B(eautiful) Physics I

Marcin Chrzaszcz mchrzasz@cern.ch

Kern- und Teilchenphysik II, 10 May, 2017

Marcin Chrzaszcz (Universität Zürich)

B(eautiful) Physics

A lesson from history - GIM mechanism

- Cabibbo angle was successful in explaining dozens of decay rates in the 1960s.
- There was, however, one that was not observed by experiments: $K^0 \rightarrow \mu^- \mu^+$.
- Glashow, lliopoulos, Maiani (GIM) mechanism was proposed in the 1970 to fix this problem. The mechanism required the existence of a 4^{th} quark.
- At that point most of the people were skeptical about that. Fortunately in 1974 the discovery of the J/ψ meson silenced the skeptics.

A lesson from history - CKM matrix

- Similarly, CP violation was discovered in 1960s in the neutral kaons decays.
- 2×2 Cabbibo matrix could not allow for any CP violation.
- For CP violation to be possible one needs at least a 3 × 3 unitary matrix
 ↔ Cabibbo-Kobayashi-Maskawa matrix (1973).
- It predicts existence of *b* (1977) and *t* (1995) quarks.

A lesson from history - Weak neutral current

- Weak neutral currents were first introduced in 1958 by Buldman.
- Later on they were naturally incorporated into unification of weak and electromagnetic interactions.
- 't Hooft proved that the GWS models was renormalizable.
- Everything was there on theory side, only missing piece was the experiment, till 1973.

B-factories

 \Rightarrow There were many *B* factories: HERA-B, CLEO, ARGUS.

 \Rightarrow How ever in present when people talk about *B*-factories they mean BaBar and Belle experiments.

B-factories

Parameters		PEP-II	KEKB
Beam energy	(GeV)	$9.0 \ (e^-), \ 3.1 \ (e^+)$	$8.0 \ (e^-), \ 3.5 \ (e^+)$
Beam current	(A)	$1.8 \ (e^{-}), \ 2.7 \ (e^{+})$	$1.2 \ (e^{-}), \ 1.6 \ (e^{+})$
Beam size at IP x	$(\mu { m m})$	140	80
y	$(\mu { m m})$	3	1
z	(mm)	8.5	5
Luminosity	$(\rm cm^{-2} s^{-1})$	1.2×10^{34}	2.1×10^{34}
Number of beam bunches		1732	1584
Bunch spacing	(m)	1.25	1.84
Beam crossing angle	(mrad)	0 (head-on)	± 11 (crab-crossing)

Marcin Chrzaszcz (Universität Zürich)

⁶/₁₈

B-factories

Parameters		PEP-II	KEKB
Beam energy	(GeV)	$9.0 \ (e^-), \ 3.1 \ (e^+)$	$8.0 \ (e^-), \ 3.5 \ (e^+)$
Beam current	(A)	$1.8 \ (e^{-}), \ 2.7 \ (e^{+})$	$1.2 \ (e^{-}), \ 1.6 \ (e^{+})$
Beam size at IP x	(μm)	140	80
y	(μm)	3	1
z	(mm)	8.5	5
Luminosity	$(\rm cm^{-2} s^{-1})$	1.2×10^{34}	2.1×10^{34}
Number of beam bunches		1732	1584
Bunch spacing	(m)	1.25	1.84
Beam crossing angle	(mrad)	0 (head-on)	± 11 (crab-crossing)

Marcin Chrzaszcz (Universität Zürich)

B-factories, detectors

Marcin Chrzaszcz (Universität Zürich)

/18

B-factories, detectors

B-factories, Physics

- \Rightarrow The *B*-factories had enormous physics program:
- CKM matrix:
 - $\circ~V_{ub}$ and V_{cb} from semi-leptonic be decays.
 - $\circ~V_{td}$ and V_{ts} from $\textit{B}_{s,d}$ mixing.
 - Charmless *B* decays.
 - B mixing.
 - Electro-weak penguin decays.
- Quarkonium physics
- Charm physics
- au physics

B-factories, V_{ub} , V_{cb}

⇒ The decays of B^0 and B^+ that process via leading order tree decay involving a lepton in the final state $\ell = e, \mu$ are free from non SM contributions.

- \Rightarrow They can be used to probe the CKM-matrix elements: V_{cb} and V_{ub}
- \Rightarrow In addition the measurement of $\frac{|V_{ub}|}{|V_{cb}|}$ determines the angle ϕ_1 .

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{qb}^2|}{192\pi^3 m_B^3} \mathcal{K}(m_B^2, m_M^2, q^2) \\ \times \mathcal{F}^{(2)}(q^2)$$

⇒ From theory point of view the only thing that is not well known are the from factors: $\mathcal{F}^{(2)}(q^2)$. There are now many theoretical ideas to calculate them and reduce the errors.

B-factories, V_{ub} , V_{cb}

⇒ Measurement of semi-leptonic decays are very challenging, because of missing neutrino!

 \Rightarrow We start from calculating the missing 4-momentum:

$$(E_{miss}, p_{miss}) = (E_0, p_0) - \sum_i (E_i, p_i)$$

 \Rightarrow In case that the only missing particle in the detector is a neutrino the missing mass should be close to zero! \Rightarrow We also use the:

$$\Delta E = E_B^* - E_{beam}^*, \quad M_{ES} = \sqrt{(E_{beam}^*)^2 - (p_B^*)^2}$$

Marcin Chrzaszcz (Universität Zürich)

B(eautiful) Physics

 \overline{B} -factories, V_{ub} , V_{cb}

¹²/18

B-factories, V_{ub} , V_{cb} \Rightarrow Also the $q^2 = [(E_{\ell}, p_{\ell}) + (E_{miss}, p_{miss})]^2$ distribution was measured.

Marcin Chrzaszcz (Universität Zürich)

B(eautiful) Physics

¹²/18

B-factories, V_{ts} , V_{tb} ⇒ The CKM elements V_{ts} , V_{tb} are problematic to determine. One can use:

- Rare radiative *K* and *B* decays
- B^0 and B_s^0 oscilations:

$$\Delta m_d = \frac{G_F^2}{6\pi^2} f_B^2 m_B m_W^2 \eta_B S_0 |V_{tb}^* V_{td}|^2 \hat{B}_B$$

⇒ Unfortunately the theory precision is limited by the QCD.

B(eautiful) Physics

d, s

B-factories, V_{ts} , V_{tb} ⇒ The CKM elements V_{ts} , V_{tb} are problematic to determine. One can use:

- Rare radiative *K* and *B* decays
- B^0 and B_s^0 oscilations:

$$\Delta m_d = \frac{G_F^2}{6\pi^2} f_B^2 m_B m_W^2 \eta_B S_0 |V_{tb}^* V_{td}|^2 \hat{B}_B$$

⇒ Unfortunately the theory precision is limited by the QCD.

d, s

Electroweak penguins

- Rare EWP decays are THE most sensitive probes of NP in flavour physics.
- They are described by the effective Hamiltonian (see next lecture for more details):

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \left[\lambda_q^t \sum_{i=1}^{10} C_i \mathcal{O}_i + \lambda_q^u \sum_{i=1}^2 C_i (\mathcal{O}_i - \mathcal{O}_i^u) \right]$$

Inclusive/Exclusive $b \rightarrow s\gamma$

⇒ Measurement of inclusive modes is difficult. First attempt was done using sum of exclusive modes.

 \Rightarrow Latter one used the leptonic tag.

τ Physics

- $\Rightarrow B\text{-factories are also } \tau \text{ factories!} \\\Rightarrow \tau \text{ leptons are very nice objects.} \\ \text{And allow 2 main things:} \end{cases}$
- Test of QCD in the harmonic decays.
- Search for NP ex. LFV.

$$B(\tau^- \to K^- \nu_\tau) = \frac{G_F^2 f_K^2 |V_{us}|^2 m_\tau^3 \tau_\tau}{16 \pi \hbar} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 S_{EW}$$

18

Warp up

 \Rightarrow The Physics reach of *B*-factories was enormous.

 \Rightarrow They robustness of their measurements because a text-book procedures when analysing the data.

 \Rightarrow Fief anomalies remain (next lecture), which are beeing tackled by current *B*-factories.

 \Rightarrow If you want to know more please read the "Legacy" book: arxiv::1406.6311