B(eautiful) Physics II

Marcin Chrzaszcz mchrzasz@cern.ch

Kern- und Teilchenphysik II, 12 May, 2017

Marcin Chrzaszcz (Universität Zürich)

B(eautiful) Physics

LHCb detector - tracking

- Excellent Impact Parameter (IP) resolution (20 μ m). \Rightarrow Identify secondary vertices from heavy flavour decays
- Proper time resolution $\sim 40 \ {\rm fs}.$
 - \Rightarrow Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.4 0.6\%$) and inv. mass resolution. \Rightarrow Low combinatorial background.

 $L \sim 7 \,\mathrm{mm} \mathrm{SV}$

p

LHCb detector - particle identification

- Excellent Muon identification $\epsilon_{\mu
 ightarrow \mu} \sim 97\%$, $\epsilon_{\pi
 ightarrow \mu} \sim 1-3\%$
- Good $K \pi$ separation via RICH detectors, $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$. \Rightarrow Reject peaking backgrounds.
- High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76 \text{GeV}$ at L0, $p_T > 1.0 \text{GeV}$ at HLT1, $B \rightarrow J/\psi X$: Trigger $\sim 90\%$.

Legacy of B-factories

The CKM mechanism is confirmed

Nicola Cabibbo

Constraints on the Unitarity Triangle see <u>http://www.utfit.org</u>/

... and after the B factories

Marcin Chrzaszcz (Universität Zürich)

7

CP violation in B^0 system from B factories

$$A(t) = \frac{\Gamma(\overline{B}^{0} \rightarrow f_{CP}) - \Gamma(B^{0} \rightarrow f_{CP})}{\Gamma(\overline{B}^{0} \rightarrow f_{CP}) + \Gamma(B^{0} \rightarrow f_{CP})} = -\eta_{f} \sin 2\beta \sin(\Delta m_{B^{0}} \Delta t)$$

$$f_{CP} = J/\psi K_{S}^{0} \rightarrow \eta_{CP} = -1$$

$$J/\psi K_{L}^{0} \rightarrow \eta_{CP} = +1$$

$$\int \psi K_{L}^{0} \rightarrow \eta_{CP} = +1$$

γ from $B \rightarrow DK$

Extracted from tree-level decays

Exploit interference between amplitudes, e.g.

$A_B D^0 K^- A_D r_D e^{i\delta_D}$	$f_D = \pi^+ \pi^-, K^+ K^-$	GLW
B^-	$K^+\pi^-$	ADS
$A_B r_b e^{i(\delta_B - \gamma)} A_D$	$K^0_S \pi^+\pi^-$	GGSZ

 GLW:
 Gronau, London, Wyler PLB 253 (1991) 483, PLB 265 (1991) 172

 ADS:
 Atwood, Dunietz, Soni PRL 78 (1997) 3257
 GGSZ:
 Giri, Grossman, Soffer, Zupan PRD68 (2003) 054018

γ from $B \rightarrow DK$

ADS favoured modes $29,470 \pm 230$ $B^{\pm} \rightarrow (K^{\pm}\pi)_{D}K^{\pm}$ events ADS suppressed modes $553 \pm 34 B^{\pm} \rightarrow (\pi^{\pm}K)_D K^{\pm}$ CP violation at 80 GLW modes $1,162 \pm 48 \text{ B}^{\pm} \rightarrow (\pi^{+}\pi^{-})_{D}\text{K}^{\pm}$ 3,816 ± 92 B[±] → (K⁺K⁻)_DK[±] CP violation at 50 (combined)

$|V_{ub}|$ from Λ_b

- ▶ Normalise yields to $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu$, V_{cb} mediated decay, cancel many systematic uncertainties
- Apply tight vertex cut, PID on proton and muon, track isolation to reject 90% of background (using boosted decision tree)
- Use corrected mass to reconstruct the signal and retain events with $\sigma(M_{\rm corr}) < 100 {\rm MeV}$

$$M_{corr} = \sqrt{p_\perp^2 + M_{p\mu}^2 + p_\perp}$$

• Use Λ_b^0 flight direction and mass to determine q² with two-fold ambiguity (neutrino). Require both solutions >15 GeV², minimise migration to low q² bins

$|V_{ub}|$ from Λ_b

- Normalise yields to $\Lambda_b^0\to\Lambda_c^+\,\mu^-\,\bar\nu_\mu$, ${\rm V_{cb}}$ mediated decay, cancel many systematic uncertainties
- Apply tight vertex cut, PID on proton and muon, track isolation to reject 90% of background (using boosted decision tree)
- Use corrected mass to reconstruct the signal and retain events with $\sigma(M_{\rm corr}) < 100 {\rm MeV}$

$$M_{corr} = \sqrt{p_\perp^2 + M_{p\mu}^2 + p_\perp}$$

• Use Λ_b^0 flight direction and mass to determine q² with two-fold ambiguity (neutrino). Require both solutions >15 GeV², minimise migration to low q² bins

$|V_{ub}|$ from Λ_b

Measure:

$$\begin{split} |V_{ub}|^2 &= |V_{cb}|^2 \frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \bar{\nu}_\mu)_{q^2 > 15 \text{GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)_{q^2 > 76 \text{eV}^2}} R_{FF} \\ & \text{world average} \\ \text{(39.5 \pm 0.8) \times 10^{-3}} \\ (1.00 \pm 0.04 \pm 0.08) \times 10^{-2} \\ 0.68 \pm 0.07 \end{split}$$

[1] W. Detmold, C. Lehner, and S. Meinel, arXiv:1503.01421

$$\begin{split} \text{Most precise measurement} \\ |V_{ub}| &= (3.27 \pm 0.15 \pm 0.17 \pm 0.06) \times 10^{-3} \\ \hline \text{exp.} \quad \text{LQCD} \quad \hline \text{V}_{\text{cb}} \end{split}$$

- Background contributions estimated using ad hoc control samples
- Largest exp. uncertainty from $\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$

 $|V_{ub}|$ Puzzle

3.50 tension between exclusive and inclusive measurements

LHCb measurement does not support explanation based on right handed current added to SM

Δm_s and Δm_d

·/21

$B_{s/d} \to \mu \mu$

⇒ Golden channel for LHCb. ⇒ Normalized to the $B \to K\pi$ and $B \to KJ/\psi$.

 \Rightarrow The selection is achived by BDT trained on MC and calibrated on data.

$$\Rightarrow Br(B_s^0 \to \mu\mu) = (3.0 \pm 0.6^{+0.3}_{-0.2})10^{-9}$$

7.8 σ significant!

$$\Rightarrow Br(B_d^0 \to \mu\mu) < 3.4 \times 10^{-10}, 90\% CL$$

Effective lifetime

⇒ Sensitivity to non-scalar NP. ⇒ $\tau(B_s^0 \to \mu\mu) = 2.04 \pm 0.44 \pm 0.05 \text{ps}$

Marcin Chrzaszcz (Universität Zürich)

$B_{s/d} \to \mu \mu$

 $\Rightarrow \text{ Golden channel for LHCb.} \\\Rightarrow \text{ Normalized to the } B \to K\pi \text{ and } B \to KJ/\psi.$

 \Rightarrow The selection is achived by BDT trained on MC and calibrated on data.

$$\Rightarrow \operatorname{Br}(B_{s}^{0} \to \mu\mu) = (3.0 \pm 0.6^{+0.3}_{-0.2})10^{-9}$$

7.8 σ significant!

$$\Rightarrow \operatorname{Br}(\mathcal{B}^0_{\mathsf{d}} \to \mu\mu) < 3.4 \times 10^{-10}, 90\% \mathrm{CL}$$

Effective lifetime \Rightarrow Sensitivity to non-scalar NP. $\Rightarrow \tau(B_s^0 \to \mu\mu) = 2.04 \pm 0.44 \pm 0.05 \text{ps}$

$B_{s/d} \to \tau \tau$

 \Rightarrow NP sensitivity enhanced due to the high τ mass.

 \Rightarrow More challenging: at least 2ν are escaping.

- \Rightarrow Selecting $au o 3\pi
 u$, o 9.31 %
- \Rightarrow Normalization channel:
- $B \rightarrow D(K\pi\pi)D_{s}(KK\pi).$
- \Rightarrow No peak in the *B* mass window \rightarrow fit the NN output.

$\Lambda_h \to p\pi\mu\mu$

 \Rightarrow First observation of $b \rightarrow d$ in baryon system!

- \Rightarrow BDT selection trained on MC
- \Rightarrow Normalized to $\Lambda_b \rightarrow p\pi J/\psi$

 \Rightarrow With futher QCD improvements we will be able to to measure $\frac{|V_{ts}|}{|V_{ts}|}$.

 $\frac{\text{Br}(\Lambda_b \to p\pi\mu\mu)}{\text{Br}(\Lambda_b \to p\pi/\psi)} = 0.044 \pm 0.012 \pm 0.007$

Search for light scalars

 \Rightarrow Hidden sector models are gathering more and more attention.

 \Rightarrow Inflaton model: new scalar then mixes with the Higgs.

 \Rightarrow *B* decays are sensitive as the inflaton might be light.

⇒ Searched for long living particle χ produced in: $B \rightarrow \chi(\mu\mu)K$.

 \Rightarrow Analysis performed blindly as a peak search.

Marcin Chrzaszcz (Universität Zürich)

 $K_{\rm S}^0 \to \mu \mu$

 \Rightarrow *pp* collisions create enormous amount

of strange mesons.

 \Rightarrow Can be used to search for $K_{S}^{0} \rightarrow \mu \mu$.

 \Rightarrow SM prediction:

 $Br(K_5^0 \to \mu\mu) = (5.0 \pm 1.5) \times 10^{-12}$

 \Rightarrow Dominated by the long distance effects.

 \Rightarrow We used two types of triggers: TIS and TOS.

⇒ No significant enhanced of signal has been observed and UL was set:

 ${\rm Br}({\it K_{\rm S}^{\rm Q}}
ightarrow \mu \mu) < 6.9(5.8) imes 10^{-9} {
m at } 95(90)\%$ CL

Marcin Chrzaszcz (Universität Zürich)

$B^0 \rightarrow K^* \mu^- \mu^+$ decay

 $\Rightarrow B^0 \rightarrow K^* \mu^- \mu^+$ is a smoking gun for NP hunting!

⇒ Reach angular observables makes
 is sensitive to different NP models
 ⇒ In addition one can construct less
 form factor dependent observables:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 \Rightarrow In single analysis observed $3.4~\sigma$ discrepancy in the C_9 WC.

Branching fraction measurements of $B_s^0 \rightarrow \phi \mu \mu$

- Recent LHCb measurement, JHEP09 (2015) 179.
- Suppressed by $\frac{f_s}{f_d}$.
- Cleaner because of narrow ϕ resonance.
- 3.3σ deviation in SM in the $1 6 \text{GeV}^2$ bin.
- Angular part in agreement with SM (S_5 is not accessible).

Theory implications of $b \rightarrow s\ell\ell$

- A fit prepared by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto.
- The data can be explained by modifying the C_9 Wilson coefficient.
- Overall there is $> 4 \sigma$ discrepancy wrt. the SM prediction.

- \Rightarrow LHCb is the new *B*-factory.
- \Rightarrow A lot of consistent anomalies have been observed!
- \Rightarrow Until Belle2 starts to produce results LHCb will dominate the heavy flavour physics.

Theory implications of $b \rightarrow s\ell\ell$

- A fit prepared by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto.
- The data can be explained by modifying the C_9 Wilson coefficient.
- Overall there is $>4~\sigma$ discrepancy wrt. the SM prediction.

Reminder

• Operator Product Expansion and Effective Field Theory

$$H_{eff} = -\frac{4G_f}{\sqrt{2}}VV'^* \sum_{i} \left[\underbrace{C_i(\mu)O_i(\mu)}_{\text{left-handed}} + \underbrace{C_i'(\mu)O_i'(\mu)}_{\text{right-handed}} \right], \qquad \begin{array}{c} \text{i=1.2 Tree} \\ \text{i=3-6.8 Gluon penguin} \\ \text{i=7 Photon penguin} \\ \text{i=9.10 EW penguin} \\ \text{i=S Scalar penguin} \\ \text{i=P Preudocraler penguin} \\ \text{i=P Preudocraler penguin} \\ \text{i=R Pre$$

where C_i are the Wilson coefficients and O_i are the corresponding effective operators.

Analysis of Rare decays

Analysis of FCNC in a model-independent approach, effective Hamiltonian:

$$b \to s\gamma(^*) : \mathcal{H}^{SM}_{\Delta F=1} \propto \sum_{i=1}^{10} V^*_{ts} V_{tb} \mathcal{C}_i \mathcal{O}_i + \dots$$

•
$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \left(\bar{s} \sigma^{\mu\nu} P_R b \right) F_{\mu\nu}$$

• $\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b) \left(\bar{\ell} \gamma_\mu \ell \right)$

•
$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) \ (\bar{\ell}\gamma_\mu \gamma_5 \ell), \dots$$

• SM Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref} = 4.8 \text{ GeV}$ [Misiak et al.]:

$$\mathcal{C}_7^{\rm SM} = -0.29, \, \mathcal{C}_9^{\rm SM} = 4.1, \, \mathcal{C}_{10}^{\rm SM} = -4.3$$

• NP changes short distance $\mathcal{C}_i - \mathcal{C}_i^{\mathrm{SM}} = \mathcal{C}_i^{\mathrm{NP}}$ and induce new operators, like

 $\mathcal{O}_{7,9,10}' = \mathcal{O}_{7,9,10} \ (P_L \leftrightarrow P_R)$... also scalars, pseudoescalar, tensor operators...

$B^0 ightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

⇒ $\cos \theta_k$: the angle between the direction of the kaon in the \mathcal{K}^* ($\overline{\mathcal{K}^*}$) rest frame and the direction of the \mathcal{K}^* ($\overline{\mathcal{K}^*}$) in the B^0 (\overline{B}^0) rest frame. ⇒ $\cos \theta_l$: the angle between the direction of the μ^- (μ^+) in the dimuon rest frame and the direction of the dimuon in the B^0 (\overline{B}^0) rest frame.

⇒ ϕ : the angle between the plane containing the μ^- and μ^+ and the plane containing the kaon and pion from the K^* .

$B^0 \rightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l , θ_k , ϕ and invariant mass of the dimuon system (q^2) .

$$\begin{split} \frac{d^4 \Gamma}{dq^2 \, d\cos\theta_K \, d\cos\theta_l \, d\phi} &= \frac{9}{32\pi} \left[J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l \right. \\ &+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi + J_5 \sin 2\theta_K \sin\theta_l \cos\phi \\ &+ (J_{6s} \sin^2\theta_K + J_{6c} \cos^2\theta_K) \cos\theta_l + J_7 \sin 2\theta_K \sin\theta_l \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi \\ &+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \right], \end{split}$$

 \Rightarrow This is the most general expression of this kind of decay.

Transversity amplitudes

 \Rightarrow One can link the angular observables to transversity amplitudes

$$J_{1s} = \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) \,,$$

$$J_{1c} \quad = \quad \left|A_0^L\right|^2 + \left|A_0^R\right|^2 + \frac{4m_\ell^2}{q^2} \left[\left|A_t\right|^2 + 2\text{Re}(A_0^L A_0^{R^*})\right] + \beta_\ell^2 \left|A_S\right|^2,$$

$$\begin{aligned} J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right], \qquad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 \right], \\ J_3 &= \frac{1}{\beta_{\ell}^2} \left[|A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + |A_{\parallel}^R|^2 - |A_{\parallel}^R|^2 \right], \qquad J_4 = \frac{1}{-\beta_{\ell}^2} \left[\operatorname{Re}(A_0^L A_{\parallel}^L^* + A_0^R A_{\parallel}^R^*) \right], \end{aligned}$$

$$J_5 \quad = \quad \sqrt{2} \beta_\ell \left[{\rm Re} (A_0^L A_\perp^{L\,*} - A_0^R A_\perp^{R\,*}) - \frac{m_\ell}{\sqrt{q^2}} \, {\rm Re} (A_\parallel^L A_S^* + A_\parallel^{R\,*} A_S) \right],$$

$$J_{6s} = 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R}A_{\perp}^{R*}) \right], \qquad \qquad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{0}^{L}A_{S}^{*} + A_{0}^{R*}A_{S})$$

$$J_7 \quad = \quad \sqrt{2}\beta_\ell \left[\mathrm{Im}(\mathbf{A}_0^{\mathrm{L}}\mathbf{A}_\parallel^{\mathrm{L}\,*} - \mathbf{A}_0^{\mathrm{R}}\mathbf{A}_\parallel^{\mathrm{R}\,*}) + \frac{\mathbf{m}_\ell}{\sqrt{\mathbf{q}^2}} \,\mathrm{Im}(\mathbf{A}_\perp^{\mathrm{L}}\mathbf{A}_{\mathrm{S}}^* - \mathbf{A}_\perp^{\mathrm{R}\,*}\mathbf{A}_{\mathrm{S}})) \right],$$

$$J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_0^{\mathbf{L}} \mathbf{A}_\perp^{\mathbf{L}\;*} + \mathbf{A}_0^{\mathbf{R}} \mathbf{A}_\perp^{\mathbf{R}\;*}) \right], \qquad \qquad J_9 = \beta_\ell^2 \left[\operatorname{Im}(\mathbf{A}_\parallel^{\mathbf{L}\;*} \mathbf{A}_\perp^{\mathbf{L}} + \mathbf{A}_\parallel^{\mathbf{R}\;*} \mathbf{A}_\perp^{\mathbf{R}}) \right]$$

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$A_{\perp}^{L,R} \quad = \quad \sqrt{2}Nm_B(1-\hat{s}) \Bigg[(\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \Bigg] \xi_{\perp}(E_K^*)$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}}(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_K^*)$$

$$A_{0}^{L,R} \quad = \quad -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \left[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \right] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

 \Rightarrow In practice one measures normalized J by branching fractions:

$$S_i/A_i = \frac{J_i \pm \overline{J}_i}{d\Gamma + d\overline{\Gamma}/dq^2}$$

Link to effective operators

 \Rightarrow So here is where the magic happens. At leading order the amplitudes can be written as:

$$A_{\perp}^{L,R} \quad = \quad \sqrt{2}Nm_B(1-\hat{s}) \Bigg[(\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \Bigg] \xi_{\perp}(E_K^*)$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s})\left[(\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}}(\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_K^*)$$

$$A_{0}^{L,R} \quad = \quad -\frac{Nm_{B}(1-\hat{s})^{2}}{2\hat{m}_{K}^{*}\sqrt{\hat{s}}} \left[(\mathcal{C}_{9}^{\mathrm{eff}} - \mathcal{C}_{9}^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_{b}(\mathcal{C}_{7}^{\mathrm{eff}} - \mathcal{C}_{7}^{\mathrm{eff}}) \right] \xi_{\parallel}(E_{K}^{*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the form factors.

 \Rightarrow Now we can construct observables that cancel the ξ form factors at leading order:

$$P_5' = \frac{J_5 + J_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

LHCb measurement of $B^0_d \to K^* \mu \mu$

Multivariate simulation

- PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to discriminate signal and background.
- BDT with k-Folding technique.
- Completely data driven.

Multivariate simulation, efficiency

 \Rightarrow BDT was also checked in order not to bias our angular distribution:

 \Rightarrow The BDT has small impact on our angular observables. We will correct for these effects later on.

Marcin Chrzaszcz (Universität Zürich)

B(eautiful) Physics

Detector acceptance

- Detector distorts our angular distribution.
- We need to model this effect.
- 4D function is used:

$$\epsilon(\cos\theta_l,\cos\theta_k,\phi,q^2) = \sum_{ijkl} P_i(\cos\theta_l) P_j(\cos\theta_k) P_k(\phi) P_l(q^2),$$

where P_i is the Legendre polynomial of order i.

- We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \theta_l, \cos \theta_k, \phi, q^2$.
- The coefficients were determined using Method of Moments, with a huge simulation sample.
- The simulation was done assuming a flat phase space and reweighing the q^2 distribution to make is flat.
- To make this work the *q*² distribution needs to be reweighted to be flat.

Detector acceptance

- Detector distorts our angular distribution.
- We need to model this effect.
- 4D function is used:

$$\epsilon(\cos\theta_l,\cos\theta_k,\phi,q^2) = \sum_{ijkl} P_i(\cos\theta_l) P_j(\cos\theta_k) P_k(\phi) P_l(q^2),$$

where P_i is the Legendre polynomial of order i.

- We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \theta_l, \cos \theta_k, \phi, q^2$.
- The coefficients were determined using Method of Moments, with a huge simulation sample.
- The simulation was done assuming a flat phase space and reweighing the q² distribution to make is flat.
- To make this work the *q*² distribution needs to be reweighted to be flat.

Control channel

- We tested our unfolding procedure on $B \rightarrow J/\psi K^*$.
- The result is in perfect agreement with other experiments and our different analysis of this decay.

Results

³³/₂₁

Results

Results

 \Rightarrow Method of Moments allowed us to measure for the first time a new observable:

33

Compatibility with SM

⇒ Use EOS software package to test compatibility with SM. ⇒ Perform the χ^2 fit to the measured:

$$F_L, A_{FB}, S_{3,...,9}.$$

⇒ Float a vector coupling: $\Re(C_9)$. ⇒ Best fit is found to be 3.4 σ

 \Rightarrow Best fit is found to be 3.4 away from the SM.

$$\Delta \Re(C_9) \equiv \Re(C_9)^{\text{nt}} - \Re(C_9)^{\text{SM}} = -1.03$$

0.

0.2

3

Branching fraction measurements of $B \rightarrow K^{*\pm} \mu \mu$

 Despite large theoretical errors the results are consistently smaller than SM prediction.

Branching fraction measurements of $B_s^0 \rightarrow \phi \mu \mu$

- Recent LHCb measurement [JHEPP09 (2015) 179].
- Suppressed by $\frac{f_s}{f_d}$.
- Cleaner because of narrow ϕ resonance.
- 3.3σ deviation in SM in the $1 6 {\rm GeV}^2$ bin.

- This years LHCb measurement [JHEP 06 (2015) 115]].
- In total ~ 300 candidates in data set.
- Decay not present in the low q^2 .

Branching fraction measurements of $\boxtimes_{\mathsf{b}} \to \boxtimes \mu \mu$

- This years LHCb measurement [JHEP 06 (2015) 115]].
- In total ~ 300 candidates in data set.
- Decay not present in the low q^2 .

21

Lepton universality test

$$R_{\rm K} = \frac{\int_{q^2=1}^{q^2=6} \frac{{\rm GeV}^2/c^4}{{\rm GeV}^2/c^4} ({\rm d}\mathcal{B}[\mathcal{B}^+ \to \mathcal{K}^+\mu^+\mu^-]/{\rm d}q^2) {\rm d}q^2}{\int_{q^2=1}^{q^2=6} \frac{{\rm GeV}^2/c^4}{{\rm GeV}^2/c^4} ({\rm d}\mathcal{B}[\mathcal{B}^+ \to \mathcal{K}^+e^+e^-]/{\rm d}q^2) {\rm d}q^2} = 1 \pm \mathcal{O}(10^{-3}) \ .$$

- Challenging analysis due to bremsstrahlung.
- Migration of events modeled by MC.
- Correct for bremsstrahlung.
- Take double ratio with $B^+ \rightarrow J/\psi K^+$ to cancel systematics.
- In 3fb⁻¹, LHCb measures $R_K = 0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
- Consistent with SM at 2.6σ .

 Phys. Rev. Lett. 113, 151601 (2014)

Grab it While it's Hot!

- \Rightarrow Yesterday(18.04) we shown a new preliminary result: CERN Seminar
- \Rightarrow We measured the ratio:

$$R_{\mathbf{K}^{*}} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{*} \mu \mu)}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{*} \mathbf{e} \mathbf{e})}$$

Grab it While it's Hot!

 \Rightarrow Yesterday(18.04) we shown a new preliminary result: CERN Seminar \Rightarrow We measured the ratio:

$$R_{\mathbf{K}^{*}} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{*} \mu \mu)}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{*} \mathbf{e} \mathbf{e})}$$

Marcin Chrzaszcz (Universität Zürich)

There is more!

• There is one other LUV decay recently measured by LHCb.

•
$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)}$$

• Clean SM prediction: $R(D^*) = 0.252(3)$, PRD 85 094025 (2012)

- LHCb result: $R(\textit{D}^*) = 0.336 \pm 0.027 \pm 0.030,$ HFAG average: $R(\textit{D}^*) = 0.322 \pm 0.022$
- 3.9σ discrepancy wrt. SM prediction

Global fit to $b \rightarrow s\ell\ell$ measurements

Marcin Chrzaszcz (Universität Zürich)

B(eautiful) Physics

Theory implications

- The data can be explained by modifying the C_9 Wilson coefficient.
- Overall there is around $4.5 \; \sigma$ discrepancy wrt. SM.

Grab it While it's Hotter!

 \Rightarrow Today(19.04) there was already first paper with the phenomenological work about this measurement: arxiv::1704.05340 J. Matias, et. al.

	All				LFUV					
1D Hyp.	Best fit	1 σ	2σ	$\operatorname{Pull}_{\operatorname{SM}}$	p-value	Best fit	1 σ	2σ	$\mathrm{Pull}_{\mathrm{SM}}$	p-value
$C_{9\mu}^{NP}$	-1.10	[-1.27, -0.92]	[-1.43, -0.74]	5.7	72	-1.76	[-2.36, -1.23]	[-3.04, -0.76]	3.9	69
$C_{9\mu}^{NP} = -C_{10\mu}^{NP}$	-0.61	[-0.73, -0.48]	[-0.87, -0.36]	5.2	61	-0.66	[-0.84, -0.48]	[-1.04, -0.32]	4.1	78
$C_{9\mu}^{NP} = -C_{9\mu}'$	-1.01	[-1.18, -0.84]	[-1.33, -0.65]	5.4	66	-1.64	[-2.12, -1.05]	[-2.52, -0.49]	3.2	31
$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$	-1.06	[-1.23,-0.89]	[-1.39,-0.71]	5.8	74	-1.35	[-1.82, -0.95]	[-2.38, -0.59]	4.0	71

-2 -1 0 1 2 3 C^{NP}_{9µ}

Marcin Chrzaszcz (Universität Zürich)