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direct detection: 
nuclear recoil caused by a WIMP scattering within the detector

what we want to measure

2. WIMPS detection experiments
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We start from the Jeans equations in cylindrical coor-
dinates (equation 4.222b B&T08):

1
R

∂
∂R

(RνivRvz) +
∂
∂z

(
νiv2

z

)
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in
potential Φ.

Neglecting the first term and assuming this tracer pop-
ulation is isothermal (v2

z = const. = v2
z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

(
−Φ(z)

v2
z,i

)
(3)

where ν0,i = νi(0).
We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and
second terms in equation 1. This must be performed at the
relevant disc radius (i.e. R = R!) and must be valid over
the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant
range in z.

We can then use Poisson’s equation to relate the po-
tential to the density. In cylindrial polar coordinates this is
(B&T08):

4πGρ =
∂2Φ
∂z2

+
1
R

∂
∂R

(
R

∂Φ
∂R

)

=
∂2Φ
∂z2

+
1
R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-
tion curve at radius R. Notice that for a flat rotation curve
(Vc(R) = const.), this ‘rotation curve’ term vanishes.

! E-mail: justin.inglis.read@gmail.com

Splitting the matter density into disc contributions that
vary with z (ρdisc(z)) and a dark matter contribution that
is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
(
ρdisc(z) + ρeff

dm

)
(5)

Where ρeff
dm " ρdm subsumes the (negligible) rotation curve

term.
Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N∑

i

νi,0 exp

(
−Φ(z)

v2
z,i

)
(6)

If only one of these components makes up all of the mass
of the disc, then N = 1 and we need solve for (or measure)
only ν0,0. This is the case for our simulated data. In the real
world, however, we must model each of the disc components
that have a different v2

z,i separately. This point is important
and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
∑

i

ν0,i exp

(
−Φ(z)

v2
z,i

)
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.
(iii) Guess ρeff

dm.
(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these
guesses/measurements. Even if we know perfetly v2

z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.
We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-
ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.

c© 0000 RAS
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⇆ zd<<Rd [Bahcall, 1984; Binney&Tremaine 2008]
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νi(z∗)
νi(0)

=
v2

z,i(0)

v2
z,i(z∗)

exp

(
−

∫ z∗

0

1
v2

z,i(z)
dΦ
dz

dz

)

[Garbari, Read, Lake (2011) MNRAS 416, 2318]
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=
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z,i(0)

v2
z,i(z∗)

exp

(
−

∫ z∗

0

1
v2

z,i(z)
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dz

dz

)
Tracer population:

Poisson: matter density

4πG(ρs + ρdm) = ∂2Φ
∂z2 + 1

R
∂

∂R

(
R ∂Φ

∂R

)

[Garbari, Read, Lake (2011) MNRAS 416, 2318]
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negligible
1
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=

1
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∂V 2
c

∂R
= 2(B2 −A2)

[Garbari, Read, Lake (2011) MNRAS 416, 2318]
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f = f disc(E, Ez, Lz) + f halo(E) + f bulge(E) and provide near-
equilibrium initial conditions.

The disc model has an exponential radial profile and a sech2(z/zs)
vertical profile. Its distribution function applies in the epicyclic
approximation with σ R,φ,z ! Vc, so the vertical energy is an ap-
proximate integral of motion: this leads to triaxial velocity ellipsoids
in the disc models as seen in real spiral galaxies (Widrow, Pym &
Dubinski 2008). The halo is modelled as a Navarro–Frenk–White
profile. However, when its distribution function is combined with
the disc one, the net halo density profile is slightly flattened along
the z-axis near the centre, but preserving the r−1 central cusp.

To have statistics comparable with the present data in the so-
lar neighbourhood [e.g. Holmberg & Flynn (2000) considered
∼2000 A stars in a cylindrical volume of radius R = 200 pc and
height |z| < 200 pc centred on the Sun], we constructed a disc with
nd = 30 × 106 star particles. We chose the masses of the dark matter
halo particles and the (star) bulge particles so that the heating time-
scale for the disc is much larger than both the internal relaxation
time-scale and the time of the simulation (∼4 Gyr): theat % trel %
tsim, where trel is given by (Binney & Tremaine 2008):

trel = nreltcross = n

8 log #

bmax

vtyp
, (19)

where vtyp =
√

GM/R& is the typical velocity at the solar position,
R& = 8.5 kpc, bmin = 2Gmpart/v2

typ, bmax = R& and the Coulomb
logarithm is log # = log (bmax/bmin). Given nd = 30 × 106 total
stars, the number enclosed within R& is n = nd(R&) ∼ 25 × 106.
Using the latter number, we find trel ' 1.17 × 104 Gyr.

The heating time theat is given by (Lacey & Ostriker 1985)

theat =
σ 2

z Vh

8πG2Mhρh log #h
, (20)

where σ z is the vertical velocity dispersion of the disc particles, Mh

is the mass of the dark matter particles, Vh is their typical velocity,
and ρh and log #h are the density and the Coulomb logarithm for
the halo (a similar calculation can be done for the bulge particles).

Using theat = ktrel, with k ∼ 10, we find the following satisfy the
above time-scale constraints: nh = 15 × 106 and nb = 0.5 × 106

particles for the halo and bulge, respectively.
The main features of the model we used are listed in Table 1. For

comparison, some of the corresponding features of the real MW are
given in Table 2.

In our analysis, we consider two different outputs of the simu-
lation: an unevolved stage (t ∼ 50 Myr) in which the disc is still
axisymmetric and an evolved one (t ∼ 4 Gyr) which presents a bar
similar to the real MW. These two stages are shown in Fig. 3 (left-
hand and right-hand panels, respectively). The unevolved disc is
used to test the method in general and to study what data are needed
to recover the right value of the local density in the ideal case of
data fulfilling all the assumptions. The evolved stage represents a

Table 1. Parameters for the disc, dark matter halo and stellar bulge for the
initial conditions of the simulation. From the left-hand to right-hand side, the
columns show the number of particles (N); the total mass (M); the softening
length (ε); the half-mass scalelength (R1/2); and the half-mass scaleheight
(z1/2).

N M ε R1/2 z1/2
(106) (1010 M&) (kpc) (kpc) (kpc)

Disc 30 5.30 0.015 4.99 0.17
Bulge 0.5 0.83 0.012 – –
Halo 15 45.40 0.045 – –

Table 2. The distinct components of the MW. From the left-hand to right-
hand side, the columns show the total mass (M); the half-mass scalelength
(R1/2); and the half-mass scaleheight (z1/2). These values are compiled using
the following relations: z1/2 = 0.55zs = 0.7z0 and R1/2 = 1.68R0 (Read
et al. 2008), where zs is the sech2 disc scaleheight, z0 is the exponential disc
scaleheight and R0 is the exponential disc scalelength.

M R1/2 z1/2 Reference
(1010 M&) (kpc) (kpc)

Thin disc 3.5–5.5a 3.35–9.24 ∼0.14–0.18 fl, o, fe, k
Thick disc – 5.04–7.56 0.49–0.84 o, n, s

Bulge ∼1 – – d, fl
Halo ∼40–200 – – x, g

aTotal disc mass.
References: fl = Flynn et al. (2006); o = Ojha (2001); fe = Feast (2000); k =
Kuijken & Gilmore (1989b); n = Ng et al. (1997); s = Spagna et al. (1996);
d = Dehnen & Binney (1998); x = Xue et al. (2008); and g = Guo et al.
(2010).

more realistic situation and is used to test the effect of realistic
disc inhomogeneities on the determination of the local density. The
spiral arms – that are the major driver of inhomogeneities at the
solar neighbourhood in the evolved disc – are compatible with the
MW: our Galaxy has an interarm ratio of the spiral structure at
the solar radius R& of K ∼ 1.7 (Drimmel & Spergel 2001); the
corresponding value for the simulation is K ∼ 1.5.

In the analysis of the simulation, we set the solar neighbourhood
position at a Galactocentric distance of R& = 8.5 kpc, in agree-
ment with the International Astronomy Union recommended value.
We consider several small volumes at different angular positions
around the disc, represented by the red circles and wedges in Fig. 3
(also see Section 3.3). For the unevolved (axisymmetric) disc, these
different patches test the effect of sampling error on our derived
ρdm and ρs; for the evolved disc, they examine the effect of disc
inhomogeneities.

3.2 How well does the simulation satisfy our assumptions?

Both the MA and HF methods are based on several key assumptions,
as outlined in Sections 2.1 and 2.2. To understand how well both
methods can recover the local dark matter density, we first evaluate
how well the two stages of the simulation fulfil these assumptions.

3.2.1 Constant ρdm in the local volume

Hypothesis (ii) of the MA method is well fulfilled as shown in
Fig. 4, where we plot the dark matter density as a function of z for
the unevolved (left-hand panel) and the evolved (right-hand panel)
simulations. The purple line represents |z| = 0.75 kpc, that is, the
maximum height considered in our analysis.

3.2.2 Isothermality, tilt and equilibrium

The velocity dispersion v2
z as a function of z should be constant, by

definition, for an isothermal population. Inthe two left-hand panels
of Fig. 5, the velocity dispersion v2

z (z) is represented for the two
output times of the simulation considered (t = 0.049 Gyr in the
upper panel and t = 4.018 Gyr in the lower one) at R = 8.5 kpc (in
red). For comparison, the observational data for the MW (blue data
points), and the best-fitting v2

z (z) function determined by Bond et al.
(2010) (green dashed line: the light green shaded region represents
the errors in the fit parameter), are shown. Bond et al.’s (2101) fit
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vertical profile. Its distribution function applies in the epicyclic
approximation with σ R,φ,z ! Vc, so the vertical energy is an ap-
proximate integral of motion: this leads to triaxial velocity ellipsoids
in the disc models as seen in real spiral galaxies (Widrow, Pym &
Dubinski 2008). The halo is modelled as a Navarro–Frenk–White
profile. However, when its distribution function is combined with
the disc one, the net halo density profile is slightly flattened along
the z-axis near the centre, but preserving the r−1 central cusp.

To have statistics comparable with the present data in the so-
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∼2000 A stars in a cylindrical volume of radius R = 200 pc and
height |z| < 200 pc centred on the Sun], we constructed a disc with
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halo particles and the (star) bulge particles so that the heating time-
scale for the disc is much larger than both the internal relaxation
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typ, bmax = R& and the Coulomb
logarithm is log # = log (bmax/bmin). Given nd = 30 × 106 total
stars, the number enclosed within R& is n = nd(R&) ∼ 25 × 106.
Using the latter number, we find trel ' 1.17 × 104 Gyr.

The heating time theat is given by (Lacey & Ostriker 1985)
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where σ z is the vertical velocity dispersion of the disc particles, Mh

is the mass of the dark matter particles, Vh is their typical velocity,
and ρh and log #h are the density and the Coulomb logarithm for
the halo (a similar calculation can be done for the bulge particles).

Using theat = ktrel, with k ∼ 10, we find the following satisfy the
above time-scale constraints: nh = 15 × 106 and nb = 0.5 × 106

particles for the halo and bulge, respectively.
The main features of the model we used are listed in Table 1. For

comparison, some of the corresponding features of the real MW are
given in Table 2.

In our analysis, we consider two different outputs of the simu-
lation: an unevolved stage (t ∼ 50 Myr) in which the disc is still
axisymmetric and an evolved one (t ∼ 4 Gyr) which presents a bar
similar to the real MW. These two stages are shown in Fig. 3 (left-
hand and right-hand panels, respectively). The unevolved disc is
used to test the method in general and to study what data are needed
to recover the right value of the local density in the ideal case of
data fulfilling all the assumptions. The evolved stage represents a

Table 1. Parameters for the disc, dark matter halo and stellar bulge for the
initial conditions of the simulation. From the left-hand to right-hand side, the
columns show the number of particles (N); the total mass (M); the softening
length (ε); the half-mass scalelength (R1/2); and the half-mass scaleheight
(z1/2).

N M ε R1/2 z1/2
(106) (1010 M&) (kpc) (kpc) (kpc)

Disc 30 5.30 0.015 4.99 0.17
Bulge 0.5 0.83 0.012 – –
Halo 15 45.40 0.045 – –

Table 2. The distinct components of the MW. From the left-hand to right-
hand side, the columns show the total mass (M); the half-mass scalelength
(R1/2); and the half-mass scaleheight (z1/2). These values are compiled using
the following relations: z1/2 = 0.55zs = 0.7z0 and R1/2 = 1.68R0 (Read
et al. 2008), where zs is the sech2 disc scaleheight, z0 is the exponential disc
scaleheight and R0 is the exponential disc scalelength.

M R1/2 z1/2 Reference
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Thin disc 3.5–5.5a 3.35–9.24 ∼0.14–0.18 fl, o, fe, k
Thick disc – 5.04–7.56 0.49–0.84 o, n, s

Bulge ∼1 – – d, fl
Halo ∼40–200 – – x, g

aTotal disc mass.
References: fl = Flynn et al. (2006); o = Ojha (2001); fe = Feast (2000); k =
Kuijken & Gilmore (1989b); n = Ng et al. (1997); s = Spagna et al. (1996);
d = Dehnen & Binney (1998); x = Xue et al. (2008); and g = Guo et al.
(2010).

more realistic situation and is used to test the effect of realistic
disc inhomogeneities on the determination of the local density. The
spiral arms – that are the major driver of inhomogeneities at the
solar neighbourhood in the evolved disc – are compatible with the
MW: our Galaxy has an interarm ratio of the spiral structure at
the solar radius R& of K ∼ 1.7 (Drimmel & Spergel 2001); the
corresponding value for the simulation is K ∼ 1.5.

In the analysis of the simulation, we set the solar neighbourhood
position at a Galactocentric distance of R& = 8.5 kpc, in agree-
ment with the International Astronomy Union recommended value.
We consider several small volumes at different angular positions
around the disc, represented by the red circles and wedges in Fig. 3
(also see Section 3.3). For the unevolved (axisymmetric) disc, these
different patches test the effect of sampling error on our derived
ρdm and ρs; for the evolved disc, they examine the effect of disc
inhomogeneities.

3.2 How well does the simulation satisfy our assumptions?

Both the MA and HF methods are based on several key assumptions,
as outlined in Sections 2.1 and 2.2. To understand how well both
methods can recover the local dark matter density, we first evaluate
how well the two stages of the simulation fulfil these assumptions.

3.2.1 Constant ρdm in the local volume

Hypothesis (ii) of the MA method is well fulfilled as shown in
Fig. 4, where we plot the dark matter density as a function of z for
the unevolved (left-hand panel) and the evolved (right-hand panel)
simulations. The purple line represents |z| = 0.75 kpc, that is, the
maximum height considered in our analysis.

3.2.2 Isothermality, tilt and equilibrium

The velocity dispersion v2
z as a function of z should be constant, by

definition, for an isothermal population. Inthe two left-hand panels
of Fig. 5, the velocity dispersion v2

z (z) is represented for the two
output times of the simulation considered (t = 0.049 Gyr in the
upper panel and t = 4.018 Gyr in the lower one) at R = 8.5 kpc (in
red). For comparison, the observational data for the MW (blue data
points), and the best-fitting v2

z (z) function determined by Bond et al.
(2010) (green dashed line: the light green shaded region represents
the errors in the fit parameter), are shown. Bond et al.’s (2101) fit
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f = f disc(E, Ez, Lz) + f halo(E) + f bulge(E) and provide near-
equilibrium initial conditions.

The disc model has an exponential radial profile and a sech2(z/zs)
vertical profile. Its distribution function applies in the epicyclic
approximation with σ R,φ,z ! Vc, so the vertical energy is an ap-
proximate integral of motion: this leads to triaxial velocity ellipsoids
in the disc models as seen in real spiral galaxies (Widrow, Pym &
Dubinski 2008). The halo is modelled as a Navarro–Frenk–White
profile. However, when its distribution function is combined with
the disc one, the net halo density profile is slightly flattened along
the z-axis near the centre, but preserving the r−1 central cusp.

To have statistics comparable with the present data in the so-
lar neighbourhood [e.g. Holmberg & Flynn (2000) considered
∼2000 A stars in a cylindrical volume of radius R = 200 pc and
height |z| < 200 pc centred on the Sun], we constructed a disc with
nd = 30 × 106 star particles. We chose the masses of the dark matter
halo particles and the (star) bulge particles so that the heating time-
scale for the disc is much larger than both the internal relaxation
time-scale and the time of the simulation (∼4 Gyr): theat % trel %
tsim, where trel is given by (Binney & Tremaine 2008):

trel = nreltcross = n
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where vtyp =
√

GM/R& is the typical velocity at the solar position,
R& = 8.5 kpc, bmin = 2Gmpart/v2

typ, bmax = R& and the Coulomb
logarithm is log # = log (bmax/bmin). Given nd = 30 × 106 total
stars, the number enclosed within R& is n = nd(R&) ∼ 25 × 106.
Using the latter number, we find trel ' 1.17 × 104 Gyr.

The heating time theat is given by (Lacey & Ostriker 1985)

theat =
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, (20)

where σ z is the vertical velocity dispersion of the disc particles, Mh

is the mass of the dark matter particles, Vh is their typical velocity,
and ρh and log #h are the density and the Coulomb logarithm for
the halo (a similar calculation can be done for the bulge particles).

Using theat = ktrel, with k ∼ 10, we find the following satisfy the
above time-scale constraints: nh = 15 × 106 and nb = 0.5 × 106

particles for the halo and bulge, respectively.
The main features of the model we used are listed in Table 1. For

comparison, some of the corresponding features of the real MW are
given in Table 2.

In our analysis, we consider two different outputs of the simu-
lation: an unevolved stage (t ∼ 50 Myr) in which the disc is still
axisymmetric and an evolved one (t ∼ 4 Gyr) which presents a bar
similar to the real MW. These two stages are shown in Fig. 3 (left-
hand and right-hand panels, respectively). The unevolved disc is
used to test the method in general and to study what data are needed
to recover the right value of the local density in the ideal case of
data fulfilling all the assumptions. The evolved stage represents a

Table 1. Parameters for the disc, dark matter halo and stellar bulge for the
initial conditions of the simulation. From the left-hand to right-hand side, the
columns show the number of particles (N); the total mass (M); the softening
length (ε); the half-mass scalelength (R1/2); and the half-mass scaleheight
(z1/2).

N M ε R1/2 z1/2
(106) (1010 M&) (kpc) (kpc) (kpc)

Disc 30 5.30 0.015 4.99 0.17
Bulge 0.5 0.83 0.012 – –
Halo 15 45.40 0.045 – –

Table 2. The distinct components of the MW. From the left-hand to right-
hand side, the columns show the total mass (M); the half-mass scalelength
(R1/2); and the half-mass scaleheight (z1/2). These values are compiled using
the following relations: z1/2 = 0.55zs = 0.7z0 and R1/2 = 1.68R0 (Read
et al. 2008), where zs is the sech2 disc scaleheight, z0 is the exponential disc
scaleheight and R0 is the exponential disc scalelength.

M R1/2 z1/2 Reference
(1010 M&) (kpc) (kpc)

Thin disc 3.5–5.5a 3.35–9.24 ∼0.14–0.18 fl, o, fe, k
Thick disc – 5.04–7.56 0.49–0.84 o, n, s

Bulge ∼1 – – d, fl
Halo ∼40–200 – – x, g

aTotal disc mass.
References: fl = Flynn et al. (2006); o = Ojha (2001); fe = Feast (2000); k =
Kuijken & Gilmore (1989b); n = Ng et al. (1997); s = Spagna et al. (1996);
d = Dehnen & Binney (1998); x = Xue et al. (2008); and g = Guo et al.
(2010).

more realistic situation and is used to test the effect of realistic
disc inhomogeneities on the determination of the local density. The
spiral arms – that are the major driver of inhomogeneities at the
solar neighbourhood in the evolved disc – are compatible with the
MW: our Galaxy has an interarm ratio of the spiral structure at
the solar radius R& of K ∼ 1.7 (Drimmel & Spergel 2001); the
corresponding value for the simulation is K ∼ 1.5.

In the analysis of the simulation, we set the solar neighbourhood
position at a Galactocentric distance of R& = 8.5 kpc, in agree-
ment with the International Astronomy Union recommended value.
We consider several small volumes at different angular positions
around the disc, represented by the red circles and wedges in Fig. 3
(also see Section 3.3). For the unevolved (axisymmetric) disc, these
different patches test the effect of sampling error on our derived
ρdm and ρs; for the evolved disc, they examine the effect of disc
inhomogeneities.

3.2 How well does the simulation satisfy our assumptions?

Both the MA and HF methods are based on several key assumptions,
as outlined in Sections 2.1 and 2.2. To understand how well both
methods can recover the local dark matter density, we first evaluate
how well the two stages of the simulation fulfil these assumptions.

3.2.1 Constant ρdm in the local volume

Hypothesis (ii) of the MA method is well fulfilled as shown in
Fig. 4, where we plot the dark matter density as a function of z for
the unevolved (left-hand panel) and the evolved (right-hand panel)
simulations. The purple line represents |z| = 0.75 kpc, that is, the
maximum height considered in our analysis.

3.2.2 Isothermality, tilt and equilibrium

The velocity dispersion v2
z as a function of z should be constant, by

definition, for an isothermal population. Inthe two left-hand panels
of Fig. 5, the velocity dispersion v2

z (z) is represented for the two
output times of the simulation considered (t = 0.049 Gyr in the
upper panel and t = 4.018 Gyr in the lower one) at R = 8.5 kpc (in
red). For comparison, the observational data for the MW (blue data
points), and the best-fitting v2

z (z) function determined by Bond et al.
(2010) (green dashed line: the light green shaded region represents
the errors in the fit parameter), are shown. Bond et al.’s (2101) fit
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is the mass of the dark matter particles, Vh is their typical velocity,
and ρh and log #h are the density and the Coulomb logarithm for
the halo (a similar calculation can be done for the bulge particles).

Using theat = ktrel, with k ∼ 10, we find the following satisfy the
above time-scale constraints: nh = 15 × 106 and nb = 0.5 × 106

particles for the halo and bulge, respectively.
The main features of the model we used are listed in Table 1. For

comparison, some of the corresponding features of the real MW are
given in Table 2.

In our analysis, we consider two different outputs of the simu-
lation: an unevolved stage (t ∼ 50 Myr) in which the disc is still
axisymmetric and an evolved one (t ∼ 4 Gyr) which presents a bar
similar to the real MW. These two stages are shown in Fig. 3 (left-
hand and right-hand panels, respectively). The unevolved disc is
used to test the method in general and to study what data are needed
to recover the right value of the local density in the ideal case of
data fulfilling all the assumptions. The evolved stage represents a
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Bulge ∼1 – – d, fl
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more realistic situation and is used to test the effect of realistic
disc inhomogeneities on the determination of the local density. The
spiral arms – that are the major driver of inhomogeneities at the
solar neighbourhood in the evolved disc – are compatible with the
MW: our Galaxy has an interarm ratio of the spiral structure at
the solar radius R& of K ∼ 1.7 (Drimmel & Spergel 2001); the
corresponding value for the simulation is K ∼ 1.5.

In the analysis of the simulation, we set the solar neighbourhood
position at a Galactocentric distance of R& = 8.5 kpc, in agree-
ment with the International Astronomy Union recommended value.
We consider several small volumes at different angular positions
around the disc, represented by the red circles and wedges in Fig. 3
(also see Section 3.3). For the unevolved (axisymmetric) disc, these
different patches test the effect of sampling error on our derived
ρdm and ρs; for the evolved disc, they examine the effect of disc
inhomogeneities.

3.2 How well does the simulation satisfy our assumptions?

Both the MA and HF methods are based on several key assumptions,
as outlined in Sections 2.1 and 2.2. To understand how well both
methods can recover the local dark matter density, we first evaluate
how well the two stages of the simulation fulfil these assumptions.

3.2.1 Constant ρdm in the local volume

Hypothesis (ii) of the MA method is well fulfilled as shown in
Fig. 4, where we plot the dark matter density as a function of z for
the unevolved (left-hand panel) and the evolved (right-hand panel)
simulations. The purple line represents |z| = 0.75 kpc, that is, the
maximum height considered in our analysis.

3.2.2 Isothermality, tilt and equilibrium

The velocity dispersion v2
z as a function of z should be constant, by

definition, for an isothermal population. Inthe two left-hand panels
of Fig. 5, the velocity dispersion v2

z (z) is represented for the two
output times of the simulation considered (t = 0.049 Gyr in the
upper panel and t = 4.018 Gyr in the lower one) at R = 8.5 kpc (in
red). For comparison, the observational data for the MW (blue data
points), and the best-fitting v2

z (z) function determined by Bond et al.
(2010) (green dashed line: the light green shaded region represents
the errors in the fit parameter), are shown. Bond et al.’s (2101) fit
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Evolved sim: distribution functions
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Evolved sim: HF vs MA method

14

∆ρs = ±0.014M!/pc3

ρS

ρDM

M
A 

m
et
ho

d

[Garbari, Read, Lake (2011) MNRAS 416, 2318]



Tracer population
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in dynamical equilibrium with the Galactic potential. 

common stars (to allow useful statistical precision 
in the result). 

in a volume complete sample.
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Visible mass model by Flynn et al 2006
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density errors: 
Stars: 10-20%;

Gas*: 50%

Component νi,0(0) v2
z,i(0)

[M!/pc3] [km/s]
H∗

2 0.021 4.0± 1.0
HI(1)∗ 0.016 7.0± 1.0
HI(2)∗ 0.012 9.0± 1.0

Warm gas∗ 0.0009 40.0± 1.0
Giants 0.0006 20.0± 2.0

MV < 2.5 0.0031 7.5± 2.0
2.5 < MV < 3.0 0.0015 10.5± 2.0
3.0 < MV < 4.0 0.0020 14.0± 2.0
4.0 < MV < 5.0 0.0022 18.0± 2.0
5.0 < MV < 8.0 0.007 18.5± 2.0

MV > 8.0 0.0135 18.5± 2.0
White dwarfs 0.006 20.0± 5.0
Brown dwarfs 0.002 20.0± 5.0

Thick disc 0.0035 37.0± 5.0
Stellar halo 0.0001 100.0± 10.0

ρs(z) =
∑

i νi,0 exp
(
−Φ(z)

v2
z,i

)
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Conclusion
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We present a new method to measure ρdm from the vertical kinematics local 
tracers. It relies on a minimal set of assumptions and

 uses a MCMC to marginalise over the uncertainties
 does not require any prior on the MW rotation curve
 does not require any assumption on the tracers’ distribution function

We use hi-res simulations as a mock data set to test our method.

 We obtain a new measurement of the local dark matter density:  ρdm = 
0.022+0.015−0.013 M⊙pc−3 (0.85+0.57-0.50 GeV cm−3).

Our median value of the local dark matter density is larger at 90% confidence 
than the Standard Halo Model value of ρSHMdm = 0.008 M⊙ pc−3 (0.30 GeV cm−3 ). 
If confirmed by future data (GAIA), it has interesting implications:

 for direct detection experiments: it implies a larger flux of dark matter 
particles and therefore a greater chance of detection. 
 it suggests that the halo of our Galaxy is oblate and/or that we have a disc 

of dark matter. 


