

Particle Physics II (KT2), Practical Course

"Pion Decay"

PHY213

Organization

The KT2 praktikum will take place at the high-intensity proton accelerator facility at the Paul Scherrer Institute (PSI) in Villigen

We have reserved beam time in weeks 28 and 29 (from July 10 to July 23)

Assistants:

Dr. Olaf Steinkamp UZH Y36-J-22 (044 63) 55763 olafs@physik.uzh.ch

Dr. Alexander Kish
UZH Y36-K-70
(044 63) 56627
alexkish@physik.uzh.ch

Dr. Lea Caminada UZH Y36-J-48 / PSI (044 63) 56115 caminada@physik.uzh.ch

Proton Accelerator, Pion Production

HIPA:

proton accelerator, includes

- 870 keV Cockroft-Walton pre-injector
- 72 MeV cyclotron injector
- 590 MeV ring cyclotron

Experimental Area at PSI

Experimental area PiM1

Control room

Pion Production

 The protons are accelerated onto the carbon target, where they interact with nucleons and produce pions

π^+ -Einzelproduktion	$p p \rightarrow n p \pi$
	$p~p \to d~\pi^+$
	$p n \rightarrow n n \pi$

$$\pi^+$$
-Doppelproduktion $p p \rightarrow d \pi^+ \pi^0$
 $p n \rightarrow n p \pi^+ \pi^-$

 π^+ -Produktion über $pn \to nn\pi^+$ Reaktion

- Negatively charged particles are electrostatically separated
- The particle beam in PiM1 area consists of $\pi^+,\,\mu^+,\,e^+$ with a typical momentum range from 150 to 450 meV/ c^2

 π^+ -Produktion durch $pp \to np\pi^+$ mit Δ^{++} als Zwischenprodukt

Pion Decay

The subject of study are the following decays:

- pion into muon and muon neutrino

davon $e^+ \nu_e \gamma$

Unterdrückter π^+ -Zerfall

Kanal	Mode		Anteil $\Gamma_i/\Gamma[\%]$	Kanal	Mode	Anteil $\Gamma_i/\Gamma[\%]$
1	$\mu^+ u_\mu$	15.	99.98770 ± 0.00004	1	$e^+~ u_e~ar{ u_\mu}$	≈ 100
1.1	davon μ^+ ν_μ γ		$(2.00\pm0.25)\times10^{-4}$	2	$e^+ u_e ar{ u_\mu} \gamma$	(1.4 ± 0.4)
2	$e^+ u_e$		$(1.230 \pm 0.004) \times 10^{-4}$			

 $(7.39 \pm 0.05) \times 10^{-7}$

Measurements

- The particles incoming with the beam (protons, positrons, pions, muons) are:
- (a) passing through the plastic scintillators 1 and 2
- (b) slowed down in the moderator

- (c) pions are stopped in scintillator 3 (and decay there), vetoed with scintillator 4
- (d) background is vetoed with scintillator 5
- (e) decay products are tagged with scintillator 6 and measured with Nal calorimeter

Electronics

The signals will be processed online with hardware modules:

- amplifiers
- coincidence logic modules
- scalers, pre-scalers
- clock
- time-to-amplitude converter
- multi-channel analyser/ADC

→ We have used most of them in the KT1 course

Alexander Kish, UZH

Measurements

We will record time and energy spectra and perform the measurements of:

pion and muon lifetimes

$$\tau_{\pi} = 26 \text{ ns}$$

 $\tau_{\mu} = 2.2 \text{ } \mu\text{s}$

pion and muon rest mass

$$m_{\pi} = 134.98 \text{ MeV}$$

 $m_{\mu} = 105.66 \text{ MeV}$

• ratio between decay probabilities in channels $\pi^+ \rightarrow \mu^+ + \nu$ and $\pi^+ \rightarrow e^+ + \nu$

$$(= 1.23 \times 10^{-4})$$

