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Charge particle Interactions

Z, electrons, q=-¢,

Y i@

Charged particle traversing a material have three effects:

- The particle loses energy by interacting the electrons and exciting or ionising the
atoms

- The particle can be deflected by the nucleus (in general much heavier) multiple
scattering, a bremsstrahlung photon can be emitted in this process

- If the particle velocity is larger than the speed of light in the medium Cherenkov light is
emitted
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Energy loss

Charged
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- Let’s first consider the M>>me, energy loss for electrons is more complicated
- The trajectory of the particle is approximately unchanged after scattering with electrons

- The energy loss is given by
e /: atomic number

dE  7?
— X —=In (a6272) e 3. v: relativistic factors

de (2

e a: material-dependent constant
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Bohr derivation

Particle with charge Ze and velocity v moves et TN\ b
through a medium with electron density n. ,‘ G 1
t t - X
dx | M.ze ||
APL:/FLdt:/FLF o L/l

de  2z¢? i AR
FLzeEL%Amze/EL—”jz - e +l/\‘ ------- %

v bv
\w / Cylindric barrel

with Ng electrons

Where Gauss theorem implies /EJ_(Q?Tb)dZL’ = 47 (ze)

Ap? 222e*
The energy transferred to a single electron is givenby AF = 2PL —
2m (b%v?)m,
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Energy loss

For n electrons distributed on a barrel

- dx —

n = N, (21b) db dx db‘m\— \ 3
Je | ‘H‘ |
Ap, AN z%e* db I’ T _
= gy, TN = e v e eens
reMec” = e

Stopping power:

dE 47 N_z°%e* /bm"“’” db 47rNez2rgm602l brnax
_ R n
b b 52 bmin

dx M V2

main

This formula diverges for bmin -=> 0, we can set the minimum and the maximum
value to b by using heuristic arguments
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Energy loss

We have now to determine the bmin and bmax factor:
- bmin is for heads-on collisions, the energy loss we have

(22%€%)

Mo 2572mn Energy loss by a massive projectile M>>me

for bmin the lost energy is maximal  E.,,,,, = 2’)/ V2 Me = Zmec252’y2

- Electrons are bound in atoms with an average orbital frequency of <ve>, the
interaction has to happen in a minimum time T comparable to the electron orbital

frequency oo v
max <I/€>

- bmax also corresponds to the distance at which the kinetic energy transferred
corresponds to Emin = | (mean ionisation potential)

z
" I

db; 4w Ng 2r mec2 72mv3 Ar N 2°r mec2 , 2mec? 322
_ n
dCB B2 Z62<Ve> ﬁ2
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Bethe-Bloch equation

The Bethe-Bloch formula is valid for projectile with mass M>>me, e.g. p, K, pi, mu, ...

(%) = @rNurmee?) x p % (5) . B— . [zn (2”%6252”2 Wonas ) —26° — 8(57) — |

I? A

1& P : density of absorber  Z, A: atomic number and welght of the absorbed

| |: mean ionisation potential 0 : density correction, C' : shell correction

— _— —_ —_— . — = s = = — =
_ . —— = = e ——

Incident- partlcle dependent quantltles

| = P — Sl e— J
B =2%of 1n01dent artlcle = 1
- P T i *

»qt Wnaez = max energy transferred in one collision, z = charge of the projectile

ale |

\
(!

— . e —— ——— =]
P e e pe———
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Bethe-Bloch equation
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Bethe-Bloch equation
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Bethe-Bloch equation

Initial fall dE/dx o< 372

[
S
o

ST T T TTTd

I

dhard- >

—
O
|
n

Stopping power [MeV cm?/g]
Li

I T TTTTI

—Z

—

! l

Relativistic rise dE /dx ~ ln(ﬁ’y)2

1w on Cu

Bethe-Bloch

Radiative
Minimum effects
ionization reach 1%

7/c]

[GeV/e]
Muon momentum

By = 3 — 4 minimum ionizing particle (MIP)

Mark Thomson/Nico Serra

Nuclear and Particle Physics Il

10



Dependence on Z and A

dE A 2 2m60262’72 C
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Examples

e A MIP has looses about 1 — 2MeV

gem?

e A MIP therefore looses about 1-2MeV /cm in a material with density 12

cmS

Calculate the energy lost by a 10GeV muon in a 100 cm of iron
e p="7.87g/cm?, L = 100cm

e AE~14 1. =1102MeV

cm

%fn‘g X 100cm x 7.87
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dE/dx for Particle ID

S

5 8ot § T
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- The momentum is measured by the deflection in a magnetic field

- By measuring also the energy loss in a medium we can identify the
particle
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Energy loss by a particle

- The average energy loss of a particle in a material is described by the
Bethe-Bloch formula

- When a single particle pass through a material the energy loss is a

stochastic process described by a Landau distribution
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- Most of the energy is lost by the particle at

low 5~y

- Therefore most of the energy is lost in the
final part of the trajectory, this is known as
Bragg peak and it is important for hadron

therapy of tumor
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Energy loss for electrons

- |If we consider electrons passing through a material the Bethe-Bloch formula
needs to be modified for the scattering of undistinguishable particles

- The approximation M>>me cannot be applied anymore

- At energies larger than ~30MeV the main process is the bremsstrahlung,
which is proportional to E/m?, therefore is small for heavier particles

| |‘\||I|II| | | |||||I| | | IIIIII_
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- \ / ]
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el —0.15 ~
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Sk oo &
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E (MeV)
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Multiple Scattering
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- When a charged particle traverse a medium is deflected by the interaction with
the charged nuclei

- This effect is known as Coulomb multiple scattering
- It is an important effect that needs to be taken into account in tracking

- The rule of thumb is that tracking stations should have the least material as

possible to minimise multiple scattering, and make precise measurements of
momenta
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Gas Detectors

- When a charged particle passes through a gas it ionises
- If there is a DV the electron are collected at the anode and ions at the cathode

- The current generates a signal that is read by the electronics

/ Gas enclosure : A current

— V

Electrodes

V=Vo Anode

|
CathOde (a) (b) Vo tage

- (Gas detectors often use a nobel gas (e.g. Ar, Ne, ..) and a quenching gas (e.qg.
CO»)

- The nobel gas is ideal to avoid the formation of free radicals

- The quenching gas to absorbe UV photons that can be emitted by the
excitation
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Gas Detectors

- There are different kind of gas detector: Drift Chambers, Multiwire proportional
chambers (MWPC), GEM detectors, ...

Avalanche [ \ - " - “""‘
( i\/ Vo "‘L. :’} : :

U

- Normally some kind of multiplication is used, e.g. using the increased field
close to the anode, otherwise the signal is too small

- Gas detector are often used as tracking detectors since the particles is almost
unperturbed by the interaction with the material (low material budget)

- Often several layers with stereo angles are used to measure the 3d position of
the particles

- The drift time of the electrons provide additional information that contributes to
the resolution
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Silicon Detectors

p-n junction with reverse bias

B ‘> Amplified
p. ?ype ~=TiT signal
silicon . 7
] | v
- 250 um n-type v
silicon
v T |’ i‘

il
=
4
- Silicon detectors consists of p-n juction with a relatively large voltage applied

- When a charged particle passes through the bulk it creates electron-hole pairs
that drift in the electric field of the silicon detector and creates a signal

- Silicon detectors can be strip microstrip or pixel detectors

- At LHCD they are normally used in the regions closer to the vertex where there
IS large occupancy and high precision is needed
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Scintillators

- Charged incident particles or photons excited
atoms in scintillating medium

- Excited states decay to a "metastable” state
under the emission of photons, which is then
detected by a PMT or a SciPM

- Since the excitation decay happens to an
iIntermediate state there is not complete
overlap between the absorption and emission
spectrum, i.e. the scintillator is transparent

- There are organic (Naphtalene, Antracene,
...) and inorganic scintillators (LiquidArgon,
Liquid Xenon, Sodium iodide)

Stokes-Shift

Intensity

Absorption
Emission
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Momentum Measurements

p e Lorentz Force: F =qv x B

2
® B 0Intheplane:F:qu:m%—)Bp:%’

- Momentum measured using magnetic spectrometer

- Measurement of the curvature in the magnetic field using tracking stations and
knowing the magnetic field

- Important to have low material budget before the momentum measurement to
minimise multiple scattering

- Uncertainty on the momentum depends on the uncertainty on the curvature
and the map of the magnetic field
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Interaction of photons with matter

Photons interact in three possible ways

- Photoelectric effect:
- Photon absorbed by electrons of the atoms
- Dominates at low energies

- Compton scattering

- Elastic scattering between photon and
electrons

- Important at intermediate energies

- Pair production:

- When the energy of the photon is large
enough to produce an electron-positron pair,
this process dominates

(a) Carbon (Z =6)
1 Mb (— ; o - experimental O |
|
u E _

1kb

Cross section (barns/atom)

1b

10 mb

%
RN (b) Lead (Z = 82) -
5] %) o - experimental Gy

1 kb

Cross section (barns/atom)

1b

L .
10eV 1 keV 1 MeV 1 GeV 100 GeV
Photon Energy
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Energy loss

- At low energies electrons loose energies via ionisation
- There is a minimum where they are MIP

- After the energy loss by ionisation increases logarithmically, while the
bremsstrahlung

- The critical energy Ec is the energy for which the energy loss by
lonisation and bremsstrahlung are the same

200 T T T L B T T T T L
‘ | | dE dE
. Copper — (EC) — — (Ec)
- X,=12.86 g cm™2 dx o . dx
100 = E.=19.63 MeV - tonization bremsstrahlung
E 70 = E
= 3 Rossi: E
250 Ionization per X, E 550
T lnmmm © For Z>12, E, = 3 MeV
= 30F —]
QS X ]
= N i
20! = In copper E.(e) ~ 20MeV, E (1) ~ 1TeV,
! Brems = ionization 1
10 |

2 5 10 20 50 100 200
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E.M. Calorimetry

- At high energies electrons lose energies via bremsstrahlung
- The emitted photon has large energy and produces electron-positron pairs
- This creates what is called an electromagnetic shower

Characteristic distance after which the
ABSORBER .
< electron loses 1/e of the energy via
- bremsstrahlung
: A
MR v 716.44 o
\1,‘%“ ' \N"‘M’/ ° Z(Z+1)ln(287/\/?)g
— M, o7
e o o
e 9/7 of Xo is also the mean three path for

pair production by high energy photon

9
)\paz’r — ?XO
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Hadron Showers

- When hadrons interact with matter, in addition to electromagnetic interactions
(if they are charged), they have nuclear interaction

- This creates hadronic showers h + N — 7#t7 7% + ... + N*

' ABSORBER

E.M.
COMPONENT

____________________________

. HADRONIC
COMPONENT

(pr) =~ 0.35GeV/c Note

Figure 12: Schematic of development of hadronic showers.

e Nuclear Interaction length A\ ~ 35g/cm2 . AL/3
o [V(lo ::]VOem/AI

e \; > X which implies that hadron calorimeters are much larger than
electromagnetic calorimeters
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Calorimetry

Incident particle

. Particle shower

Detector volume

Calorimeters measure the energy of particle by absorption

It is a destructive measurement, i.e. the particle energy is deposited In
the calorimeter

There are two types of calorimeters:

- Electromagnetic calorimeters

- Hadron calorimeters

Calorimeters are used for energy measurement and particle identification
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Calorimetry

- Homogeneous:

1L

- total absorption calorimeters,

EM
Electrons
Photons -

Had

Taus
Hadrons

Had

M
EM
Jets
Had

better energy resolution
- Sampling:

- Sandwich of active and passive
material, more compact

- Electron and photon showers mostly
contained in the em calorimeter

- For hadrons/jets the showers is
partially in the em calorimeter and
partially in the hadron calorimeter

- Shower profile used for particle
identification

Mark Thomson/Nico Serra
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Cherenkov Radiation

- When a particle passes through a medium exceeding the speed of light in the
medium c/n (n is the refractive index) Cherenkov radiation is emitted

- Analogous to the sonic boom of an airplane exceeding the sound speed

ek

- The angle of light emission depends on beta, cos § =

=
@D

t v>

Q
-

1
- There is a velocity threshold for emitting Cherenkov i — 8> —
n

C

n

- Energy loss by Cherenkov radiation
very small w.r.t. ionization (< 1%)

- Number of emitted photon per

wavelength 1
)\2
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Cherenkov Detectors
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Picture from http://www.iss.infn.it/webg3/cebaf/hadron.html

- The Cherenkov light emitted is collected by PMTs .
- The circles produced allow to measure the Cherenkov angle cos 6 = 3
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momentum (GeV/c)

- By independently measuring the momentum we can use the RICH detector for
particle identification
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Particle Identification

- Particle identification refers to

innermost layer » outermost layer associate the particle identity
tracki lect tic hadroni
system _calorimeter  calorimeter _ system (photon, electron, muon, kaon, ...)

to a track and/or energy deposit

photons
- - The innermost layer consists of
electrons tracking system to measure
- momentum of charged particles
MUONS - Then there is the em calorimeter,
that measures em shower

protons
gg%r;s - Then the hadron calorimeter

- Only muons pass through all layers
‘I’(‘%"trons and reach the muon detector (often

iron/lead walls are placed between
C. Lippenem — 2003 the calorimeter and the muon
detector)
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Pictures

Drift chambers ATALS

O CAMORIBHEDICE RAL

Vertex Locator LHCb
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Pictures

ATALS LAr calorimeter
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Pictures
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CMS lead tungstate crystals ECAL
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Pictures

RICH2 HPD Panels with Pixels and CK Rings

RICH LHCb

.../'G/ \)/\‘ \(\) J 0) i
\b/\b /G\(\//O (J /0

Mark Thomson/Nico Serra

Nuclear and Particle Physics Il

34



References

| took inspiration, formulas and pictures from:

(http://pdg.lbl.gov/2006/reviews/passagerpp.pdf)
- The Physics of Particle Detectors (Erika Garutti - DESY)

http.//www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/
Lectures _SS2012.htm

- Olya Igonkina, Niels van Bakel - Particle Detection Course -
NIKHEF

Mark Thomson/Nico Serra Nuclear and Particle Physics |l

35


http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/Lectures_SS2012.htm
http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/Lectures_SS2012.htm

