

MICROSCOPE mission A test of the Equivalence principle in space

mound was a second was a second

<u>Manuel Rodrigues</u>, Pierre Touboul on behalf of MICROSCOPE team

Launched on the 25th of April 2016

- 2 M. Rodrigues, MICROSCOPE Mission, ACES Workshop June 2017.

 25th of April 2016: satellite launch as piggy bag of Sentinel 1B by Soyutz

- 2nd of May 2016 : test-masses release and electrostatic control in robust mode
 - 11th May : 1st test of Payload science mode
- 7th of June 2016: 1st Attitude control with hybridization of the Star Sensor & the Payload angular accelerometer
 9th of June 2016 : 1st "drag-free" above 6 axes on Earth's low orbit

Principle of the test in space

$$\eta = \frac{a1 - a2}{\frac{1}{2}(a1 + a2)} = \frac{\left(\frac{mg}{mi}\right)_1 - \left(\frac{mg}{mi}\right)_2}{\frac{1}{2}\left[\left(\frac{mg}{mi}\right)_1 + \left(\frac{mg}{mi}\right)_2\right]}$$

evaluated @ 10⁻¹⁵ level

The eventual violation signal frequency is at orbital frequency + s/c rotation rate (spin mode)

3 - M. Rodrigues, MICROSCOPE Mission, ACES Workshop June 2017.

- Comparison of the measured accelerations (a1 & a2) applied on a pair of testmasses when orbiting on the same orbit in the Earth's gravity field (7,92m/s² @ 717km)
- 2 test bodies in Pt(Rh10%) for systematic error evaluation
- 2 test bodies in Pt(Rh10%) vs Ti(Al6%) for the EP test
- The measurement axis, X, is in the orbital plane = cylinder axis

The instrument

The payload inside the satellite

DFACS : Drag Free & Attitude Control System of the 6 degrees of freedom

CONERA Deservatoire de la COTE d'AZUR The FRENCH AEROSPACE LAB

Accelerometer principle of operation

THE FRENCH AEROSPACE LA

7 - M. Rodrigues, MICROSCOPE Mission, ACES Workshop June 2017.

Commissioning phase main events and results

- April Nov 2016: *hard work, rich of unexpected events*
 - Accelerometer : 2 short circuits in FEEU capacitance (SUREF). No impact on performance, still operating, with time to time need to reset the TM levitation.
 - Star sensor: some Earth's albedo light on border of images corrected by software (masks)
 - Cold Gaz thruster : minor anomalies corrected by software but bias is stable, noise < 0.3µNHz^{-1/2}
- The satellite, with help of the accelerometer, of the star sensor, of the thermal passive control and of the GPS, exhibits a very quiet environment at least 10 times better than expected
 - Star sensor:
 - DFACS Performance : 0.03 0.3µrd stability @fep
 - With SU hybridization: 0.5 5 10⁻¹²rd/s² @fep
 - DFACS : Acceleration control over 120 orbits; 0.3 4 10⁻¹⁴m/s² @fep
 - GPS + Doppler orbit determination : 0.1-0.3 m @fep

The commissioning phase results: Variations of Temperatures in the SU & in the FEEU

9 - M. Rodrigues, MICROSCOPE Mission, ACES Workshop June 2017.

 $\Gamma = \frac{1}{2m} PS \frac{\Delta T}{T} < 5 \ 10^{-16} \text{m/s}^2$ $\Gamma = \frac{1}{2m} S \frac{16\Delta T}{3c} \sigma T^3 < 10^{-15} \text{m/s}^2$ No signal @ 10µK level
Thermal stability of parasitic forces
Sensitivity tests performed on May
2017, under analysis
No signal @ 10µK level
Thermal stability of electronics biases

level between each end of the test-masses

Radiometer or radiation pressure effect

No signal @ 15µK

Sensitivity tests performed on May 2017 => systematics of 0.7x10⁻¹⁵ m/s²

The equation of measure

10 - M. Rodrigues, MICROSCOPE Mission, ACES Workshop June 2017.

In orbit SUREF half difference of the acceleration spectrum noise (All tone signals are subtracted from the plot)

THE FRENCH AEROSPACE LA

In orbit SUREF half difference of the acceleration spectrum noise (All tone signals are subtracted from the plot)

Scale factor matching (K1dx) & Quadratic non linear term matching (K2dx)

• Sessions 206 & 208 have larger non-linearities (under investigations)

CONERA CONERA Discrete d'AZUR THE FRENCH AEROSPACE LAB

OSCOPE

Offcentring estimation from Earth's gravity gradient effect at 2 f_{EP}

ONERA

THE FRENCH AFROSPACE LA

Observatoire

- The offcentrings are extracted at the same time as the Eotvos parameter
- Dispersion on session 210 could come from non linearity at the limit of specs (session 206 & 208 performed just before)

δ_{EP_i} with least-square fit in frequency domain & MCMC Hammer

The scale of Eotvos parameter is hinted and biased until publication validation (on going) Performed without correction of calibrated parameters

ONERA

THE FRENCH AFROSPACE LAR

The status of the mission scenario

Orbits nb.	11/05/2017	SUEP	SUREF	Total	
Technical	Commissionning Phase			829	15%
	Moon, Eclipse (TSAGE OFF)			2177	39%
	Others			609	11%
Transitions	Transitions			112	2%
Science	EP test	1205	368	1574	<mark>28</mark> %
	Calibration	196	103	300	5%

- Propulsion : 60% of the available cold gas has been consumed
- The science session will be resumed in September 2017
- With the remaining gas, we should cumulated another 480 orbits for SUEP and 424 orbits for SUREF dedicated to EP test :
- => Concerning stochastic noise, we should gain 10% in performance for SUEP and 30% for SUREF

- 3 methods have been used and give quite the same result:
 - Monte-Carlo Markov Chains Hammer (H. Inchauspe Post-doc ONERA)
 - Kalman Auto-Regressive Model Analysis (Q. Baghi thesis ONERA/OCA)
 - Least-square fit in the frequency domain (OCA/ONERA)
- The stochastic noise reduces with time integration and have been verified over the 1075 usable orbits
- Systematics comes principally from thermal sensitivity: at the moment an upper limit have been established and should compete the stochastic noise over 1075 orbits..... More work on going to better quantify the upper limit of the systematics

- Despite the first fears of the commissioning phase, the satellite & all subsystems are now working very well for the best detection of the Equivalence Principle 'violation or not' for an objective of 10⁻¹⁵
- A paper is under review to give the first & preliminary scientific results on the test of EP for Pt/Ti
- The end of the mission is foreseen by mid 2018
- An announcement of distribution of data will be released after publication of the last results (2019)

TANK YOU FOR YOUR ATTENTION

& Stay tune for very exciting results coming soon ... https://microscope.onera.fr

