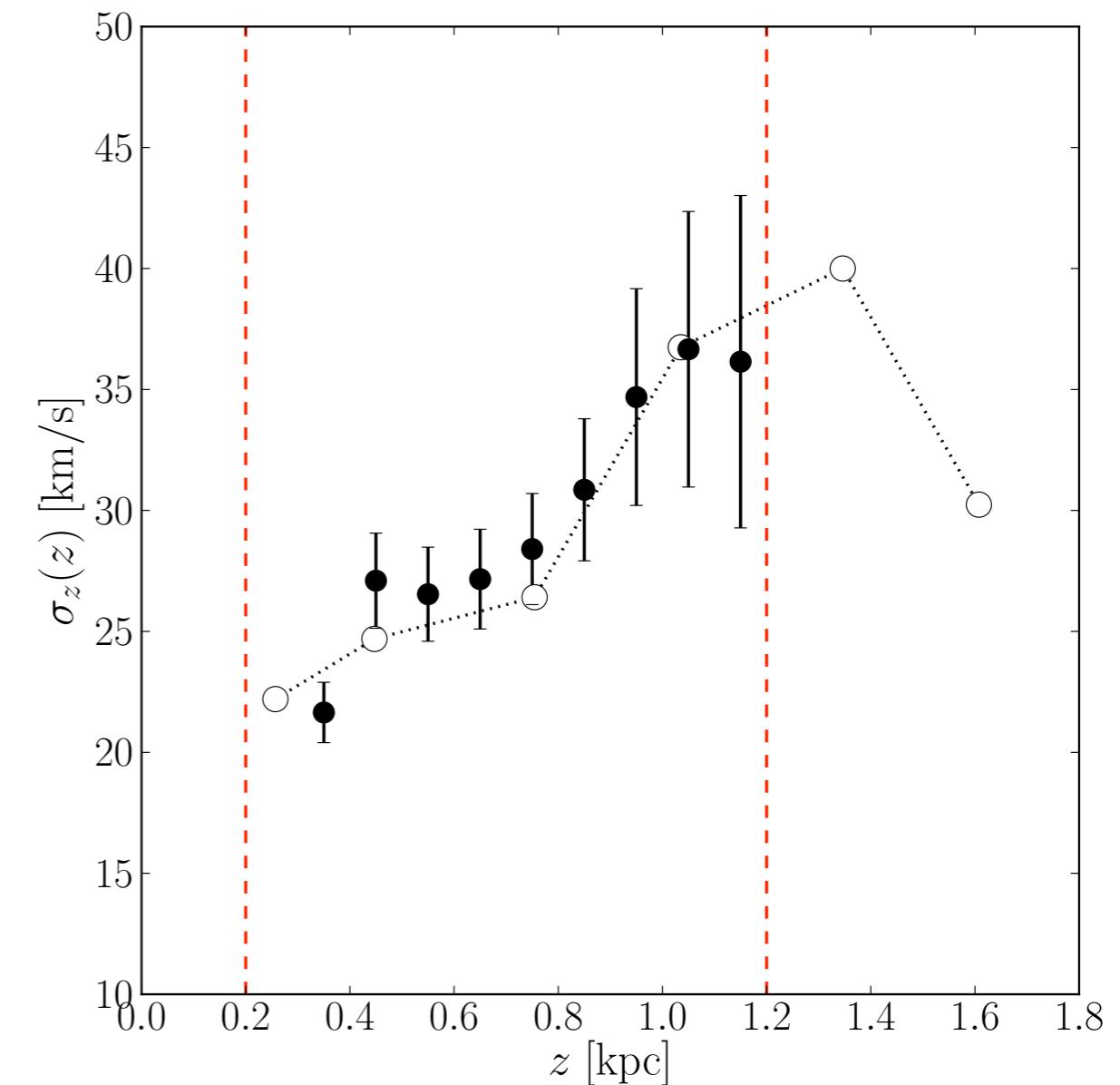
Volume
complete
photometric
sample



DATA from Kuijken & Gilmore 1989 - K dwarfs



photometric sample
~2000 stars



spectroscopic sample
~600 stars

Visible mass model by Flynn et al 2006

$$\rho_s(z) = \sum_i \nu_{i,0} \exp \left(-\frac{\Phi(z)}{v_{z,i}^2} \right)$$

density errors:
 Stars: 10-20%;
 Gas*: 50%

Component	$\nu_{i,0}(0)$ [M \odot /pc 3]	$\overline{v_{z,i}^2}(0)$ [km/s]
H $_2^*$	0.021	4.0 \pm 1.0
HI(1)*	0.016	7.0 \pm 1.0
HI(2)*	0.012	9.0 \pm 1.0
Warm gas*	0.0009	40.0 \pm 1.0
Giants	0.0006	20.0 \pm 2.0
$M_V < 2.5$	0.0031	7.5 \pm 2.0
$2.5 < M_V < 3.0$	0.0015	10.5 \pm 2.0
$3.0 < M_V < 4.0$	0.0020	14.0 \pm 2.0
$4.0 < M_V < 5.0$	0.0022	18.0 \pm 2.0
$5.0 < M_V < 8.0$	0.007	18.5 \pm 2.0
$M_V > 8.0$	0.0135	18.5 \pm 2.0
White dwarfs	0.006	20.0 \pm 5.0
Brown dwarfs	0.002	20.0 \pm 5.0
Thick disc	0.0035	37.0 \pm 5.0
Stellar halo	0.0001	100.0 \pm 10.0

Visible mass model by Flynn et al 2006

$$\rho_s(z) = \sum_i \nu_{i,0} \exp \left(-\frac{\Phi(z)}{v_{z,i}^2} \right)$$

density errors:
 Stars: 10-20%;
 Gas*: 50%

Component	$\nu_{i,0}(0)$ [M \odot /pc 3]	$\overline{v_{z,i}^2}(0)$ [km/s]
H ₂ [*]	0.021	4.0 \pm 1.0
HI(1)*	0.016	7.0 \pm 1.0
HI(2)*	0.012	9.0 \pm 1.0
Warm gas*	0.0009	40.0 \pm 1.0
Giants	0.0006	20.0 \pm 2.0
$M_V < 2.5$	0.0031	7.5 \pm 2.0
$2.5 < M_V < 3.0$	0.0015	10.5 \pm 2.0
$3.0 < M_V < 4.0$	0.0020	14.0 \pm 2.0
$4.0 < M_V < 5.0$	0.0022	18.0 \pm 2.0
$5.0 < M_V < 8.0$	0.007	18.5 \pm 2.0
$M_V > 8.0$	0.0135	18.5 \pm 2.0
White dwarfs	0.006	20.0 \pm 5.0
Brown dwarfs	0.002	20.0 \pm 5.0
Thick disc	0.0035	37.0 \pm 5.0
Stellar halo	0.0001	100.0 \pm 10.0

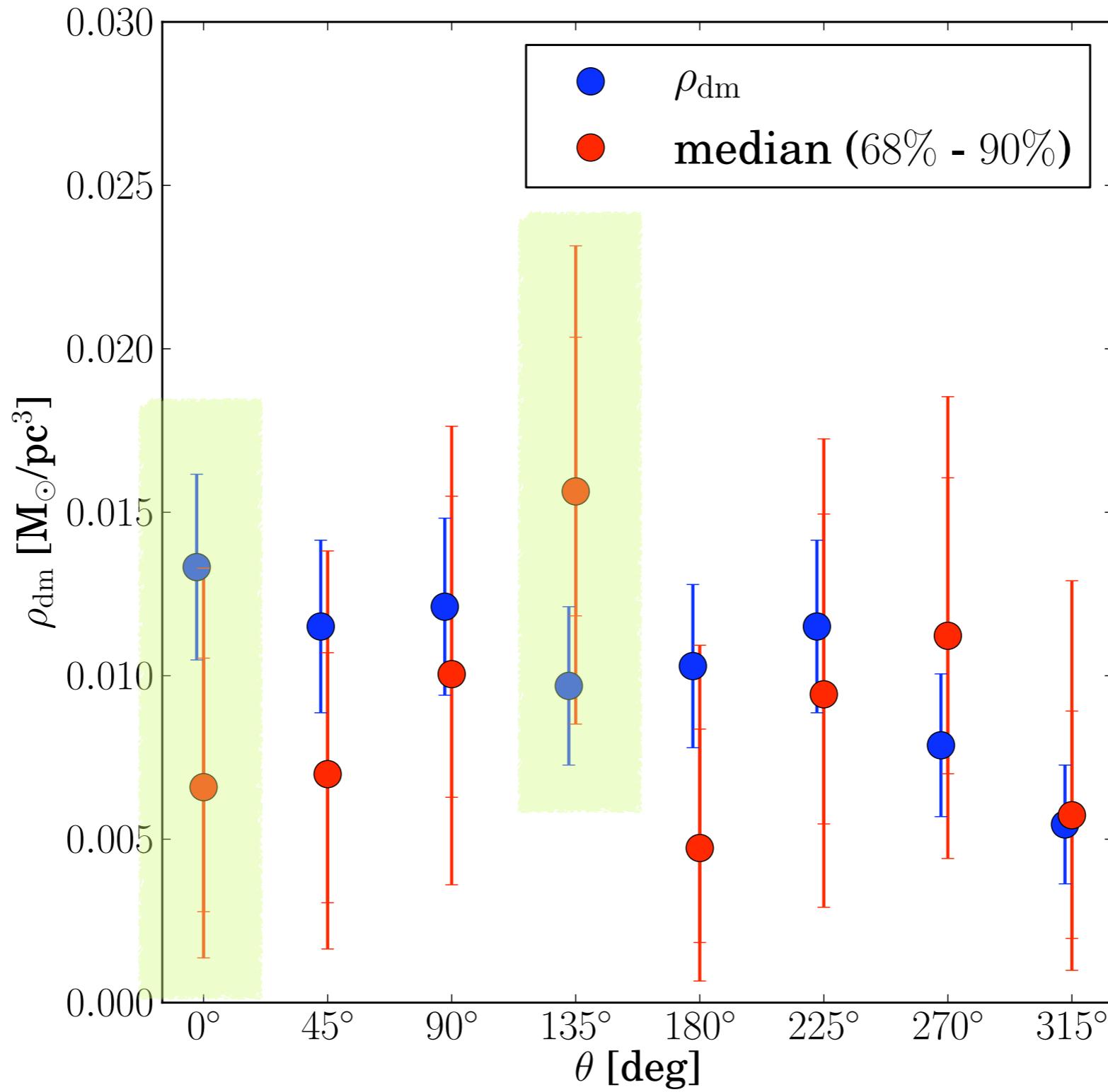
Visible mass model by Flynn et al 2006

$$\rho_s(z) = \sum_i \nu_{i,0} \exp \left(-\frac{\Phi(z)}{\overline{v_{z,i}^2}} \right)$$

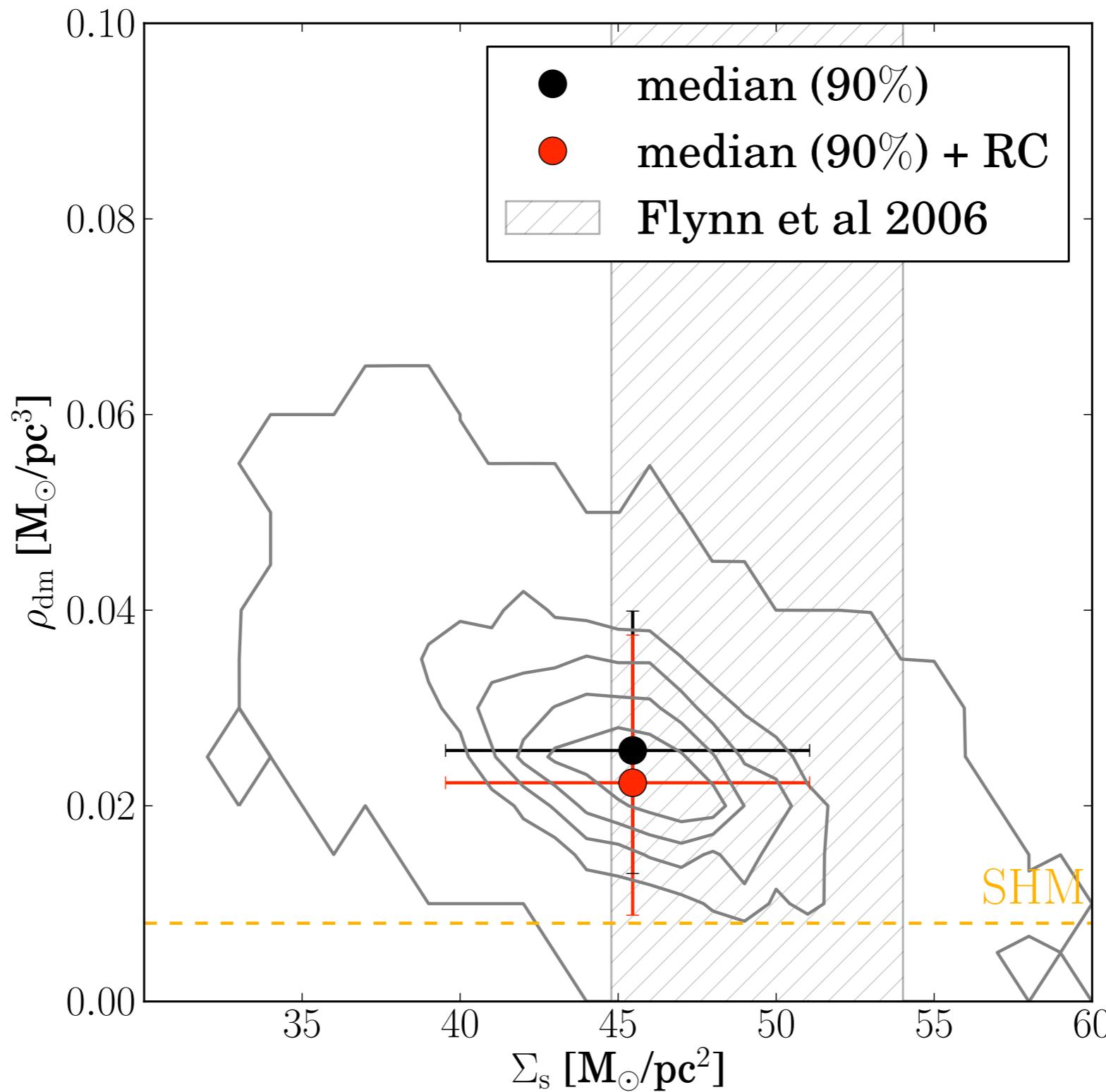
density errors:
 Stars: 10-20%;
 Gas*: 50%

Component	$\nu_{i,0}(0)$ [M \odot /pc 3]	$\overline{v_{z,i}^2}(0)$ [km/s]
H $_2^*$	0.021	4.0 \pm 1.0
HI(1)*	0.016	7.0 \pm 1.0
HI(2)*	0.012	9.0 \pm 1.0
Warm gas*	0.0009	40.0 \pm 1.0
Giants	0.0006	20.0 \pm 2.0
$M_V < 2.5$	0.0031	7.5 \pm 2.0
$2.5 < M_V < 3.0$	0.0015	10.5 \pm 2.0
$3.0 < M_V < 4.0$	0.0020	14.0 \pm 2.0
$4.0 < M_V < 5.0$	0.0022	18.0 \pm 2.0
$5.0 < M_V < 8.0$	0.007	18.5 \pm 2.0
$M_V > 8.0$	0.0135	18.5 \pm 2.0
White dwarfs	0.006	20.0 \pm 5.0
Brown dwarfs	0.002	20.0 \pm 5.0
Thick disc	0.0035	37.0 \pm 5.0
Stellar halo	0.0001	100.0 \pm 10.0

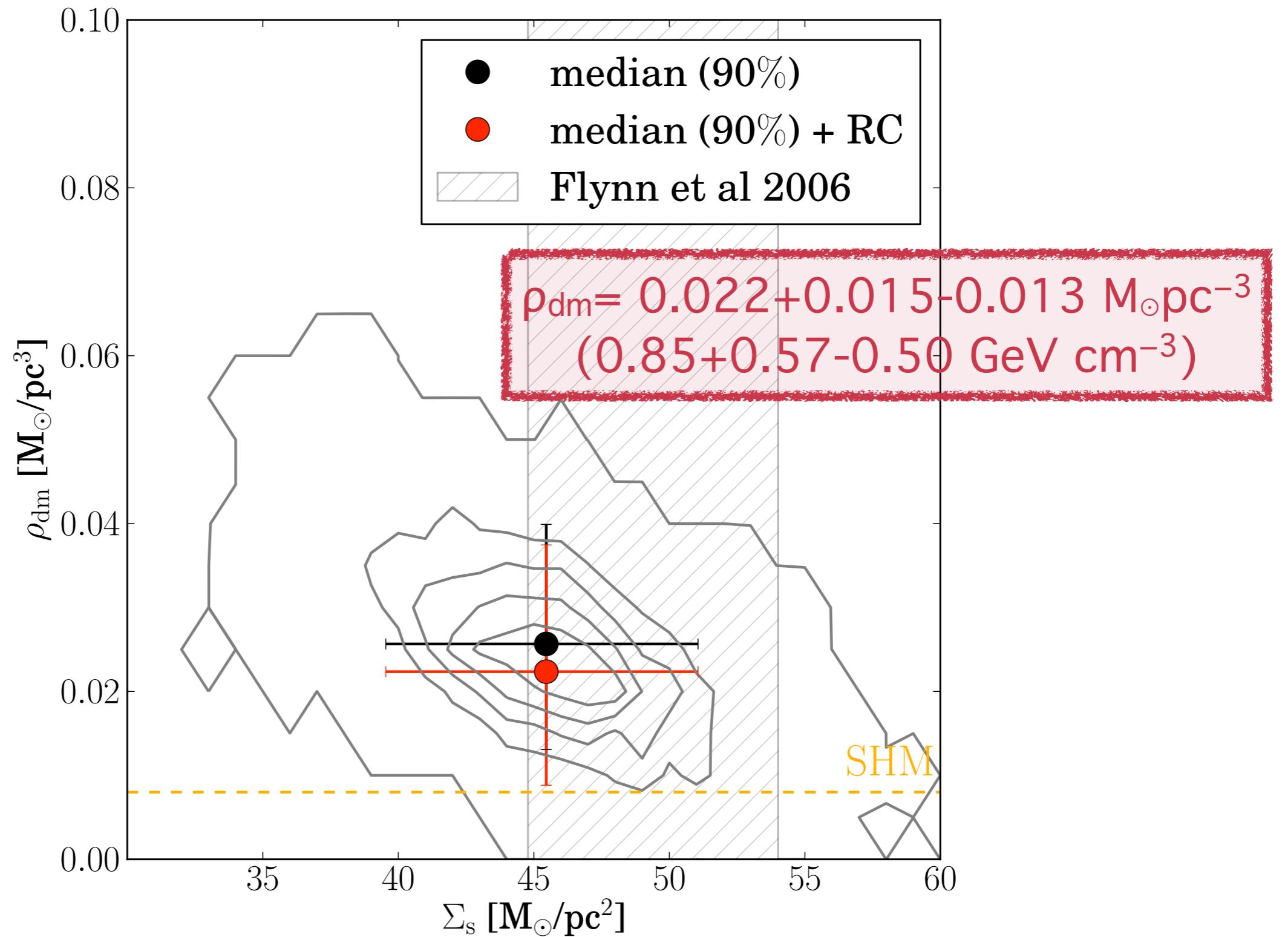
Test on the simulation: MA method



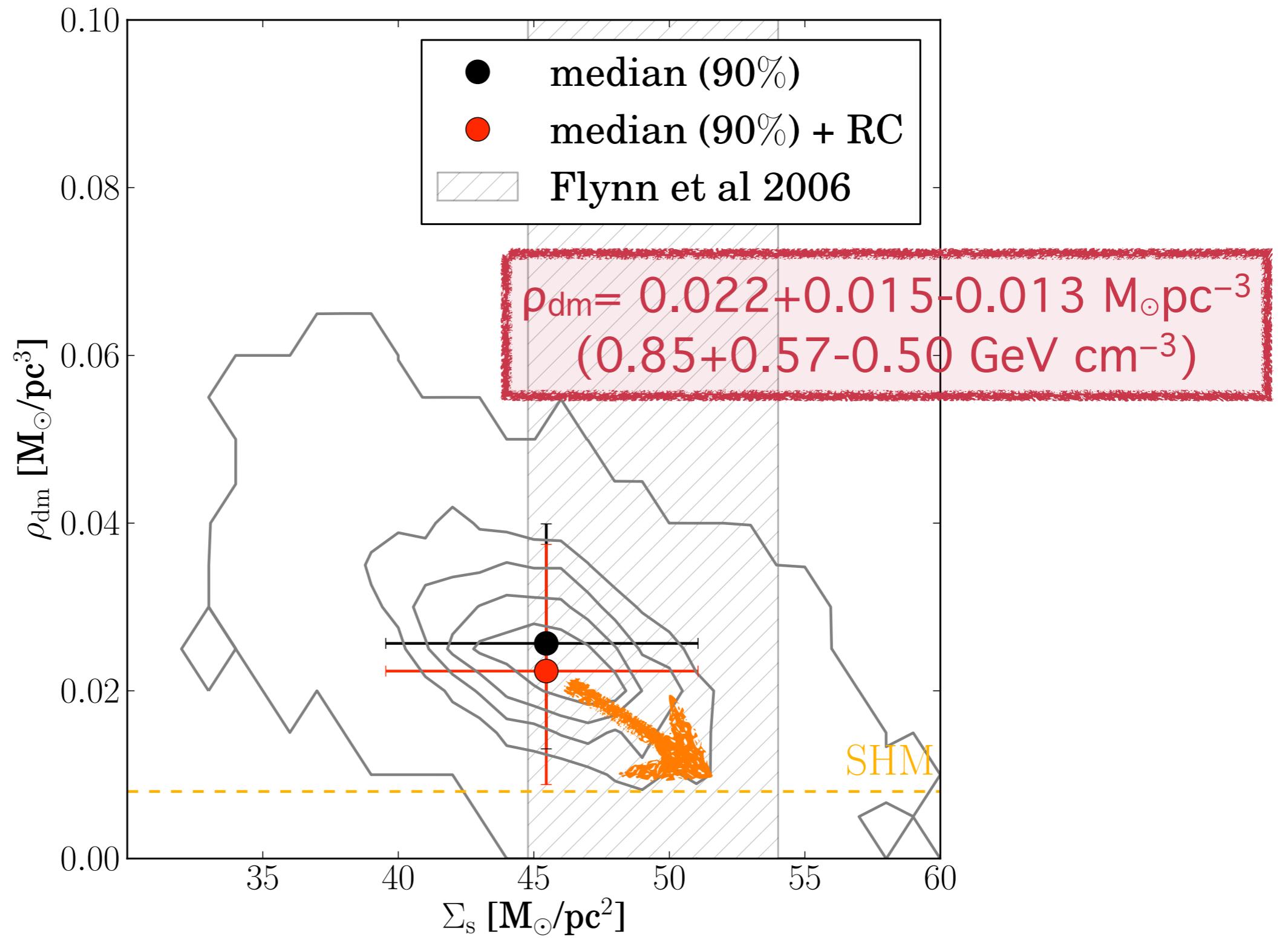
data from Kuijken & Gilmore 1989 - K dwarfs



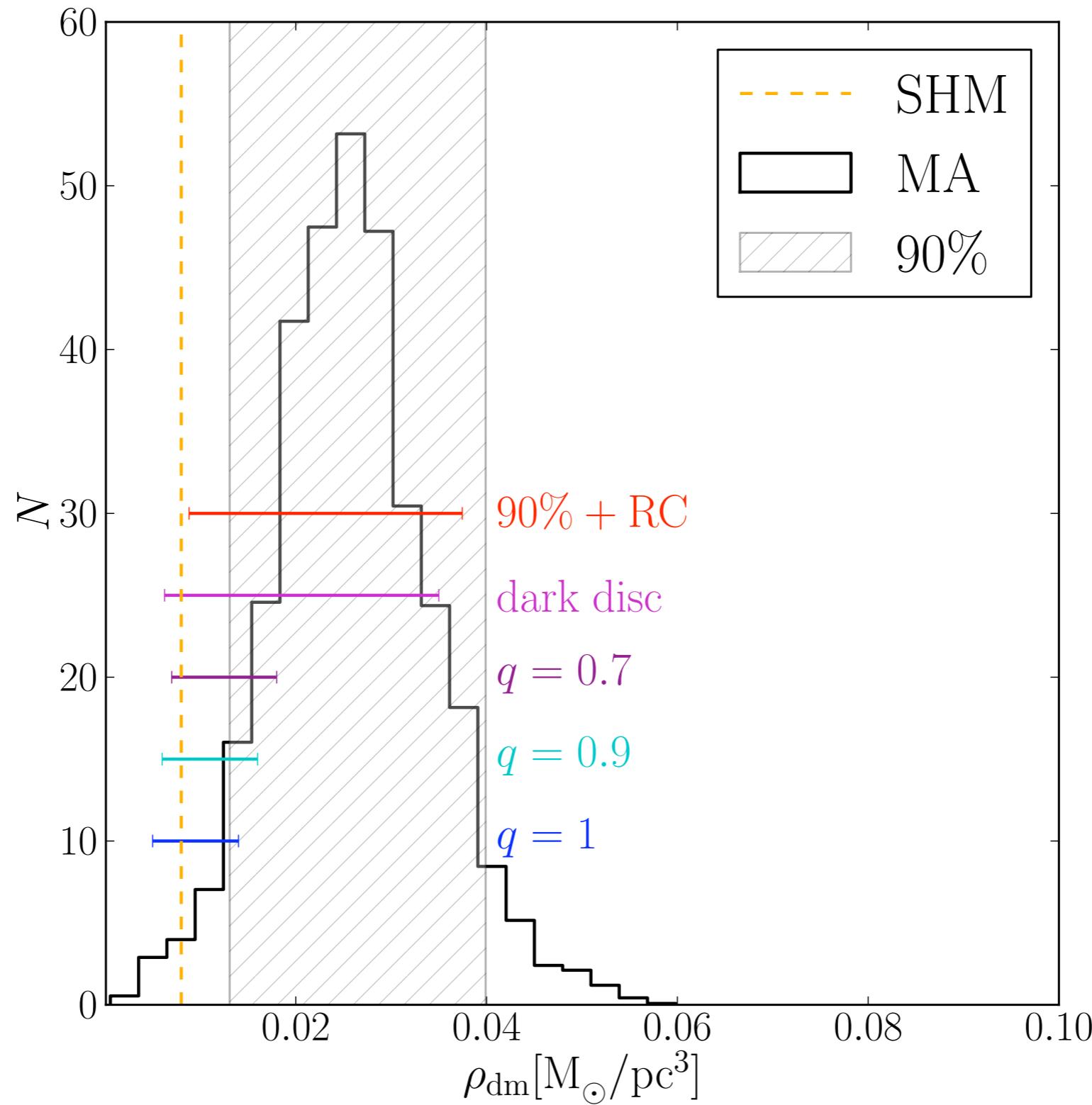
data from Kuijken & Gilmore 1989 - K dwarfs



data from Kuijken & Gilmore 1989 - K dwarfs



data from Kuijken & Gilmore 1989 - K dwarfs



Conclusion

* We present a new method to measure ρ_{dm} from the vertical kinematics local tracers. It relies on a minimal set of assumptions and

- uses a MCMC to marginalise over the uncertainties
- does not require any prior on the MW rotation curve
- does not require any assumption on the tracers' distribution function

* We use hi-res simulations as a mock data set to test our method.

* We obtain a new measurement of the local dark matter density: $\rho_{\text{dm}} = 0.022+0.015-0.013 \text{ M}_\odot \text{ pc}^{-3} (0.85+0.57-0.50 \text{ GeV cm}^{-3})$.

* Our median value of the local dark matter density is larger at 90% confidence than the Standard Halo Model value of $\rho^{\text{SHM}}_{\text{dm}} = 0.008 \text{ M}_\odot \text{ pc}^{-3} (0.30 \text{ GeV cm}^{-3})$. If confirmed by future data (GAIA), it has interesting implications:

- for direct detection experiments: it implies a larger flux of dark matter particles and therefore a greater chance of detection.
- it suggests that the halo of our Galaxy is oblate and/or that we have a disc of dark matter.