

European Research Council Established by the European Commission

DARWIN - A NEXT-GENERATION OBSERVATORY FOR DARK MATTER AND NEUTRINO PHYSICS

LAURA BAUDIS UNIVERSITÄT ZÜRICH ON BEHALF OF THE DARWIN COLLABORATION

SEMINAR AT BOREXINO COLLABORATION MEETING DECEMBER 11, 2020

SOME KEY OPEN QUESTIONS IN PARTICLE PHYSICS

- The nature of dark matter
- Baryogenesis
- The strong CP problem
- The fermion mass spectrum and mixing
- The cosmological constant
- ••••

 Some of these can be addressed with liquid xenon detectors operated deep underground

Demonstrated excellent sensitivities and scalability to large target masses

THE DARWIN EXPERIMENT

- Will use a large amount of clean liquid xenon target & detect ionisation and excitation from particle interactions
- > Xenon: "the strange one", concentration in the atmosphere: 87 ppb* (by volume)

DETECTION PRINCIPLE: A TWO-PHASE TPC

- 3D position resolution via light (S1) and charge (S2) signals
- S2/S1 depends on particle ID
- Fiducialisation
- Single versus multiple interactions
- Energy reconstruction (linear combination of S1, S2)

DARWIN DESIGN: BASELINE SCENARIO

- Two-phase TPC: 2.6 m ø, 2.6 m height
- ▶ 50 t (40 t) LXe in total (in the TPC)
- Two arrays of photosensors (e.g. 1800 3-inch PMTs)
- PTFE reflectors and copper field shaping rings
- Low-background, double-walled titanium cryostat
- ▶ Shield: Gd-doped water, for µ and n

DARWIN collaboration, JCAP 1611 (2016) 017

Alternative designs and photosensors under consideration

BENCHMARK: THE XENON LEGACY AT LNGS

2005-2007	2008-2016	2012-2018	2020-2025	2027-
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

BENCHMARK: THE XENON LEGACY AT LNGS

DARWIN BACKGROUNDS: OVERVIEW

- Cosmogenic (muon-induced) neutrons: NRs
- Detector materials (n, γ, α, e⁻): NRs and ERs
- > Xe-intrinsic isotopes (⁸⁵Kr, ²²²Rn, ¹³⁶Xe, ¹²⁴Xe, etc): ERs
- Neutrinos (solar, atmospheric): NRs and ERs

WATER SHIELD AT LNGS

- Full MC simulation for 3600 mwe
- External γ,n background negligible after > 2.5 m
- Muon-induced n at HE:
 - ~0.4 events/(200 t x y) for 12 m ø tank
 - <0.05 events/(200 t x y) for Borexino tank

Borexino, 12 m tank, XENON

WATER SHIELD AT LNGS

- Full MC simulation for 3600 m w.e.
- External γ,n background negligible after > 2.5 m
- Muon-induced n at HE:
 - ~0.4 events/(200 t x y) for 12 m ø tank
 - <0.05 events/(200 t x y) for Borexino tank</p>

Borexino, 12 m tank, XENON

Single-scatters nuclear recoils; simulated 700 y of DARWIN lifetime

WATER SHIELD AT LNGS

- Full MC simulation for 3600 m w.e.
- External γ,n background negligible after > 2.5 m
- Muon-induced n at HE:
 - \bullet ~0.4 events/(200 t x y) for 12 m ø tank
 - <0.05 events/(200 t x y) for Borexino tank</p>

Visualisation of DARWIN in Borexino WT

Single-scatters nuclear recoils; simulated 700 y of DARWIN lifetime

LIQUID XENON: RADON BACKGROUND

DARWIN goal: ER background dominated by solar neutrinos

- ²²²Rn concentration goal: 45 × below XENON1T best level*
- ²²²Rn atoms in target: 2.25 × below XENON1T
 - avoid Rn emanation (material selection, surface treatment, detector design)
 - active Rn removal via cryogenic distillation

Example: XENON1T distillation column installed for XENON100

factor > 27 (at 95% CL) reduction factor demonstrated

 dedicated column developed and installed underground for XENONnT

See: XENON collaboration, EPJ-C 77 (2017) 6

LIQUID XENON: RADON BACKGROUND

DARWIN goal: ER background dominated by solar neutrinos

- ▶ ²²²Rn concentration goal: 45 × below XENON1T
- ▶ ²²²Rn atoms in target: 2.25 × below XENON1T
 - avoid Rn emanation (material selection, surface treatment, detector design)
 - active Rn removal via cryogenic distillation

 dedicated column developed and installed underground for XENONnT, 63 kg/h (175 slpm)

LIQUID XENON: KRYPTON BACKGROUND

- DARWIN goal: 0.03 ppt ^{nat}Kr (~ 0.1 x pp-v background)
- ▶ ⁸⁵Kr T_{1/2} = 10.8 y, Q-value = 687 keV; ⁸⁵Kr/^{nat}Kr 2 x10⁻¹¹ mol/mol
- 5.5 m distillation column, 6.5 kg/h output; factor > 6.4. x 10⁵ separation down to < 48 ppq (= 10⁻¹⁵ mol/mol)

- XENON1T distillation column^{nat}Kr/Xe: (0.6±0.1) ppt
- XENON1T column has produced gas sample < 0.026 ppt = 2.6 x 10⁻¹⁴ (at 90% CL)

• DARWIN goal achieved

XENON collaboration, EPJ-C 77 (2017) 5

Evolution of Kr/Xe [ppt, mol/mol] level during online distillation

darwin-observatory.org

DIRECT DARK MATTER DETECTION: WIMPS

- Probe SI elastic scattering:¹²⁴Xe, ¹²⁶Xe, ¹²⁸Xe, ¹²⁹Xe, ¹³⁰Xe, ¹³¹Xe, ¹³²Xe (26.9%), ¹³⁴Xe (10.4%), ¹³⁶Xe (8.9%)
- SD elastic + inelastic DM-nucleus scattering: ¹²⁹Xe (26.4%), ¹³¹Xe (21.2%)

DARWIN study: JCAP 10, 016 (2015)

SI, elastic WIMP-nucleus

DIRECT DARK MATTER DETECTION: WIMP SPECTROSCOPY

 Capability to reconstruct the WIMP mass and cross section for various masses here 20, 100, 500 GeV/c² - and cross sections

$$v_{esc} = 544 \pm 40 \text{ km/s}$$

 $v_0 = 220 \pm 20 \text{ km/s}$
 $\rho_{\chi} = 0.3 \pm 0.1 \text{ GeV/cm}^3$

Newstead et al., PRD D 88, 076011 (2013)

COHERENT NEUTRINO NUCLEUS SCATTERS

- > Detect solar ⁸B v: 90 events for $E_{th} > 1 \text{ keV}_{nr}$ (~negligible > 4 keV_{nr})
- Detect supernova v, sensitive to all neutrino flavours:
 - $_{\odot}$ ~ 700 events from SN with 27 M_{solar} @ 10 kpc
- Planned participation in SNEWS network

COHERENT NEUTRINO NUCLEUS SCATTERS

- > Detect solar ⁸B v: 90 events for $E_{th} > 1 \text{ keV}_{nr}$ (~negligible > 4 keV_{nr})
- Detect supernova v, sensitive to all neutrino flavours:
 - $_{\odot}$ ~ 700 events from SN with 27 M_{solar} @ 10 kpc
- Planned participation in SNEWS network

10²

10¹

 $10^{(}$

 10^{-}

 10^{-10}

 10^{-3}

 10^{-4}

 10^{-5} 10⁰

 10^{1}

Recoil energy [keV]

 10^{2}

- \blacktriangleright Real-time measurement, elastic $\nu\text{-electron}$ interaction $\,\nu+e^-\rightarrow\nu+e^-$
- Consider signals from 5 solar ν components + ν capture on ¹³¹Xe (Q-value = 0.355 MeV), and 5 backgrounds up to 3 MeV; assume an energy threshold for ERs of 1 keV
- Multivariate spectra fit of all 11 components

- > Determined relative uncertainty of each solar ν component vs exposure
- Solid: natural xenon target; dashed: target depleted in ¹³⁶Xe

2% precision in 7Be flux with 100 ty

10% precision in pp flux with 1 ty; 0.15 % with 300 ty

Open Access

Regular Article - Experimental Physics

Solar neutrino detection sensitivity in DARWIN via electron scattering DARWIN Collaboration, J. Aalbers, F. Agostini, S. E. M. Ahmed Maouloud, M. Alfonsi, L. Althueser, F. D. Amaro, J. Angevaare, V. C. Antochi, B. Antunovic et al. (157 more) Eur. Phys. J. C, 80 12 (2020) 1133 Published online: 10 December 2020, DOI: 10.1140/epjc/s10052-020-08602-7 Abstract | PDF (604.0 KB)

- ▶ Main rates: 365 events/(t y) from pp v and 140 events/(t y) from ⁷Be v; ¹³N: 6.5/(t y), ¹⁵O: 7.1/(t y)
- pp-flux measurement: 0.15% statistical precision with 300 t y exposure (sub-percent after 10 t y)
- \blacktriangleright Measurement of v_e survival probability & weak mixing angle < 300 keV
 - P_{ee} : 4% relative uncertainty, sin² θ_W : 5% relative uncertainty

DOUBLE BETA DECAY IN DARWIN

- ▶ ¹³⁶Xe: excellent candidate
 - abundance in ^{nat}Xe: 8.9%, Q-value: (2457.83±0.37) keV*
- Amount of ¹³⁶Xe in DARWIN: ~3.6 tonnes (~ 4.5 t in total)
- Expected (1-σ) energy resolution:
 - ~0.8% at 2.5 MeV, demonstrated by XENON1T
- Ultra-low background environment
- Main potential backgrounds: ²²²Rn, ⁸B neutrinos, ¹³⁷Xe from cosmogenic activation, 2vββ-decays

BACKGROUND SIMULATIONS

Detailed detector model in Geant4

Component	Material	Mass	
Outer cryostat	Titanium	3.04 t	Cryostat
Inner cryostat	Titanium	2.10 t	
Bottom pressure vessel	Titanium	0.38 t	
LXe instrumented target	LXe	39.3 t	} Xenon
LXe buffer outside the TPC	LXe	9.00 t	
LXe around pressure vessel	LXe	0.27 t	
GXe in top dome + TPC top	GXe	30 kg	
TPC reflector (3mm thickness)	PTFE	$146 { m kg}$	<pre>TPC components</pre>
Structural support pillars (24 units)	PTFE	$84 { m kg}$	
Electrode frames	Titanium	$120 { m kg}$	
Field shaping rings (92 units)	Copper	$680 { m kg}$	
Photosensor arrays (2 disks): Disk structural support Reflector + sliding panels Photosensors: 3" PMTs (1910 units) Sensor electronics (1910 units)	Copper PTFE composite composite	520 kg 70 kg 363 kg 5.7 kg	<pre>Photosensors and electronics</pre>

SIGNAL EVENTS IN LIQUID XENON

- Electrons thermalise within O(mm) => single-site topology
- Bremsstrahlung photons: may travel > 15mm (E>300 keV) => multi-site event
- Energy depositions: spatially grouped using density-based spatial clustering algorithm
 - New cluster, if distance to any previous $E_{dep} > \epsilon$ (separation threshold)

MAIN BACKGROUND COMPONENTS

Intrinsic:

- ▶ ⁸B v's, ¹³⁷Xe, 2vββ, ²²²Rn
- Materials:
 - ▶ ²³⁸U, ²³²Th, ⁶⁰Co, ⁴⁴Ti
- ▶ FV cut: super-ellipsoidal

$$\left(\frac{z+z_0}{z_{max}}\right)^t + \left(\frac{r}{r_{max}}\right)^t < 1$$

100 y of DARWIN run time

External background events with energy deposits in the ROI [$Q_{\beta\beta}$ ± FWHM/2] = [2435 - 2481] keV

Already achieved specific activities (or upper limits) of detector materials:

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	⁶⁰ Co	$^{44}\mathrm{Ti}$	44T i: T _{1/2} = 59 y, cosmogenic
Titanium	mBq/kg	< 1.6	< 0.09	0.28	0.25	< 0.02	<1.16	
PTFE	mBq/kg	< 1.2	0.07	$<\!0.07$	0.06	0.027	-	Ti = 1.7 Actrop Phys. 96 (2017)
Copper	$\mathrm{mBq/kg}$	< 1.0	$<\!0.035$	< 0.033	< 0.026	$<\!0.019$	-	11. LZ, Astrop. 111ys., 70 (2017)
\mathbf{PMT}	mBq/unit	8.0	0.6	0.7	0.6	0.84	-	Other: XENON, EPJ-C 77 (2017
Electronics	mBq/unit	1.10	0.34	0.16	0.16	< 0.008	-	, , , , , , , , , , , , , , , , , , ,

ENERGY RESOLUTION

W-value = 13.7 eV

- > Anti-correlation between light (S1) and charge (S2)
- Energy scale uses linear combination of S1 and S2
- Photon gain: g1 (pe/photon), electron gain: g2 (pe/electron)

$$E = (n_{ph} + n_e) \cdot W = \left(\frac{S_1}{g_1} + \frac{S_2}{g_2}\right) \cdot W$$

EXTERNAL (MATERIAL) BACKGROUND

- ▶ ROI: [2435-2481] keV = FHWM around $Q_{\beta\beta}$
- ^{214B}Bi: γ at 2.45 MeV, ²⁰⁸Tl, γ at 2.61 MeV; ⁴⁴Sc, γ at 2.66 MeV

Example for 20 tonnes of LXe in fiducial volume (not the final FV for the study)

INTERNAL BACKGROUNDS

- ▶ ²²²Rn in LXe:
 - 0.1µBq/kg, 99.8% BiPo tagging
- ▶ ⁸B solar neutrinos
 - $\Phi_{ve} = (5.46 \pm 0.66) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$
 - \bullet P_{ee} = 0.50
- > 2vββ-decay: subdominant
- ▶ ¹³⁷Xe: cosmogenic activation underground

● n + ¹³⁶Xe -> ¹³⁷Xe

RADON BACKGROUND

Assumption:

- 0.1 µBq/kg ²²²Rn (cryogenic distillation + material selection)
- Problematic:
 - ²¹⁴Bi decay, Q-value = 3.27 MeV, "naked" βdecay without γ emission: 19.1% BR

▶ ²¹⁴Po:

- a-decay with short half-life, $T_{1/2} = 164.3 \ \mu s =>$ active veto for ²¹⁴Bi-decays
- Assumption:
 - 99.8% BiPo tagging efficiency

MATERIAL + INTRINSIC BACKGROUND

- ROI: [2435-2481] keV = FHWM around $Q_{\beta\beta}$
- ¹³⁷Xe: β-decay with Q=4173 keV, T_{1/2}=3.82 min (via n-capture on ¹³⁶Xe)

Rate versus fiducial mass

Rate in 5 tonnes fiducial region (0.45 t ¹³⁶Xe)

Signal: $T_{1/2} = 2 \times 10^{27} \text{ y}$

DOUBLE BETA DECAY SENSITIVITY

- Profile likelihood analysis, baseline T_{1/2} sensitivity:
- > 2.4 x 10²⁷ y for 5 t fiducial mass x 10 y exposure (90% CL)

Discovery potential: 1.1 x 10²⁷ y at 3-σ

ROOM FOR IMPROVEMENT?

- Reduce external backgrounds
 - SiPMs, cleaner materials & electronics
- Reduce internal background
 - Time veto for ¹³⁷Xe, deeper lab, BiPo tagging
- Improve signal/background discrimination; resolution...

DARWIN could reach ~6 x 10²⁷ y sensitivity

ROOM FOR IMPROVEMENT?

- Reduce external backgrounds
 - SiPMs, cleaner materials & electronics
- Reduce internal background
 - Time veto for ¹³⁷Xe, deeper lab, BiPo tagging
- Improve signal/background discrimination; resolution...

Baseline: $m_{\beta\beta} = (18 - 46) \text{ meV}$ Progressive: $m_{\beta\beta} = (11 - 28) \text{ meV}$

DOUBLE BETA DECAY: COMPARISON WITH OTHER PROJECTS

Figure adapted after M. Agostini

PROJECT OVERVIEW

- > 33 groups from 12 countries, working towards CDR and TDR
- R&D and design on several aspects:
 - Detector including cryostat & TPC
 - Light and charge sensors & readout
 - Backgrounds (incl. Rn/Kr removal, materials) & veto
 - LXe procurement, storage, purification & cryogenics
 - Xenon properties and calibration of 50 t detector

THE DARWIN COLLABORATION

About 170 members from 33 institutions in Europe, USA and Asia

DARWIN TIMESCALE

2019: Successful LoI submission to LNGS, invited to submit a CDR

DETECTOR PROTOTYPES

- Two large-scale demonstrators & test platforms for the entire collaboration
- Smaller R&D projects at various institutions

Test e- drift over 2.6 m (purification, high-voltage)

Test electrodes and homogeneity of extraction field

DETECTOR PROTOTYPES

- > Test platform in Freiburg: 2.7 m inner diameter, up to 15 cm in height (5 cm LXe), 400 kg Xe gas
- > Test horizontal components, real-scale electrodes, etc

European Research Council Established by the European Commission

DETECTOR PROTOTYPES

- Test platform in Zurich
- 16 cm inner diameter
- > up to 2.6 m LXe height
- > 400 kg Xe gas
- Test vertical components
- ▶ e⁻ drift

emonstrator

HV feedthroughs, etc

Universität

Zürich

erc

DETECTOR PROTOTYPES: XENOSCOPE

European Research Council Established by the European Commission

- Under construction at UZH, first commissioning in early 2021
- Support structure, gas system, cryostat, cooling tower, electrical system, etc completed
- > HV feed-through, TPC and purity monitor under design/construction
- ▶ Goals: test 200 V/cm drift field, 100 slpm purification speed, measure e⁻ cloud diffusion, etc

DARWIN R&D EXAMPLES

New detector concepts, analytics and screening, radon reduction, new photosensors, etc

SUMMARY

- DARWIN observatory: excellent sensitivity in particle/astroparticle physics
- > Due to very low expected event rates, we need:
 - a large detector mass and ultra-low backgrounds (material radio-assay & Rn reduction remain crucial)
 - a very good energy resolution and a low energy threshold
- In general: DM detectors are optimised at keV energy scales, 0vββ detectors at MeV-scale energies, solar v detectors are much larger, monolithic and have ultra-low backgrounds
 - Ideally, DARWIN will have sensitivity to search for a variety of signals in particles physics: neutrinos, 0vββ, solar axions, dark matter ALPs & dark photons, WIMPs, etc
- Eventually limited by neutrino interactions (but also new physics opportunities!)
- Remember that yesterday's background might be today's signal ;-)

BACKUP SLIDES

NEUTRINO BACKGROUNDS FOR DM SEARCHES

- Low mass region: limit at ~ 0.1- 10 kg year (target dependent)
- High mass region: limit at ~ 10 ktonne year
- But: annual modulation, directionality, momentum dependance, inelastic DM-nucleus scatters, etc

NEUTRINOS IN A DARWIN-LIKE DETECTOR

- Study of sensitivity to atmospheric neutrinos (using NEST to model the signals)
- Below: exposure of 200 t y; need 700 t y to obtain a 5-σ detection of atmospheric neutrinos

• Use a combination of neutrino flux measurements to probe the solar metallicity

.

► Neutrino capture on ¹³¹Xe

0/ > 0

$$\nu_e + {}^{131}\text{Xe} \rightarrow {}^{131}\text{Cs}^+ + e^- \rightarrow {}^{131}\text{Xe} + \nu_e + \gamma + e^-$$

Prompt Signature

D-- [+v-1]

Delayed Signature

A	70 > Q			
рр	17.2	9.7	0.16	0.16
Be	100	17.8	0.30	0.30
N	90.8	1.6	0.03	0.03
0	96.2	1.8	0.03	0.03
рер	100	1.6	0.03	0.03
В	99.98	12.7	0.01*	0.12
0.56 0.67				
Georgadze et al.				

D-- [+v-1]

21.2% abundance

$$Q = 355 \text{ keV}$$

$$E_{\nu} = 325.5 \text{ keV}$$

$$E_{\rm NC}=29.5~{\rm keV}$$

https://www.sciencedirect.com/science/article/pii/S0927650597000170

* only 11.4% in [0,3] MeV

XENON-NT: BACKGROUND PREDICTIONS

Source	Rate $[(ty)^{-1}]$
ER background	
Detector radioactivity	25 ± 3
222 Rn	55 ± 6
85 Kr	13 ± 1
136 Xe	16 ± 2
124 Xe	4 ± 1
Solar neutrinos	34 ± 1
Total	148 ± 7
NR background	
Neutrons	$(4.1 \pm 2.1) imes 10^{-2}$
$CE\nu NS$ (Solar ν)	$(6.3 \pm 0.3) imes 10^{-3}$
$CE\nu NS$ (Atm+DSN)	$(5.4 \pm 1.1) \times 10^{-2}$
Total	$(1.0 \pm 0.2) \times 10^{-1}$

rates in a fiducial mass of 4 t of LXe, 1-13 keV ER, 4 -50 keV NR energy range

XENON-NT: BACKGROUND PREDICTIONS

Model component	Expectation	Rate uncertainty	
	Observable ROI	Reference signal region	(ξ)
Background			
ER	2440	1.56	
Neutrons	0.29	0.15	50%
$CE\nu NS$ (Solar ν)	7.61	5.41	4%
$CE\nu NS (Atm+DSN)$	0.82	0.36	20%
WIMP signal			
$6 \mathrm{GeV/c^2}$ ($\sigma_{\mathrm{DM}} = 3 \times 10^{-44} \mathrm{cm^2}$)	25	19	
$\int 50 \text{GeV}/\text{c}^2 \left(\sigma_{\text{DM}} = 5 \times 10^{-47} \text{cm}^2\right)$	186	88	
1 TeV/c^2 ($\sigma_{\text{DM}} = 8 \times 10^{-46} \text{ cm}^2$)	286	118	

Number of events in the ROI and in a reference WIMP signal region for an exposure of 20 t years

XENON-NT: SCIENCE REACH

XENON-NT: IMPACT OF (POTENTIAL) TRITIUM

Sensitivity as a function of ³H concentration, relative to the sensitivity with no 3H contribution

XENON-NT: SCIENCE REACH

Background and signal PDFs

Background and signal PDFs projected on S1 space

LIGHT AND CHARGE SENSORS AND READOUT

- Test alternative to PMTs: e.g., ABALONE (hybrid photosensor), VUV-SiPMs (FBK, Hamamatsu)
- Develop cryogenic electronics for SiPMs; develop cryogenic digital SiPMs
- Bubble-assisted Liquid Hole Multipliers: local vapour bubble underneath GEM-like perforated electrode in LXe

Liquid hole multipliers E. Erdal, 2018 JINST 13, 2018

Cryogenic preamp for SiPMs, F. Arneodo et al., NIM 936, 2019

Hamamatsu SiPM arrays in two-phase TPC, LB et al., EPJ-C 80, 2020

LIGHT AND CHARGE SENSORS AND READOUT

- Test VUV-sensitive SiPMs as potential replacement for PMTs
- ▶ First Xe-TPC with SiPM in top array at UZH
- ▶ Characterisation with ³⁷Ar and ^{83m}Kr sources

Characterisation with ³⁷Ar source

Upgrade of Xurich-II (LB et al., EPJ-C 80, 2020 and EPJ- C 78, 2018) S2 versus S1 for the 2.82 keV ³⁷Ar line (K-shell, 90.2% BR)

x-y position reconstruction ~ 1.5 mm resolution

BACKGROUND BUDGET IN DOUBLE BETA REGION

Background source	Background index [events/(t·yr·keV)]	Rate [events/yr]	Rel. uncertainty
External sources (5t FV):		. /0]	
214 Bi peaks + continuum	1.36×10^{-3}	0.313	$\pm 3.6\%$
²⁰⁸ Tl continuum	$6.20 imes10^{-4}$	0.143	$\pm 4.9\%$
44 Sc continuum	4.64×10^{-6}	0.001	$\pm 15.8\%$
Intrinsic contributions:			
⁸ B ($\nu - e$ scattering)	$2.36 imes10^{-4}$	0.054	+13.9%, -32.2%
¹³⁷ Xe (μ -induced <i>n</i> -capture)	1.42×10^{-3}	0.327	$\pm 12.0\%$
$^{136}\mathrm{Xe}~2 uetaeta$	$5.78 imes10^{-6}$	0.001	+17.0%, -15.2%
²²² Rn in LXe $(0.1 \mu \text{Bq/kg})$ 3.09×10^{-4}		0.071	$\pm 1.6\%$
Total:	$3.96 imes \mathbf{10^{-3}}$	0.910	+4.7%, -5.0%

RADON BUDGET IN XENON1T

XENON RADON DISTILLATION COLUMN

661 keV

Rate in ROI: (1.40±0.06) x 10⁻³ events/(t y keV)

137Ba56

ROI: Q-value ± FWHM/2 = (2435-2481) keV

1000 1500 2000 2500 3000 3500 4000 4500 5000

S+MS

SS+MS

ROI OVBB

Energy [keV]

137-XE BACKGROUND

- Simulate ¹³⁷Xe, production rate by cosmogenic n-capture
- Rate: 6.7 atoms/(t y), dominated by production on LXe (6.3 atoms/(t y) (at LNGS, 3600 mw.e.)
- nEXO: 2.2 atoms/(t y) at SNOLAB (PRC 97, 2018); KamLAND-Zen: 1.42 atoms/(t y) at Kamioka (PRL 117, 2016)

Material	Muon-induced Neutron Production Rate [n/year]	¹³⁷ Xe Production Rate [atoms/kg/year]
Copper	1.12×10 ⁴	7.39×10 ⁻⁵
SS	1.32×10⁵	2.40×10-4
LXe	1.02×10 ⁶	6.34×10 ⁻³
Total		6.66×10 ⁻³

Experiment	Location	Depth [m.w.e]	¹³⁷ Xe Production Rate [atoms/kg/year]
KamLAND-Zen [2]	Kamioka	2050	1.42×10 ⁻³
DARWIN	LNGS	3600	6.66×10 ⁻³
nEXO [3]	SNOLAB	6011	2.20×10 ⁻³

 \blacktriangleright Real-time measurement, elastic $\nu\text{-electron}$ interaction $\nu+e^- \rightarrow \nu+e^-$

$$\frac{dN_i}{dT} = \Phi_i N_e \sum_j \int P_{ej} \frac{dN}{dE_{\nu}} \frac{d\sigma_j}{dT} dE_{\nu}$$
Depends on
weak mixing angle
Neutrino survival probability
$$\frac{d\sigma}{dT} = \frac{G_F^2 m_e}{2\pi} [(g_v + g_a)^2 + (g_v - g_a)^2 (1 - \frac{T}{E_{\nu}})^2 + (g_a^2 - g_v^2) \frac{m_e T}{E_{\nu}^2}]$$

$$g_v = 2 \sin^2 \theta_w - \frac{1}{2}$$
For electron neutrinos...
$$g_v = -\frac{1}{2}$$
For electron neutrinos...