Top quark mass effects in diphoton production at NNLO in QCD

Università di Bologna

Based on PLB 848 (2024) 138362 and arXiv:2308.11412 In collaboration with R. Bonciani, L. Cieri, F. Coro, F. Ripani

Matteo Becchetti

Two-loop Amplitude for the quark annihilation channel

Phenomenology

Conclusion and Outlook

Motivation

High-Luminosity LHC Plan

Experimental precision ~ $\mathcal{O}(1\%)$ for many observables

NNLO QCD Corrections required to reduce theoretical uncertainty

[ATLAS (2017) arXiv:2107.09330]

State of the Art

- NNLO QCD corrections with five light qu
- Necessary scattering amplitude element (massless case)
- First-order Electroweak\QED corrections
- NLO top quark mass effects in the gluon fusion channel

uarks flavours	[Catani, Cieri, de Florian, Fererra, Grazzini '12 '18] [Campbell, Ellis, Li, Williams '16]					
ts for N3LO anal	 Schuermann, Chen, Genrmann, Glover, Hofer, Huss [22] YSIS [Bern, De Freitas, Dixon; Coal, Chakraborty, Gambuti, Manteuffel, Tancredi; Chawdhry, Czakon, Mitov, Ponce Agarwal, Buccioni, von Manteuffel, Tancredi; Badger Gehrmann, Marcoli, Moodie] 					
S	[Cieri, Sborlini '21; Binoth, Guillet, Pilon, Werlen '00; Chiesa, Greiner, Schoenherr, Tramontano '17]					

[Maltoni, Mandal, Zhao '19; Chen, Heinrich, Jahn, Jones, Kerner, Schlenk, Yokoya '20]

Massive Contributions at NNLO Massive Corrections

[MB, Bonciani, Cieri, Coro, Ripani '23] [Campbell, Ellis, Li,

One-loop box Contribution

Williams '16]

Real-Virtual Contribution

Double-Real Contribution

qT Subtraction Scheme

For the production of a singlet-colour system F in hadron collision

 $d\sigma^F_{(N)NLO}$ '

\mathbf{G} Singular behaviour of the cross section for the system F+jest, at qT=0, known

$$d\sigma^{CT} = d\sigma^F_{(LO)} \otimes \Sigma^F(q_T/Q)$$

Singular behaviour from resummation of logarithmic contributions at small transverse momentum [Parisi, Petronzio '79; Collins, Soper,

$$|_{q^T \neq 0} = d\sigma^{F+jets}_{(N)LO}$$

$$\Sigma^{F}(q_{T}/Q) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \sum_{k=1}^{2n} \Sigma^{F(n;k)} \frac{Q^{2}}{q_{T}^{2}} \log^{k-1} \frac{Q^{2}}{q_{T}^{2}}$$

Sterman '85; Catani, de Florian, Grazzini '00]

qT Subtraction Scheme

 \checkmark

One-loop and two-loop (massless) Hard Function contributions known

We include massive contribution to the cross section at NNLO

[Del Duca, Maltoni, Nagy, Trocsanyi '03]

[Balazs, Berger, Mrenna, Yuan '98] [Anastasiou, Glover, Tejeda-Yeomans '02] [Catani, Cieri, de Florian, Ferrera, Grazzini '14]

Hard Function quark annihilation channel

$$\mathcal{H}^{q\bar{q},\gamma\gamma} = 1 + \frac{\alpha_S}{\pi} \mathcal{H}^q_N$$

The two-loop massive amplitude in quark annihilation channel is IR finite, after UV regularisation

Photon Isolation Criteria

Direct Component: photon production from hard interaction Fragmentation Component: photon production from non-perturbative fragmentation of hard Parton q

Experimentally photons have to be isolated

Isolation reduces fragmentation component

Two-loop Amplitude for the quark annihilation channel

 \bigcirc

Strategy of the Computation

Missing ingredient for a complete NNLO analysis of diphoton production with top quark mass dependence

Analytic structure of Feynman integrals involves elliptic geometries

We evaluate numerically the integrals using power series expansion technique [Moriello '18]

Form Factors Decomposition

We consider scattering amplitudes for diphoton production in quark annihilation channel $\mathbf{\star}$

$$\mathscr{A}_{q\bar{q},\gamma\gamma}(s,t,m_t^2) = \sum_{i=1}^4 \mathscr{F}_i(s,t,m_t^2)\bar{v}(p_2)\Gamma_i^{\mu\nu}u(p_1)\epsilon_{3,\mu}\epsilon_{4,\nu}$$

The amplitude can be decomposed as sum of four independent tensor structures

$$\Gamma_{1}^{\mu\nu} = \gamma^{\mu} p_{2}^{\nu}, \quad \Gamma_{2}^{\mu\nu} = \gamma^{\nu} p_{1}^{\mu}, \quad \Gamma_{3}^{\mu\nu} = p_{3,\rho} \gamma^{\rho} p_{1}^{\mu} p_{2}^{\nu}, \quad \Gamma_{4}^{\mu\nu} = p_{3,\rho} \gamma^{\rho} g^{\mu\nu}$$

We compute the two-loop form factors contribution coming from diagrams with heavy quark loops

$$\mathcal{F}_{i} = \mathcal{F}_{i}^{(0)} + \left(\frac{\alpha_{S}^{B}}{\pi}\right) \mathcal{F}_{i}^{(1)} + \left(\frac{\alpha_{S}^{B}}{\pi}\right)^{2} \mathcal{F}_{i}^{(2)} + \cdots$$

Massive Quark Contribution

$$\begin{split} \mathbf{r} \ & \mathcal{O}(\alpha_{S}^{2}) \\ C_{F} \left[\mathcal{Q}_{q}^{2} \mathscr{F}_{i,\text{top};0}^{(2)} + \mathcal{Q}_{t}^{2} \mathscr{F}_{i,\text{top},2}^{(2)} \right] \\ C_{P_{3}) + \gamma(p_{4})} \\ Q_{q} \quad & \text{Light-quark electric charge} \end{split}$$

PLB

UV and IR structure

Since diagrams with a heavy quark loop start contributing at two loop, $\mathscr{F}_{i,top}^{(2)}$ does not have IR singularities

All the divergences are of UV origin

Renormalisation is performed in a mixed scheme

$$Z_{q} = 1 + \left(\frac{\alpha_{S}}{\pi}\right) \delta Z_{q}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{-} \delta Z_{q}^{(2)} + \cdots$$
$$Z_{\alpha_{S}} = 1 + \left(\frac{\alpha_{S}}{\pi}\right) \left(\delta Z_{\alpha,N_{l},\overline{MS}}^{(1)} + \delta Z_{\alpha,N_{h},OS}^{(1)}\right) + \cdots$$

$$\mathscr{F}_{i,\text{top}}^{(2)R} = \mathscr{F}_{i,\text{top}}^{(2)} + \delta Z_q^{(2)} \mathscr{F}_i^{(0)} + \delta Z_{\alpha,N_h,OS}^{(1)} \,\mathscr{F}_i^{(1)}$$

Scalar Integrals Topologies

Form factors written as linear combination of 72 Master

MIs can be cast into three independent scalar integral

$$\mathscr{I}_{\text{topo}}(n_1,\ldots,n_9) = \int \frac{\mathscr{D}k_1 \mathscr{D}k_2}{D_1^{n_1} D_2^{n_2} D_3^{n_3} D_4^{n_4} D_5^{n_5} D_6^{n_6} D_7^{n_7} D_8^{n_8} D_9^{n_9}}$$

Two Planar Topologies, PLA and PLB, analytically com in terms of Multiple Polylogarithmic functions

> [Aglietti, MB, Bonciani, Caron-huot, Ferroglia, Henn, Mastrolia, Penin, Remiddi,...]

Non Planar Topology, NPL, analytic structure describe elliptic geometry

Only numerical evaluation

[Maltoni, Mandal, Zhao '18; Chen Heinrich, Jahn, Jones, Kerner, Schlenk et al. '20]

Master Integrals										
er integrals (MIs)	\bigcirc (\mathcal{J}_1)	(J ₂)	(\mathcal{J}_3)	(\mathcal{J}_4)	(\mathcal{J}_5)	(\mathcal{J}_6)	$\mathcal{J}_{(\mathcal{J}_7)}$			
Is topologies						D		<		
	(\mathcal{J}_9)	(\mathcal{J}_{10})	(\mathcal{J}_{11})	(\mathcal{J}_{12})	(\mathcal{J}_{13})	(\mathcal{J}_{14})	(\mathcal{J}_{15})	(,		
							$\frac{(\kappa_1 + p_3)^2}{4}$			
	(\mathcal{J}_{17})	(\mathcal{J}_{18})	(\mathcal{J}_{19})	(\mathcal{J}_{20})	(\mathcal{J}_{21})	(\mathcal{J}_{22})	(\mathcal{J}_{23})	(3		
nputable	\mathcal{J}_{25}	\mathcal{J}_{26}	\mathcal{J}_{27}	$\frac{(k_1+k_2)^2}{(\mathcal{J}_{28})}$	\mathcal{J}_{29}	\mathcal{J}_{30}	\mathcal{J}_{31}			
					$(k_1 + p_3)^2$	$(k_1 + k_2)^2$	$(k1+p_3)^2(k_1+$	$(k_2)^2$		
		X	X							
oed by		(\mathcal{J}_{33})	(\mathcal{J}_{34})	(\mathcal{J}_{35})	(\mathcal{J}_{36})	(\mathcal{J}_{37})	(\mathcal{J}_{38})			
			X	$\frac{(k_1+p_3)^2}{\boxed{}}$	X	$(k_1+p_3)^2(k_1+1)$	$(-k_2)^2$			
			(\mathcal{J}_{39})	(\mathcal{J}_{40})	(\mathcal{J}_{41})	(\mathcal{J}_{42})				

$$y_T^2 = z(z+s)(z-a_+)(z-a_-)$$
$$a_{\pm} = \frac{1}{2} \left(-s \pm \sqrt{s(s+16m_t^2)} \right)$$

Differential Equations

We compute the MIs by means of differential equations method (DEQs)

d
$$\vec{f}(\vec{x},\epsilon) = dA(\vec{x},\epsilon)\vec{f}(\vec{x},\epsilon)$$

$$\vec{x} = \{y, z\}, \quad y = \frac{s}{m_t^2}, \quad z = \frac{t}{m_t^2}$$

Analytic Boundary conditions fixed at $\vec{x}_0 = \{0,0\}$

Semi-Analytic solution obtained through generalised power series expansion

[Moriello '18]

 \mathbf{C}

DEQs for planar topologies in canonical form

d
$$\vec{f}_P(\vec{x},\epsilon) = \epsilon \, \mathrm{d} A_P(\vec{x}) \vec{f}_P(\vec{x},\epsilon)$$

DEQs for nonplanar topologies in split form

Generalised Power Series Evaluation

We exploit the Generalised Power Series method as implemented in DiffExp

Series Solution around singular points of DEQs

$$\vec{f}(t,\epsilon) = \sum_{k=0}^{\infty} \epsilon^k \sum_{i=0}^{N-1} \rho_i(t) \vec{f}_i^{(k)}(t), \quad \rho(t) = \begin{cases} 1, & t \in \left[t_i - r_i, t_i + r_i\right) \\ 0, & t \notin \left[t_i - r_i, t_i + r_i\right) \end{cases}, \qquad \vec{f}_i^{(k)}(t) = \sum_{l_1=0}^{\infty} \sum_{l_2=0}^{N_{i,k}} c_k^{(i,l_1,l_2)} \left(t - t_i\right)^{\frac{l_1}{2}} \log(t - t_i)^{l_2} \left(t - t_i\right)^{\frac{l_1}{2}} \log(t - t_i)^{l_2} \left(t - t_i\right)^{\frac{l_1}{2}} \log(t - t_i)^{\frac{l_2}{2}} \log(t - t_i)^{\frac{$$

- The method does not depend on the functional space of the solution
- Numerical evaluation of MIs in whole phase-space
- Suitable for phenomenological applications

[Hidding '20]

We evaluate the MIs directly in the physical phase-space region

$$s > 0, \quad t = -\frac{s}{2}(1 - \cos(\theta)), \quad -s < t < 0$$

We build a numerical grid for the Hard function

 $-0.99 < \cos\theta < 0.99$, 8 GeV $< \sqrt{s} < 2.2$ TeV

$$p_{i,j} := \begin{cases} s_i = s_0 + (s_f - s_0) \frac{i}{572} \\ t_j = -\frac{s_i}{2} (1 - \cos \theta_j), & \cos \theta_j = \cos \theta_0 + (\cos \theta_f - \cos \theta_j) \end{cases}$$

Evaluation time 13752 points*

Non-Planar Topology: 0(10.5h)

Planar Topology: 0(2.5h)

Framework

[Catani, Cieri, de Florian, Ferrera, Grazzini '16]

[Camarda et al. '20]

Isolation
$$7c \delta n e_{\gamma} | < 1.52$$

parameters

$$E_T^{had}(r) \le \epsilon p_{T_{\gamma}} \chi(r; R)$$
$$\chi(r; R) = \left(\frac{r}{R}\right)^{2n}$$
$$R = 0.4$$

$$\epsilon = 0.09$$

n = 1

Scales choice

$$\mu \equiv \mu_F = \mu_R = M_{\gamma\gamma}$$

Theoretical uncertainty: seven-point variation scale by factors $\{1/2,2\}$

NNLO Invariant Mass Distribution

Lower Panel: ratio between fully massive and massless NNLO

> Massive corrections smaller than massless one. Peak at top-quark threshold

Massive corrections larger than massless one. Maximum deviation at 2.3 times top-quark threshold

range [-0.4%,0.8%]

Hard Function

Size of both ratios around negative peak: -15%

Most sizeable massive contributions at NNLO

Upper Panel: ratio between fully massive and massless NNLO

Smaller, in whole invariant mass range, than the massless one

Lower Panel: ratio between oneloop box and massless NNLO

One-loop box asymptotically behaves as a 6 light quark contribution

$$\left(\sum_{nf=6}^{\infty} e_q^2\right)^2 / \left(\sum_{n_f=5}^{\infty} e_q^2\right)^2 = 225/121 = 1.8595...$$

Double-Real and Real-Virtual Contributions

Real-Virtual

Summary of Massive Contributions

Conclusion and Outlook

 \bigcirc

Conclusion and Outlook

Massive corrections relevant at the top quark threshold but also for large values of the invariant mass

Future Developments

Inclusion of partial N3LO massive contributions

qT Resummation

Thank you for your attention!