NUST MISIS, Russia, Moscow

Lecture 6, Nov 6, 2019

Introduction to detectors

Olaf Steinkamp University of Zurich

olafs@physik.uzh.ch

1

Olaf Steinkamp

Born in Bremen (Germany) Studied physics in Bonn (D) PhD thesis work at CERN (GE) 1st PostDoc at CEA Saclay (F) NA48 experiment at CERN

2nd PostDoc at NIKHEF Amsterdam (NL)

HERA-B experiment at DESY (Hamburg)

Since 2000 at University of Zurich:

LHCb experiment at CERN

Lectures on particle physics, data analysis, experimental techniques

Elementary Particles

University of Zurich^{uz}

Elementary Particles

matter

University of Zurich^{uz+}

Elementary Particles

+ matter antiparticles: same mass, same lifetime, opposite charge

(anti-electron ≡ positron)

University of Zurich^{uzH}

Particle Zoo

Quarks / antiquarks are not observed as free particles

Particle Zoo

Particle Zoo

NUST MISIS, Russia, Moscow

Particle Zoo

If I could remember the names of all these particles, I would have been a botanist.

(Enrico Fermi)

izquotes.com

9

Long-lived Particles

... and their antiparticles

University of

Reconstruct short-lived particles indirectly, by measuring their long-lived decay products

Relativistic kinematics

$$\mathbf{E^2} = \mathbf{m^2} + \mathbf{p^2}$$

 $\begin{bmatrix} using "natural units" \\ with c \equiv 1 \end{bmatrix}$

Energy and momentum conservation in the decay

$$\left(M^{2} = \left(\sum E_{i} \right)^{2} - \left| \sum \vec{p}_{i} \right|^{2} \right)$$

Mass of decaying particle

Energies and momenta of

the particles produced in the decay

University of Zurich^{uz}^H

Example: particle with mass $M > 2 m_{\mu}$ decays to muon and antimuon

$$\mu^{+} (\boldsymbol{E}_{\mu^{+}}, \boldsymbol{\vec{p}}_{\mu^{+}})$$

$$(\boldsymbol{E}_{\mu^{-}}, \boldsymbol{\vec{p}}_{\mu^{-}}) \boldsymbol{\mu}^{-}$$

Measure the momenta of muon and antimuon

- determine their energies ($E_{\mu^{\pm}}^2 = m_{\mu}^2 + p_{\mu^{\pm}}^2$)
- calculate the mass of the decaying particle:

$$\left[M^{2} = \left(E_{\mu^{+}} + E_{\mu^{-}} \right)^{2} - \left| \vec{p}_{\mu^{+}} + \vec{p}_{\mu^{-}} \right|^{2} \right]$$

Discovery of Υ **particles in 1977**

ROM MGA TO NUST MISIS 1000 EX 1918-2018 PENING A NEW CENTURY

OBSERVATION OF A DIMUON RESONANCE AT 9.5 GeV IN 400 GeV PROTON-NUCLEUS COLLISIONS

S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, H. D. Snyder, and J. K. Yoh Columbia University, New York, New York 10027

and

J. A. Appel, B. C. Brown, C. N. Brown W. R. Innes, K. Ueno, and T. Yamanouchi Fermi National Accelerator Laboratory, Batavia, Illinois 60510

and

A. S. Ito, H. Jöstlein, D. M. Kaplan, and R. D. Kephart State University of New York at Stony Brook Stony Brook, New York 11794

July 1977

"Yesterday's sensation ..."

"... today's calibration channel"

Compare position of peak with known mass of the particle

→ calibrate momentum measurement

University of Zurich^{uz}^H

"... today's calibration channel"

Width of signal due to finite precision of momentum measurement

→ determine momentum resolution of the detector

University of Zurich^{uzH}

"... today's calibration channel"

Width of signal due to finite precision of momentum measurement

→ determine momentum resolution of the detector

Today's sensations

National University o Science and Technology

Accelerate a beam of (stable & charged) particles to high energies

electrons/positrons, protons/antiprotons, heavy ions

Bring them into collision with

• another beam of particles ("collider experiment") e.g. ATLAS, CMS

• a target at rest ("fixed-target experiment") e.g. SHiP

75

 \sqrt{s} [TeV]

100

50

University of Zurich¹²¹⁴ 1

0.1

13 25

Zurich

Collide particles at the highest possible energy → to probe high masses $[\boldsymbol{E} = \boldsymbol{m} \boldsymbol{c}^2]$ → to probe small distances Heisenberg uncertainty principle: $\Delta p \cdot \Delta x \geq \hbar$ De Broglie wavelength $\lambda = \frac{\hbar}{p}$

LHCL

SHil

Science and Technoloc

Collide particles at the highest possible energy

and the at highest possible rate → to probe rare processes

e.g. LHC at 13 TeV: only about 1 in 10⁹ pp collisions produces a Higgs boson

Particle physics experiments use different "subdetectors" to

→ measure the trajectories of long-lived particles

→ measure their momentum and energy

→ determine their type

If we know the particle type, we know its mass → measure energy directly or calculate it from momentum

$$E^2 = m^2 + p^2$$

Components of a particle-physics experiment

(momentum + speed \rightarrow mass \rightarrow particle type)

Electron/positron

Proton, charged pion or kaon

University of Zurich^{uz+}

Muon

LHCb at the LHC

Different geometry, but similar components

(+ Ring-Imaging Cherenkov detectors to distinguish proton / pion / kaon)

University of Zurich¹²¹⁴

LHCb at the LHC

LHCb: collider experiment that looks like a fixed-target experiment

Main goal is to study decays of mesons and baryons that contain a b or \overline{b} quark

These particles are produced mostly under small angles with respect to the proton beam axis

→ more cost efficient to build a detector that covers only the relevant angles

Experiments are optimized for the physics processes they are meant to study !

Momentum measurement

Moving charge in magnetic field → Lorentz force

$$\vec{F}_L = q \cdot \vec{v} \times \vec{B}$$

→ forces particle onto circular trajectory around field lines

$$\frac{\mathbf{m} \cdot \mathbf{v}^2}{\mathbf{r}} = \mathbf{q} \cdot \mathbf{v} \cdot \mathbf{B}$$
$$\mathbf{p} = \mathbf{q} \cdot \mathbf{B} \cdot \mathbf{r}$$

In common units and for $q = \pm 1$ $p [GeV] \approx \pm 0.3 \cdot B [T] \cdot r [m]$

Momentum measurement

Typical collider experiment

- solenoid/toroid magnet
- \rightarrow field lines parallel to beam axis
 - cylindrical tracking layers inside the magnet

Typical fixed-target experiment

- dipole magnet
- \rightarrow field lines orthogonal to beam axis
 - planar tracking detectors before and after the magnet

More on magnets and magnet design in the tutorial by Михаил Горшенков and Павел Дергачев

University of Zurich[™]

Momentum resolution

Determine sagitta of the trajectory from three position measurements

• from geometry:

$$\frac{L/2}{r} = \sin\frac{\phi}{2} \approx \frac{\phi}{2} \quad (\text{for }\phi \text{ not too large})$$
$$s = r \cdot \left(1 - \cos\frac{\phi}{2}\right) \approx r \cdot \left[1 - \left(1 - \frac{1}{2}\left(\frac{\phi}{2}\right)^2\right)\right] = r \cdot \frac{\phi^2}{8}$$

• deflection in magnetic field (for *q* = + 1):

$$r = \frac{p}{0.3 B} \Rightarrow \phi = \frac{L}{r} = \frac{0.3 B \cdot L}{p} \Rightarrow S = \frac{0.3}{8} \cdot \frac{L^2 \cdot B}{p}$$

• position measurements with resolution σ_x :

$$= X_2 - \frac{X_1 + X_3}{2} \implies \sigma_s^2 = \frac{3}{2} \sigma_x^2 \qquad \longrightarrow \qquad$$

$$\boxed{\frac{\sigma(p)}{p} = \frac{\sigma_s}{s} = \sqrt{\frac{3}{2}} \sigma_x \cdot \frac{8 p}{0.3 B L^2}}$$

S

Momentum resolution

"Gluckstern equation" for N equidistant measurements

$$\frac{\sigma(\boldsymbol{p}_{\tau})}{\boldsymbol{p}_{\tau}} \approx \sqrt{\frac{720}{N+4}} \cdot \boldsymbol{\sigma}_{x} \cdot \frac{\boldsymbol{p}_{\tau}}{0.3 B L^{2}}$$

(p_{τ} = "transverse momentum" = component orthogonal to magnetic field)

Relative momentum resolution

- deteriorates linearly with increasing momentum
- improves linearly with the strength of magnetic field
- improves <u>quadratically</u> with the length of the measured track segment

⇒ main reason for the large size of high-energy particle physics experiments

University of Zurich¹¹⁷⁴

381]

24 (1963)

Interaction in material

Detection based on interaction of particles in detector material

Ionization or excitation of atoms → creation of free electric charge carriers or scintillation light

Mean energy loss of charged particles described by Bethe-Bloch equation

$$-\frac{dE}{dx} \propto \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \left(\frac{1}{2} \cdot \ln \frac{2 m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2\right)$$

Energy-loss distribution in thin layer of material described by Ландау distribution

(\rightarrow Richard Jacobsson, lecture 8)

Electronic Readout

apply electric field across detector volume, collect charges on electrodes

- electronically integrate & amplify signal pulse
- digitize the signal:
 - discriminator
 - analog-to-digital converter (ADC)
 - time-to-digital converter (TDC)

- - \Rightarrow binary information (hit / no hit)
 - ⇒ encode pulse height
 - \Rightarrow encode signal arrival time
- transfer digital data to a computer farm for processing and storage

need to know WHEN to read out the detector \rightarrow trigger (\rightarrow Lea Caminada's lecture in spring)

Thin-walled cylindrical tube, filled with a gas (e.g. 80% Ar / 20% CO₂)

Thin wire along the centre of this tube

Apply a high voltage (typically 1– 2 kV**) between wire and outer wall of the tube**

Charged particle ionizes atoms in the gas electric field: electrons drift towards the wire

Very high electric field close to the wire electrons gain enough energy to ionize secondary atoms

 \rightarrow Charge avalanche, voltage pulse on wire

University of Zurich^{112H}

Tracking detector: several layers of such drift tubes

University of Zurich^{uz}

Tracking detector: several layers of such drift tubes

University of Zurich^{uz}^H

Tracking detector: several layers of such drift tubes

-2018

To improve spatial resolution: measure drift time of electrons

46

+ spatial resolution < 200 µm, appropriate for many applications
+ easy to cover large surfaces
+ cost effective
but: granularity, rate capability

and radiation hardness reaching their limits at the LHC

drift time for electrons typically 100 ns, bunch crossings at LHC every 25 ns

Silicon tracking detectors

Segmented reverse biased *p*–*n* junction (diode)

- *n*-doped silicon wafer with segmented *p*-doped implants
 - strips with pitch 250 20 μ m \Rightarrow spatial resolution 50 to a few μ m
 - or pixels for even finer granularity
- apply reverse bias voltage
 - fully deplete bulk, create electric field
- ionizing particle creates electron-hole pairs in silicon lattice
 - electrons and holes drift in electric field, induce signal on *p*-doped implants

Silicon tracking detectors

+ spatial resolution down to few μ m, much better than gaseous detectors

- + faster signal collection, higher rate capability
- + much better radiation hardness

but: much more expensive than gaseous

→ use silicon detectors where needed, gaseous where you can afford it

> More on gaseous and silicon tracking detectors in my lecture next year

Nuclear Emulsions

Similar to photographic film: silver bromide crystals suspended in gelatine

Charged particles create silver grains
 → latent image, made visible through chemical processing

Low rate capability but sub-µm resolution

"Old" technology, e.g. employed in discovery of charged pions in 1947

Renaissance, e.g. in tau neutrino physics, thanks to development of fast and fully automated film scanning techniques

(\rightarrow Giovanni de Lelli, lecture 7)

Energy measurement

Calorimeter: high-density material with large Z
 → incident particle initiates cascade ("shower") of secondary particles
 Measure total signal amplitude: proportional to the number of particles in the shower → proportional to the energy of the incident particle

Electromagnetic calorimeter: electromagnetic cascade induced by electrons or photons

Hadronic calorimeters: hadronic cascade induced by pions, kaons, protons

Destructive measurement → calorimeters after tracking

University of Zurich[™]

Energy measurement

Simulation of electromagnetic shower (8 GeV electron in Copper)

Simulation of hadronic shower (8 GeV proton in Copper)

Electromagnetic showers (probably induced by photons), observed in bubble chambers with lead absorber plates

University of Zurich^{uz+}

High-energy e[±] lose energy mostly through Bremsstrahlung → creation of a high-energy photon

High-energy y lose energy predominantly through pair production \rightarrow creation of a high-energy electron/positron pair

Mean free path for pair production also determined by X₀

University of Zurich^{uz}^H

Simple model of the electromagnetic cascade:

(1) γ creates an e^+/e^- pair after $1 \cdot X_{0,}$ energy is split equally between e^+ and e^-

(2) e^+ and e^- radiate a γ after $1 \cdot X_{0,}$ energy is split equally between e^+/e^- and γ

 \Rightarrow after $n \cdot X_0$: 2ⁿ particles with energy *E* / 2ⁿ

(3) cascade stops when *e*⁺/*e*⁻ energy drops below critical energy *E*_c

 \Rightarrow shower depth (in X_0)

total number of particles produced

$$N_{\text{tot}} = \sum_{n=0}^{n_{\text{max}}} 2^n \approx 2 \cdot \frac{E}{E_c}$$

This simple model illustrates two important features of calorimeters:

 $n_{\max} \propto \ln E$

⇒ thickness of material required to contain the cascade increases logarithmically with the energy of the incident particle

$$N_{\rm tot} \propto E \Rightarrow \frac{\sigma(E)}{E} = \frac{\sigma(N_{\rm tot})}{N_{\rm tot}} = \frac{\sqrt{N_{\rm tot}}}{N_{\rm tot}} = \frac{1}{\sqrt{N_{\rm tot}}} \propto \frac{1}{\sqrt{E}}$$

⇒ relative energy resolution improves with increasing energy

Compare relative momentum resolution:

$$rac{m{\sigma}(m{p})}{m{p}} \propto m{p}$$

⇒ at very high energies, energy measurement more precise than momentum measurement

Calorimeters

Two basic types of calorimeters:

Homogeneous calorimeters: single medium serves as absorber and detector (e.g. lead-loaded glass, PbWO₄ crystals)

> Sampling calorimeters: alternate layers of absorber and active medium (e.g. lead/iron + scintillators)

Sampling calorimeters: do not see full signal \rightarrow loss in resolution But less expensive + ability to reconstruct longitudinal shower profile

University of Zurich^{uzH}

Calorimeters

Long-standing and important contributions to calorimetry from Russia

E.g., idea of a sampling calorimeter first put forward in 1954 by H. Л. Григоров for an experiment to study cosmic-rays in the Pamir mountains

→ more on calorimetry
 in Giovanni di Lella's
 lecture in spring

Fig. 14. Schematic diagram of the first ionization calorimeter (GRIGOROV, MURZIN and RAPOPORT [1958]). The shaded areas represent absorber. Layers 1 and 2 are the rows of counters forming the controlling telescope. Layers H_1 , H_2 , H_3 are hodoscoped counters, while layers I, . . ., VI are the detectors (ionization chambers) of the calorimeter.

Particle Identification

Various means for particle identification

- shower shape in calorimeters (electron/photon/hadrons/muons)
- muon detectors after a shielding wall (makes muons the easiest to identify)

• or effects that depend on the speed of the particle:

→ energy loss in gaseous or silicon detectors (Bethe Bloch)
 → time of flight between two scintillator counters
 → Cherenkov light

(→ Андрей Голутвин, lecture 4)

Cherenkov light is emitted when a charged particle moves through a medium at a speed faster than that of light

University of Zurich^{uz}

Special relativity tells us that nothing propagates faster than speed of light in vacuum

But: speed of light in a medium is smaller than speed of light in vacuum:

c_{medium} = **c**_{vacuum} **/ n**_{medium}

Charged particles can move through a medium faster than the speed of light in that medium

When that happens, an electromagnetic shock wave is created

→ Emission of Cherenkov light

Павел Алексеевич Черенков Nobel Prize in Physics (1958)

Equivalent to the "sonic boom" emitted by an object moving faster than the speed of sound

source: <https://en.wikipedia.org/wiki/Bullet_bow_shockwave>

Shock wave is emitted under an angle with respect to the direction of motion

That angle depends on the speed of the object / particle

E.g. LHCb: use C_4F_{10} and CF_4 gas as radiator

 \rightarrow correct refractive index

 \rightarrow transparent for the produced photons

focus the emitted light onto a plane of photon detectors \rightarrow rings

67

LHCb at the LHC

68

NUST MISIS, Russia, Moscow

Summary

Outlook

Brief overview of the main components of a particle physics detector, many more details in dedicated lectures:

> Interaction of charged particles in material (Richard Jacobsson)

> > **Particle Identification (RICH etc)**

(Андрей Голутвин)

Tracking detectors

(Giovanni de Lellis next week; myself in spring)

Calorimeters

(Giovanni de Lellis)

Trigger and readout electronics

(Lea Caminada)

NUST MISIS, Russia, Moscow

Final word ...

"The great advances in science usually result from new tools rather than from new doctrines."

(Freeman J. Dyson)

71

NUST MISIS, Russia, Moscow

The slides of this lecture are available at

http://www.physik.uzh.ch/~olafs/pdf/191106_MISIS.pdf

