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2. WIMPS detection experiments

|f DM=W|MP (Weakly Interacting Massive Particles)

nuclear recoil caused by a WIMP scattering within the detector
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Minimal Assumption Method
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= Zd<<Rd [Bahcall, 1984; Binney&Tremaine 2008]
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HF method [Holmberg & Flynn, 2000]

f = fro(vr,ve, R) X f.(vs, 2)
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simulation

N M € Ry 2172
(10°) (10" M@) (kpc) (kpc) (kpc)
Disc 30 5.30 0.015 4.99 0.17
Bulge 0.5 0.83 0.012 — —
Halo 15 45.40 0.045 — —
Milky Way '
M Ry, 21/2
(10" M) (kpc) (kpc)
Thin disc 3.5-5.5¢ 3.35-9.24 ~0.14-0.18
Thick disc - 5.04-7.56 0.49-0.84
Bulge ~1 — —
Halo ~40-200 — —

Total disc mass.
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Evolved sim: HF vs MA method
t = 4.018Gyrs, R = 8.5kpe (wedge)
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Tracer population
MUST BE:
*in dynamical equilibrium with the Galactic potential.

*common stars (to allow useful statistical precision
in the result).

*in a volume complete sample.

*with reliable distances and vertical velocity
available.
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DATA: from Kuijken & Gilmore 1989 - K dwarfs
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DATA from Kuljken & Gilmore 1989 - K dwarts
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ps(2) = ), Vioexp
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by Flynn et al 2006

®(2)

A\ V)

density errors:
Stars: 10-20%;
Gas*: 50%

Component Vi 0(0) v ;(0)

Mo/pe?] | [l
H3 0.021 4.0+ 1.0
HI(1)* 0.016 7.0£1.0
HI(2)* 0.012 9.0+ 1.0
Warm gas* 0.0009 40.0 £1.0
Giants 0.0006 20.0 £ 2.0
My < 2.5 0.0031 7.5£2.0
2.5 < My < 3.0 0.0015 10.5 £ 2.0
3.0 < My <4.0 0.0020 14.0 £ 2.0
4.0 < My < 5.0 0.0022 18.0 £ 2.0
5.0 < My < 8.0 0.007 18.5 £ 2.0
My > 8.0 0.0135 18.5 £ 2.0
White dwarts 0.006 20.0 £ 5.0
Brown dwarfs 0.002 20.0 £5.0
Thick disc 0.0035 37.0+ 5.0

Stellar halo 0.0001 100.0 £ 10.0
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Test on the simulation: MA method

0.030
@ Pdm
. ® median (68% - 90%)
0.020
N
S
= 0.015 ¢
e ©
< o ¢ ® o
0.010 __ O e 5
Ir ®
o ° | " I
0.005} ® | 1 +
0.000

0°  45°  90° 135° 180° 225° 9270° 315°
0 [deg]

Garbari, Liu, Read & Lake arXiv:1206.0015 (accepted for publication in MNRAS)



20

0.10

® median (90%)
® median (90%) + RC
0.08} ~| Flynn et al 2006
= 0.06]
S
©O)
=)
=
S 0.04F
0.02¢
0.00 ' ' \ |

35 10 15 50 55

60
Zs [MQ/pCQ]

Garbari, Liu, Read & Lake arXiv:1206.0015 (accepted for publication in MNRAS)



data from Kuiken & Gilmore 1989 - K dwarfs
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data from Kuiken & Gilmore 1989 - K dwarfs
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Conclusion

¥ We present a new method to measure pam from the vertical kinematics local
tracers. It relies on a minimal set of assumptions and

® uses a MCMC to marginalise over the uncertainties

® does not require any prior on the MW rotation curve

® does not require any assumption on the tracers’ distribution function

¥ We use hi-res simulations as a mock data set to test our method.

¥ We obtain a new measurement of the local dark matter density: pdm =

0.022+0.015-0.013 Mopc—3 (0.85+0.57-0.50 GeV cm—3).

*Our median value of the local dark matter density is larger at 90% confidence
than the Standard Halo Model value of p>iMygm = 0.008 Mo pc=3 (0.30 GeV cm~3).
If confirmed by future data (GAIA), it has interesting implications:
® for direct detection experiments: it implies a larger flux of dark matter
particles and therefore a greater chance of detection.
® |t suggests that the halo of our Galaxy is oblate and/or that we have a disc
of dark matter.




