

European Research Council Established by the European Commission

DARWIN - A NEXT-GENERATION OBSERVATORY FOR DARK MATTER AND NEUTRINO PHYSICS

LAURA BAUDIS UNIVERSITÄT ZÜRICH

VIRTUAL SNOLAB SEMINAR AUGUST 24, 2020

SOME KEY OPEN QUESTIONS IN PARTICLE PHYSICS

- The nature of dark matter
- Baryogenesis
- The strong CP problem
- The fermion mass spectrum and mixing
- The cosmological constant
- ••••

 Some of these can be addressed with liquid xenon detectors operated deep underground

Demonstrated excellent sensitivities and scalability to large target masses

- collisions with

 electrons in the atomic
 shell, or absorption of
 light bosons via the
 axio-electric effect
- + Bremsstrahlung from polarised atoms; eemission due to socalled Migdal effect

see e.g., Kouvaris, Pradler, McCabe; M. Ibe et al.

DM INTERACTION CROSS SECTION VS MASS

Mass of dark matter particle

NEUTRINOLESS DOUBLE BETA DECAY

- Some of the open questions in neutrino physics can be addressed with an extremely rare nuclear decay process: the neutrinoless double beta decay
 - What is the nature of neutrinos? Are they Dirac or Majorana particles?
 - What are the absolute values of neutrino masses, and the mass ordering?
 - What is the origin of small neutrino masses?

NEUTRINOLESS DOUBLE BETA DECAY

• Can only occur if neutrinos have mass and if they are their own antiparticles $=> \Delta L = 2$

 $T_{1/2}^{0\nu\beta\beta} > 10^{24} \,\mathrm{y}$

Expected signature: *sharp peak at the Q-value of the decay*

$$Q = E_{e1} + E_{e2} - 2m_e$$

The double beta decay without neutrinos: first discussed by Wendell H. Fury in 1939

Ettore Majorana had proposed in 1937 that neutrinos could be their own antiparticles

DARK MATTER & DOUBLE BETA DECAY EXPERIMENTS

- Nuclear recoils: ~keV-energies
- Featureless recoil spectrum
- Very low event rates: < 0.1/(kg x year)

- Q-values: MeV-scale
- Peak at the Q-value
- Very low event rates: <0.1/(kg x year)

MAIN EXPERIMENTAL REQUIREMENTS

- Low energy thresholds
- Large detector masses
- Oltra-low backgrounds
- Excellent signals versus background discrimination

- Excellent energy resolution
- Large detector masses
- Oltra-low backgrounds
- Excellent signals versus background discrimination

 $R \propto N \frac{\rho}{m_{\gamma}} \sigma \langle v \rangle$

BACKGROUNDS

In the ideal case: below the expected signal

- Muons & associated showers; cosmogenic activation of detector materials
- Natural (²²⁸U, ²³²Th, ⁴⁰K) and anthropogenic (⁸⁵Kr, ¹³⁷Cs) radioactivity: y,e⁻,a,n
- Neutrinos: coherent elastic neutrino-nucleus scattering (DM) and elastic neutrino-electron scattering (DM and $0v\beta\beta$ -decay)

LB et al., JCAP01 (2014) 044

20

BACKGROUND REDUCTION

Counts keV⁻¹ day⁻¹

Avoid cosmic activation

EXPERIMENTAL STATUS: OVERVIEW

- No evidence for dark matter particles
- Probing scattering cross sections (on nucleons) of ~ a few x 10⁻⁴⁷ cm²

 $\sigma_{\rm SI} < 4.1 \times 10^{-47} {\rm cm}^2$ at $30 \, {\rm GeV/c^2}$

- No evidence for the neutrinoless double beta decay
- Probing half-lives up to 1.8 x 10²⁶ years

 $m_{\beta\beta} < (0.08 - 0.18) \,\mathrm{eV} \,(90\% \,\mathrm{C.L.})$

THE DARWIN EXPERIMENT

- Will use a large amount of clean liquid xenon target & detect ionisation and excitation from particle interactions
- > Xenon: "the strange one", concentration in the atmosphere: 87 ppb* (by volume)

DETECTION PRINCIPLE: A TWO-PHASE TPC

- 3D position resolution via light (S1) and charge (S2) signals
- S2/S1 depends on particle ID
- Fiducialisation
- Single versus multiple interactions

DARWIN DESIGN: BASELINE SCENARIO

- Two-phase TPC: 2.6 m ø, 2.6 m height
- ► 50 t (40 t) LXe in total (in the TPC)
- Two arrays of photosensors (e.g. 1800
 3-inch PMTs)
- PTFE reflectors and copper field shaping rings
- Low-background, double-walled titanium cryostat
- ▶ Shield: Gd-doped water, for µ and n

11111

Alternative designs and photosensors under consideration

outer cryostat

inner cryostat

(copper, 92 rings)

(PTFE, 24 pillars)

support structure

field cage

top sensor array (955 PMTs, electronics,

copper + PTFE panels)

top electrode

frames (Titanium)

TPC reflector

(PTFE, 24 panels)

bottom electrode

frames (Titanium)

BENCHMARK: THE XENON LEGACY AT LNGS

2005-2007	2008-2016	2012-2018	2020-2025	2027-
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

BENCHMARK: THE XENON LEGACY AT LNGS

XENON10 XENON100

<image/>	<image/>			
2005-2007	2008-2016	2012-2018	2020-2025	2027-
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

XENON1T

XENONnT

DARWIN BACKGROUND GOAL AND MAIN SOURCES

- Goal: allow for "background-free" exposure of 200 t y for the DM search
- ER and NR backgrounds: to be limited by neutrino-induced events
 - \circ ²²²Rn in liquid xenon: goal is 0.1 μBq/kg (achieved ~ 6 μBq/kg in XENON1T, ~ 1.8 μBq/kg in LUX)
 - natKr: goal is 0.1 ppt (achieved < 26 ppq*)
 - ¹³⁶Xe, ¹³⁷Xe, ¹²⁴Xe (T_{1/2} = 1.8 x 10²² y**)
 - Solar neutrinos (pp, ⁷Be)
 - Radiogenic neutrons
 - Muon-induced neutrons
 - CEvNS (solar, atm neutrinos)

*XENON collaboration, EPJ-C 77, 2017 **XENON collaboration, Nature 568, 2019

Example:

ER background at low energies (30 t fiducial)

DARWIN collaboration, arXiv: 2006.03114

DARWIN PHYSICS PROGRAMME

DIRECT DARK MATTER DETECTION: WIMPS

- Probe SI elastic scattering:¹²⁴Xe, ¹²⁶Xe, ¹²⁸Xe, ¹²⁹Xe, ¹³⁰Xe, ¹³¹Xe, ¹³²Xe (26.9%), ¹³⁴Xe (10.4%), ¹³⁶Xe (8.9%)
- SD (+ inelastic) DM-nucleus scattering: ¹²⁹Xe (26.4%), ¹³¹Xe (21.2%)

APPEC Dark Matter Report 2020

Preliminary

Committee Members: Julien Billard¹, Mark Boulay², Susana Cebrián³, Laura Covi⁴, Giuliana Fiorillo⁵, Anne Green⁶, Joachim Kopp⁷, Béla Majorovits⁸, Kimberly Palladino⁹, Federica Petricca⁸, Leszek Roszkowski¹⁰ (chair), Marc Schumann¹¹

Assumptions for DARWIN: 30 t LXe in FV, 99.98% ER rejection (at 30% NR acceptance)

DIRECT DARK MATTER DETECTION: WIMP SPECTROSCOPY

 Capability to reconstruct the WIMP mass and cross section for various masses here 20, 100, 500 GeV/c² - and cross sections

1 and 2 sigma credible regions after marginalising the posterior probability distribution over:

```
v_{esc} = 544 \pm 40 \text{ km/s}
v_0 = 220 \pm 20 \text{ km/s}
\rho_{\chi} = 0.3 \pm 0.1 \text{ GeV/cm}^3
```

Update: Newstead et al., PRD D 88, 076011 (2013)

SOLAR NEUTRINOS $\nu + e^- \rightarrow \nu + e^-$

- ▶ Real-time measurement: 365 events/(t y) from pp v and 140 events/(t y) from ⁷Be v (above 1 keV_{ee})
- > pp-flux measurement: 0.15% statistical precision with 300 t y exposure (sub-percent after 10 t y)
- \blacktriangleright Measurement of v_e survival probability & weak mixing angle < 300 keV

$$P(\nu_e \rightarrow \nu_e)$$

COHERENT NEUTRINO NUCLEUS SCATTERS

- > Detect solar ⁸B neutrinos: 90 events for $E_{th} > 1 \text{ keV}_{nr}$ (however ~negligible above 4 keV_{nr})
- Detect supernova neutrinos, sensitive to all neutrino flavours:
 - $_{\odot}$ ~ 700 events from SN with 27 M_{solar} @ 10 kpc
- Planned participation in SNEWS network

DOUBLE BETA DECAY IN DARWIN

- ¹³⁶Xe: excellent candidate
 - o abundance in ^{nat}Xe: 8.9%, Q-value: (2457.83±0.37) keV*
- ▶ Total amount of ¹³⁶Xe in DARWIN: ~3.5 tonnes
- Expected $(1-\sigma)$ energy resolution:
 - ~0.8% at 2.5 MeV, demonstrated by XENON1T
- Ultra-low background environment (²²²Rn, ⁸B neutrinos, ¹³⁷Xe from cosmogenic activation, 2vββ-decays)

BACKGROUND SIMULATIONS FOR DOUBLE BETA STUDY

Detailed detector model in Geant4

Component	Material	Mass	
Outer cryostat	Titanium	$3.04\mathrm{t}$	
Inner cryostat	Titanium	$2.10\mathrm{t}$	> Cryostat
Bottom pressure vessel	Titanium	$0.38\mathrm{t}$	
LXe instrumented target	LXe	$39.3\mathrm{t}$	
LXe buffer outside the TPC	LXe	$9.00\mathrm{t}$	V
LXe around pressure vessel	\mathbf{LXe}	$0.27\mathrm{t}$	> Xenon
GXe in top dome + TPC top	\mathbf{GXe}	$30\mathrm{kg}$	
TPC reflector (3mm thickness)	PTFE	$146\mathrm{kg}$	
Structural support pillars (24 units)	\mathbf{PTFE}	$84\mathrm{kg}$	TPC components
Electrode frames	Titanium	$120\mathrm{kg}$	ri c components
Field shaping rings (92 units)	Copper	$680 \mathrm{kg}$	
Photosensor arrays (2 disks):			
Disk structural support	Copper	$520\mathrm{kg}$	
Reflector $+$ sliding panels	\mathbf{PTFE}	$70\mathrm{kg}$	Photosensors and
Photosensors: 3" PMTs (1910 units)	$\operatorname{composite}$	$363 \mathrm{kg}$	
Sensor electronics (1910 units)	composite	$5.7\mathrm{kg}$	Jelectronics

SIGNAL EVENTS IN LIQUID XENON

- Electrons thermalise within O(mm) => single-site topology
- Bremsstrahlung photons: may travel > 15mm (E>300 keV) => multi-site event
- Energy depositions: spatially grouped using density-based spatial clustering algorithm
 - New cluster, if distance to any previous $E_{dep} > \epsilon$ (separation threshold)

MAIN BACKGROUND COMPONENTS

Intrinsic:

- ▶ ⁸B v's, ¹³⁷Xe, 2vββ, ²²²Rn
- Materials:
 - ▶ ²³⁸U, ²³²Th, ⁶⁰Co, ⁴⁴Ti
- ▶ FV cut: super-ellipsoidal

$$\left(\frac{z+z_0}{z_{max}}\right)^t + \left(\frac{r}{r_{max}}\right)^t < 1$$

100 y of DARWIN run time

External background events with energy deposits in the ROI [$Q_{\beta\beta}$ ± FWHM/2] = [2435 - 2481] keV

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	60 Co	44 Ti	^{44T} i: $T_{1/2} = 59$ y, cosmogenic
Titanium	mBq/kg	< 1.6	< 0.09	0.28	0.25	< 0.02	<1.16	
PTFE	mBq/kg	< 1.2	0.07	$<\!0.07$	0.06	0.027	-	Tive 7 Astron Phys. $96(2017)$
Copper	$\mathrm{mBq/kg}$	< 1.0	$<\!0.035$	< 0.033	$<\!0.026$	$<\!0.019$	-	11. LZ, AStrop. 1 Hys., 70 (2017)
\mathbf{PMT}	$\mathrm{mBq/unit}$	8.0	0.6	0.7	0.6	0.84	-	Other: XENON, EPJ-C 77 (2017
Electronics	$\mathrm{mBq/unit}$	1.10	0.34	0.16	0.16	< 0.008	-	

ENERGY RESOLUTION

W-value = 13.7 eV

- > Anti-correlation between light (S1) and charge (S2)
- Energy scale uses linear combination of S1 and S2
- Photon gain: g1 (pe/photon), electron gain: g2 (pe/electron)

$$E = (n_{ph} + n_e) \cdot W = \left(\frac{S_1}{g_1} + \frac{S_2}{g_2}\right) \cdot W$$

EXTERNAL (MATERIAL) BACKGROUND

- ▶ ROI: [2435-2481] keV = FHWM around $Q_{\beta\beta}$
- ^{214B}Bi: γ at 2.45 MeV, ²⁰⁸Tl, γ at 2.61 MeV; ⁴⁴Sc, γ at 2.66 MeV

20 tones of LXe in fiducial volume

INTERNAL BACKGROUNDS

- ▶ ²²²Rn in LXe:
 - 0.1µBq/kg, 99.8% BiPo tagging
- ▶ ⁸B solar neutrinos
 - $\Phi_{ve} = (5.46 \pm 0.66) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$
 - \bullet P_{ee} = 0.50
- > 2vββ-decay: subdominant
- ▶ ¹³⁷Xe: cosmogenic activation underground

● n + ¹³⁶Xe -> ¹³⁷Xe

RADON BACKGROUND

Assumption:

- 0.1 µBq/kg ²²²Rn (cryogenic distillation + material selection)
- Problematic:
 - ²¹⁴Bi decay, Q-value = 3.27 MeV, "naked" βdecay without γ emission: 19.1% BR

▶ ²¹⁴Po:

- a-decay with short half-life, $T_{1/2} = 164.3 \ \mu s =>$ active veto for ²¹⁴Bi-decays
- Assumption:
 - 99.8% BiPo tagging efficiency

MATERIAL + INTRINSIC BACKGROUND

- ROI: [2435-2481] keV = FHWM around $Q_{\beta\beta}$
- ¹³⁷Xe: β-decay with Q=4173 keV, T_{1/2}=3.82 min (via n-capture on ¹³⁶Xe)

Rate versus fiducial mass

Signal: $T_{1/2} = 2 \times 10^{27} \text{ y}$

Rate in 5 tonnes fiducial region (0.45 t ¹³⁶Xe)

DOUBLE BETA DECAY SENSITIVITY

- Profile likelihood analysis, baseline T_{1/2} sensitivity:
- > 2.4 x 10²⁷ y for 5 t fiducial mass x 10 y exposure (90% CL)

Discovery potential: 1.1 x 10²⁷ y at 3-σ

ROOM FOR IMPROVEMENT?

- Reduce external backgrounds
 - SiPMs, cleaner materials & electronics
- Reduce internal background
 - Time veto for ¹³⁷Xe, deeper lab, BiPo tagging
- Improve signal/background discrimination; resolution...

DARWIN could reach ~6 x 10²⁷ y sensitivity

35

ROOM FOR IMPROVEMENT?

- Reduce external backgrounds
 - SiPMs, cleaner materials & electronics
- Reduce internal background
 - Time veto for ¹³⁷Xe, deeper lab, BiPo tagging
- Improve signal/background discrimination; resolution...

Baseline: $m_{\beta\beta} = (18 - 46) \text{ meV}$ Progressive: $m_{\beta\beta} = (11 - 28) \text{ meV}$

PROJECT OVERVIEW

- > 30 groups from 12 countries , working towards CDR and TDR
- R&D and design on several aspects:
 - Detector including cryostat & TPC
 - Light and charge sensors & readout
 - Backgrounds (incl. Rn/Kr removal, materials) & veto
 - LXe procurement, storage, purification & cryogenics
 - > Xenon properties and calibration of 50 t detector

DARWIN TIMESCALE

THE DARWIN COLLABORATION

- > About 170 members from 30 institutions in Europe, USA and Asia
- Latest groups to join: University of Alabama (Igor Ostrovsky), University of Hamburg (Belina von Krosigk), University of L'Aquila (Alfredo Ferella), University of Naples (Michele Iacovacci)

LNGS, December 2019

DETECTOR PROTOTYPES

- ▶ Two large-scale demonstrators in construction (z & x-y) supported by ERC grants
- These also offer test platforms for the entire collaboration
- Smaller TPCs are operated at various institutions

Test e⁻ drift over 2.6 m (purification, high-voltage)

European Research Council Established by the European Commission

Test electrodes and homogeneity of extraction field

DETECTOR PROTOTYPES

European Research Council Established by the European Commission

Test e⁻ drift over 2.6 m (purification, high-voltage)

Test electrodes and homogeneity of extraction field

DETECTOR PROTOTYPES: XENOSCOPE

Established by the European Commission

- Under construction at UZH, first commissioning in late 2020
- Support structure, gas system, cryostat, cooling tower, electrical system, etc completed
- > HV feed-through, TPC and purity monitor under design/construction
- ▶ Goals: test 200 V/cm drift field, 100 slpm purification speed, measure e⁻ cloud diffusion, etc

LIGHT AND CHARGE SENSORS AND READOUT

- Test alternative to PMTs: e.g., ABALONE (hybrid photosensor), VUV-SiPMs (FBK, Hamamatsu)
- > Develop cryogenic electronics for SiPMs; develop cryogenic digital SiPMs
- Bubble-assisted Liquid Hole Multipliers: local vapour bubble underneath GEM-like perforated electrode in LXe

Liquid hole multipliers E. Erdal, 2018 JINST 13, 2018

Cryogenic preamp for SiPMs, F. Arneodo et al., NIM 936, 2019

Hamamatsu SiPM arrays in two-phase TPC, LB et al., EPJ-C 80, 2020

LIGHT AND CHARGE SENSORS AND READOUT

- Test VUV-sensitive SiPMs as potential replacement for PMTs
- ▶ First Xe-TPC with SiPM in top array at UZH
- ▶ Characterisation with ³⁷Ar and ^{83m}Kr sources

Characterisation with ³⁷Ar source

Upgrade of Xurich-II (LB et al., EPJ-C 80, 2020 and EPJ- C 78, 2018) S2 versus S1 for the 2.82 keV ³⁷Ar line (K-shell, 90.2% BR)

x-y position reconstruction ~ 1.5 mm resolution

SUMMARY

- DARWIN observatory: excellent sensitivity in particle/astroparticle physics
- Due to very low expected event rates, we need:
 - Large detector masses, ultra-low backgrounds (material radio-assay & Rn reduction remain crucial)
 - Very good energy resolutions, low energy thresholds
- In general: dark matter detectors are optimised at keV energy scales, double beta decay detectors at MeV-scale energies
 - Can we do both? Ideally, a large detector (DARWIN) with sensitivity to search for a variety of signals in particles physics (neutrinos, 0vββ, axion/ALPs, dark photons, WIMPs, etc)
- Eventually limited by neutrino interactions (but also new physics opportunities!)
- Remember that yesterday's background might be today's signal ;-)

BACKUP SLIDES

BACKGROUND BUDGET IN DOUBLE BETA REGION

Background source	Background index [events/(t·vr·keV)]	Rate [events/vr]	Rel. uncertainty
External sources (5t FV):		[0,0100/31]	
214 Bi peaks + continuum	1.36×10^{-3}	0.313	$\pm 3.6\%$
208 Tl continuum	$6.20 imes10^{-4}$	0.143	$\pm 4.9\%$
44 Sc continuum	4.64×10^{-6}	0.001	$\pm 15.8\%$
Intrinsic contributions:			
$^{8}\mathrm{B} (\nu - e \text{ scattering})$	$2.36 imes10^{-4}$	0.054	+13.9%, -32.2%
¹³⁷ Xe (μ -induced <i>n</i> -capture)	1.42×10^{-3}	0.327	$\pm 12.0\%$
136 Xe $2 u\beta\beta$	$5.78 imes10^{-6}$	0.001	+17.0%, -15.2%
222 Rn in LXe (0.1 μ Bq/kg)	$3.09 imes 10^{-4}$	0.071	$\pm 1.6\%$
Total:	$3.96 imes \mathbf{10^{-3}}$	0.910	+4.7%, -5.0%

RADON BUDGET IN XENON1T

661 keV

Rate in ROI: (1.40±0.06) x 10⁻³ events/(t y keV)

137Ba56

ROI: Q-value ± FWHM/2 = (2435-2481) keV

1000 1500 2000 2500 3000 3500 4000 4500 5000

S+MS

SS+MS

ROI OVBB

Energy [keV]

137-XE BACKGROUND

- Simulate ¹³⁷Xe, production rate by cosmogenic n-capture
- Rate: 6.7 atoms/(t y), dominated by production on LXe (6.3 atoms/(t y) (at LNGS, 3600 mw.e.)
- nEXO: 2.2 atoms/(t y) at SNOLAB (PRC 97, 2018); KamLAND-Zen: 1.42 atoms/(t y) at Kamioka (PRL 117, 2016)

Material	Muon-induced Neutron Production Rate [n/year]	¹³⁷ Xe Production Rate [atoms/kg/year]
Copper	1.12×10 ⁴	7.39×10 ⁻⁵
SS	1.32×10 ⁵	2.40×10-4
LXe	1.02×10 ⁶	6.34×10 ⁻³
Total		6.66×10 ⁻³

Experiment	Location	Depth [m.w.e]	¹³⁷ Xe Production Rate [atoms/kg/year]
KamLAND-Zen [2]	Kamioka	2050	1.42×10 ⁻³
DARWIN	LNGS	3600	6.66×10 ⁻³
nEXO [3]	SNOLAB	6011	2.20×10 ⁻³

NEUTRINO BACKGROUNDS FOR DM SEARCHES

- Low mass region: limit at ~ 0.1- 10 kg year (target dependent)
- High mass region: limit at ~ 10 ktonne year
- But: annual modulation, directionality, momentum dependance, inelastic DM-nucleus scatters, etc

