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Charge particle Interactions

Charged particle traversing a material have three effects: 

- The particle loses energy by interacting the electrons and exciting or ionising the 
atoms 

- The particle can be deflected by the nucleus (in general much heavier) multiple 
scattering, a bremsstrahlung photon can be emitted in this process 

- If the particle velocity is larger than the speed of light in the medium  Cherenkov light is 
emitted 
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Energy loss

-   Let’s first consider the M>>me , energy loss for electrons is more complicated  

- The trajectory of the particle is approximately unchanged after scattering with electrons  

- The energy loss is given by 
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• Z: atomic number

• �, �: relativistic factors

• a: material-dependent constant
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Bohr derivation

Particle with charge Ze and velocity v moves 
through a medium with electron density n. 
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Where Gauss theorem implies
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Energy loss
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Stopping power: 

This formula diverges for bmin -> 0, we can set the minimum and the maximum 
value to b by using heuristic arguments
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Energy loss

We have now to determine the bmin and bmax factor: 
- bmin is for heads-on collisions, the energy loss we have 

E(bmin) =
(2z2e4)

mev2b2min

for bmin the lost energy is maximal

Energy loss by a massive projectile M>>me

- Electrons are bound in atoms with an average orbital frequency of <ve>,  the 
interaction has to happen in a minimum time T comparable to the electron orbital 
frequency 

- bmax  also corresponds to the distance at which the  kinetic energy transferred 
corresponds to Emin  = I (mean ionisation potential)
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Bethe-Bloch equation

The Bethe-Bloch formula is valid for projectile with mass M>>me, e.g. p, K, pi, mu, …

: density of absorber Z, A: atomic number and weight of the absorbed
I: mean ionisation potential

Absorver dependent quantities

Incident-particle-dependent quantities 
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Bethe-Bloch equation
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Bethe-Bloch equation
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Bethe-Bloch equation
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Dependence on Z and A

Z
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Examples
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dE/dx for Particle ID

- The momentum is measured by the deflection in a magnetic field  
- By measuring also the energy loss in a medium we can identify the 

particle
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Energy loss by a particle
- The average energy loss of a particle in a material is described by the 

Bethe-Bloch formula 
- When a single particle pass through a material the energy loss is a 

stochastic process described by a Landau distribution

- Most of the energy is lost by the particle at 
low  

- Therefore most of the energy is lost in the 
final part of the trajectory, this is known as 
Bragg peak and it is important for hadron 
therapy of tumor
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Energy loss for electrons

- If we consider electrons passing through a material the Bethe-Bloch formula 
needs to be modified for the scattering of undistinguishable  particles 

- The approximation M>>me cannot be applied anymore 
- At energies larger than ~30MeV the main process is the bremsstrahlung, 

which is proportional to E/m2, therefore is small for heavier particles
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Multiple Scattering

- When a charged particle traverse a medium is deflected by the interaction with 
the charged nuclei 

- This effect is known as Coulomb multiple scattering 
- It is an important effect that needs to be taken into account in tracking 
- The rule of thumb is that tracking stations should have the least material as 

possible to minimise multiple scattering, and make precise measurements of 
momenta 
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Gas Detectors

- When a charged particle passes through a gas it ionises 
- If there is a DV the electron are collected at the anode and ions at the cathode 
- The current generates a signal that is read by the electronics

- Gas detectors often use a nobel gas (e.g. Ar, Ne, ..) and a quenching gas (e.g. 
CO2)  

- The nobel gas is ideal to avoid the formation of free radicals 
- The quenching gas to absorbe UV photons that can be emitted by the 

excitation
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Gas Detectors

- There are different kind of gas detector: Drift Chambers, Multiwire proportional 
chambers (MWPC), GEM detectors, …

- Normally some kind of multiplication is used, e.g. using the increased field 
close to the anode, otherwise the signal is too small 

- Gas detector are often used as tracking detectors since the particles is almost 
unperturbed by the interaction with the material (low material budget) 

- Often several layers with stereo angles are used to measure the 3d position of 
the particles  

- The drift time of the electrons provide additional information that contributes to 
the resolution
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Silicon Detectors

- Silicon detectors consists of p-n juction with a relatively large voltage applied  

- When a charged particle passes through the bulk it creates electron-hole pairs 
that drift in the electric field of the silicon detector and creates a signal 

- Silicon detectors can be strip microstrip or pixel detectors  

- At LHCb they are normally used in the regions closer to the vertex where there 
is large occupancy and high precision is needed
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Scintillators

- Charged incident particles or photons excited 
atoms in scintillating medium 

- Excited states decay to a “metastable” state 
under the emission of photons, which is then 
detected by a PMT or a SciPM 

- Since the excitation decay happens to an 
intermediate state there is not complete 
overlap between the absorption and emission 
spectrum, i.e. the scintillator is transparent 

- There are organic (Naphtalene, Antracene, 
…) and inorganic scintillators (LiquidArgon, 
Liquid Xenon, Sodium iodide)
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Momentum Measurements

- Momentum measured using magnetic spectrometer 
- Measurement of the curvature in the magnetic field using tracking stations and 

knowing the magnetic field 
- Important to have low material budget before the momentum measurement to 

minimise multiple scattering  
- Uncertainty on the momentum depends on the uncertainty on the curvature 

and the map of the magnetic field
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Interaction of photons with matter

- Photoelectric effect:  
- Photon absorbed by electrons of the atoms 
- Dominates at low energies 

- Compton scattering  
- Elastic scattering between photon and 

electrons 
- Important at intermediate energies  

- Pair production: 
- When the energy of the photon is large 

enough to produce an electron-positron pair, 
this process dominates  

Photons interact in three possible ways
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Energy loss
- At low energies electrons loose energies via ionisation 
- There is a minimum where they are MIP 
- After the energy loss by ionisation increases logarithmically, while the 

bremsstrahlung   
- The critical energy Ec is the energy for which the energy loss by 

ionisation and bremsstrahlung are the same
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E.M. Calorimetry
- At high energies electrons lose energies via bremsstrahlung 
- The emitted photon has large energy and produces electron-positron pairs 
- This creates what is called an electromagnetic shower

Characteristic distance after which the 
electron loses 1/e of the energy via 
bremsstrahlung

9/7 of X0 is also the mean three path for 
pair production by high energy photon
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Hadron Showers

- When hadrons interact with matter, in addition to electromagnetic interactions 
(if they are charged), they have nuclear interaction 

- This creates hadronic showers
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Calorimetry

- Calorimeters measure the energy of particle by absorption  
- It is a destructive measurement, i.e. the particle energy is deposited in 

the calorimeter 
- There are two types of calorimeters: 

- Electromagnetic calorimeters 
- Hadron calorimeters 

- Calorimeters are used for energy measurement and particle identification
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Calorimetry

- Homogeneous: 
- total absorption calorimeters, 

better energy resolution 
- Sampling: 

- Sandwich of active and passive 
material, more compact

- Electron and photon showers mostly 
contained in the em calorimeter 

- For hadrons/jets the showers is 
partially in the em calorimeter and 
partially in the hadron calorimeter 

- Shower profile used for particle 
identification
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Cherenkov Radiation

- When a particle passes through a medium exceeding the speed of light in the 
medium c/n (n is the refractive index) Cherenkov radiation is emitted 

- Analogous to the sonic boom of an airplane exceeding the sound speed  
- The angle of light emission depends on beta, 
- There is a velocity threshold for emitting Cherenkov light

- Energy loss by Cherenkov radiation 
very small w.r.t. ionization (< 1%)  

- Number of emitted photon per 
wavelength  
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Cherenkov Detectors

Picture from http://www.iss.infn.it/webg3/cebaf/hadron.html

https://inspirehep.net/record/884672/plots

- The Cherenkov light emitted is collected by PMTs  
- The circles produced allow to measure the Cherenkov angle  
- By independently measuring the momentum we can use the RICH detector for 

particle identification

http://www.iss.infn.it/webg3/cebaf/hadron.html
https://inspirehep.net/record/884672/plots
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Particle Identification

- Particle identification refers to 
associate the particle identity 
(photon, electron, muon, kaon, …) 
to a track and/or energy deposit 

- The innermost layer consists of 
tracking system to measure 
momentum of charged particles 

- Then there is the em calorimeter, 
that measures em shower 

- Then the hadron calorimeter 
- Only muons pass through all layers 

and reach the muon detector (often 
iron/lead walls are placed between 
the calorimeter and the muon 
detector) 
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Pictures

Drift chambers ATALS

Vertex Locator LHCb
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Pictures

ATALS LAr calorimeter
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Pictures

 CMS lead tungstate crystals ECAL
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Pictures

RICH LHCb



35Nuclear and Particle Physics IIMark Thomson/Nico Serra

References

I took inspiration, formulas and pictures from: 

-  (http://pdg.lbl.gov/2006/reviews/passagerpp.pdf) 
- The Physics of Particle Detectors (Erika Garutti - DESY)  

http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/
Lectures_SS2012.htm 

- Olya Igonkina, Niels van Bakel - Particle Detection Course - 
NIKHEF 

http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/Lectures_SS2012.htm
http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/Lectures_SS2012.htm

