
9. Mechanical oscillations and

resonances

R

9.1 Introduction

Oscillations play a major role in all domains of physics. Examples include the pendulum like the

spring pendulum in mechanics, resonator circuits in electronics, oscillating strings or membranes in

acoustics, or oscillating electric and magnetic fields in optics. The mathematical treatment always

yields to similar generic equations.

Using the rotary oscillation of a disk as an example, we will learn about the general properties of

(harmonic) oscillators in this experiment. In particular, we will focus on the dependence of these

properties on damping, where we assume that the damping force is proportional to the velocity of

the oscillator. Furthermore, an harmonic external force to drive the oscillation and the behaviour

close to resonance will be investigated. The findings can easily be used to describe analogous

oscillating system.

9.2 Theory

Treating oscillations we distinguish undamped, damped, and forced oscillations. An undamped

oscillation is said to be harmonic if the restoring force is proportional to the instantaneous displace-

ment from the equilibrium position. In most cases, this condition is fulfilled for small displacements.

Harmonic oscillations can be described by means of sine or cosine functions. Undamped oscilla-

tions, i.e. oscillations without loss of energy, are an idealized model, which does not exist in nature

owing to omnipresent friction. As a consequence, the amplitude of the oscillation decreases with

time.

If, in addition, an external force drives the oscillation, the oscillation is said to be a forced oscillation.

If the driving force is a periodic (harmonic) function of time, the oscillation amplitude will depend

on the frequency of the driving force and resonance phenomena occur.
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Figure 9.1: The rotating pendulum

a) Undamped rotary oscillation of a disk

A metallic disk is fixed such that it may rotate around its center axis. A spiral spring ensures

that the disk, once rotated out of its equilibrium position, experiences a restoring torque. A sketch

of this pendulum is shown in Fig. 9.1. If the pendulum is deflected by a small angle ϕ out of

equilibrium, the restoring torque is approximately proportional to the angle and becomes:

MD = −kD · ϕ. (9.1)

Neglecting damping forces we can deduce from the principle of angular momentum the equation of

motion:

θs ·
d2ϕ

dt2
= −kD · ϕ, (9.2)

where

θs = moment of inertia and (9.3)

kD = spring constant of the spiral spring. (9.4)

Eqn. 9.2 represents the differential equation describing an harmonic oscillator with the solution

ϕ(t) = ϕ0 · cos (ω0 · t− δ), (9.5)

where (see Fig. 9.2)

ϕ0 = oscillation amplitude, (9.6)

ω0 =

√
kD
θs

= eigenfrequency of the undamped oscillator, and (9.7)

δ = phase offset. (9.8)

The eigenfrequency (or natural frequency) ω0 is given by the properties of the oscillator. It deter-

mines the time of period of the oscillation

T =
2π

ω0
. (9.9)

The amplitude ϕ0 and the phase δ are determined by the starting conditions.

As shown in Fig. 9.2 the deflection is passing through extremal positions at times tn = δ/ω0 =

0, π, 2π, . . . , n π, the amplitude of this oscillations remains constant.
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Figure 9.2: Harmonic oscillation.

b) Damped oscillation

The oscillation of the pendulum is said to be damped if frictional forces act on the pendulum

in the direction opposite to its movement. If the torque MR produced by the frictional forces is

proportional to the angular speed, we may write

MR = −β · dϕ
dt
. (9.10)

The principle of angular momentum yields

θs ·
d2ϕ

dt2
= −kD · ϕ− β ·

dϕ

dt
(9.11)

or
d2ϕ

dt2
+
β

θs
· dϕ
dt

+
kD
θs
· ϕ = 0. (9.12)

This is the differential equation of a damped oscillation. The solution depends on the strength of

the damping.

Weak damping

For weak damping the solution becomes (see Fig.. 9.3):

ϕ(t) = ϕ0 · e−α·t · cos (ω′ · t− δ′ ), (9.13)

where

α =
β

2 θs
= damping coefficient, (9.14)

ϕ0 = maximum amplitude, (9.15)

ω′ =
√
ω2
0 − α2 = angular frequency of the damped oscillation, and (9.16)

δ′ = phase offset.

The (angular) frequency ω′ is smaller than the natural frequency ω0 of the undamped oscillator.

This means that the oscillation is slowed down by the damping. The phase offset δ′ and the

maximum amplitude ϕ0 are given by the starting conditions.
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Figure 9.3: Oscillation with weak damping.

The deflection passes through extrema at times tn = δ′/ω′ = 0, π, 2π, . . . , n π. The amplitude

ϕ(tn) = ϕ0 · e−α·t (9.17)

decreases exponentially with time, the stronger the damping α the faster the amplitude decays.

The decay time τ = α−1 equals the time interval after which the amplitude decays to 1/e of its

initial value.

Critical damping

As can be seen from Eqn. 9.16 ω′ decreases with increasing damping α. In the case of strong damping

α > ω0 the motion is no longer periodic but the pendulum returns to its initial equilibrium position

without overshooting. The limiting case of α = ω0 or ω′ = 0, which marks the transition between

damped oscillation and aperiodic motion, is called critical damping. Typical trajectories for these

three cases of weak, critical and strong damping are schemtically shown in Fig. 9.4.

weak damping

critical damping

strong damping

ϕ

t

Figure 9.4: Weak, critical and strong damping.

The case of critical damping is important for technological applications like e.g. buffers, vibration

dampers, or in weighing scales or galvanometers.
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c) Forced oscillation

If an additional torque, produced by an external force of frequency ω, acts on the disk

MA = M0 · cos (ω · t) (9.18)

the principle of angular momentum leads to the following differential equation of a forced oscillation:

d2ϕ

dt2
+
β

θs
· dϕ
dt

+
kD
θs
· ϕ =

M0

θs
· cos (ω · t). (9.19)

In the beginning, the damped oscillation at frequency ω′ and the forced oscillation at frequency ω

are superimposed. The damped oscillation decays with time, but the forced oscillation remains for

times t � α−1. As a result the pendulum will oscillate with certain phase lag with respect to the

driving force and at driving frequency ω. Using the ansatz

ϕ(t) = A · cos (ωt− δ′′) (9.20)

together with Eqn. 9.19, we can show that the amplitude of the forced oscillation behaves like

A(ω) =
M0

θs ·
√(

ω2
0 − ω2

)2
+ β2ω2/θ2s

. (9.21)

A typical example is plotted in Fig. 9.5).

The peak maximum is located at

ωres = ω′ =
√
ω2
0 − 2α2 (9.22)
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Figure 9.5: Resonance curve with full width at half maximum (FWHM).
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and the corresponding amplitude amounts to

Amax =
M0

β · ω0
=

M0

2α · ω0 · θs
. (9.23)

Often, the so-called full-width-at-half-maximum (FWHM) 2 ∆ω1/2 is used for characterizing the

width of the peak. It depends solely on the strength of the damping

∆ω1/2 = α ·
√

3. (9.24)

Therefore, the damping coefficient α can be determined by the width of the resonance curve for

any oscillator.
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9.3 Experimental
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Specifications:

eigen frequency: ca. 0, 5 Hz

voltage of the motor: 2...16 V

– close to resonance: 8 V

eddy current damping: 0...10 V

maximum 1.0 A

(short-term (!!!) up to 1.5 A) connectors for the 
eddy current brake

Figure 9.6: Rotary pendulum according to Pohl with eddy current damping.

The setup is shown in Fig. 9.6: It consists of a rotary pendulum driven by an electric motor and

damped by an eddy-current brake. The motor and the pendulum are connected mechanically by

an extender wheel and a driving rod. The damping is controlled by the current passing through

the coils which produce the fields and, thereby, the eddy currents in the disk. The motor produces

a periodic torque, whose frequency is controlled via the voltage of the motor. The power supplies

and the principle of the brake will be explained by the assistant.

This experiment consists of three parts:
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1. A qualitative observation ad description of the pendulum for weak, critical and strong damp-

ing. Then, the current setting for critical damping shall be determined.

2. For weak damping and two different values, the exponential decay of the amplitude is to be

recorded. From the decay, the damping coefficient α can be calculated.

3. For the same (weak) damping strengths and external torque, full resonance curves are recorded.

The damping coefficients α can be calculated from the FWHM of the two curves and compared

to the value obtained in the second part.

a) Critical damping

In order to observe the critical damping, we use a special power supply capable to supply high

enough currents to the eddy-current brake.

• Observe the oscillations of the pendulum at weak damping. Increase the current passing

through the brake until the pendulum does no longer overshoot. Note this current as corre-

sponding to critical damping.

• Attention: the current passing through the brake is limited to 1.5 A maximum for a short

period! Execute this experiment speedily!

b) Determination of the damping coefficient from exponential decay

For a given damping strength the damping coefficient shall be determined from the exponential

decay of the amplitude according to Eqn. 9.17.

Logarithmising Eqn. 9.17 yields:

lnϕ(tn) = lnϕ0 − α · tn (9.25)

or

logϕ(tn) = logϕ0 − α · tn · log e. (9.26)

Plotting lnϕ(tn) or logϕ(tn) as function of time on graduated paper or else ϕ(tn) on semi-

logarithmic paper yields a straight line with slope −α. 1 From the slope the damping coefficient

can be calculated (see Fig.. 9.7).

• Adjust the damping current to the first of the two values given in the laboratory.

• Use a stop watch to determine the period of time T ′ out of three measurements of four

oscillations each.

• Measure the decaying amplitude as function of time.

1It does not matter which way is used to represent the data and to obtain the slope: Note, however, that the

numerical value depends on the kind of logarithm used, the natural log or to the base 10. The latter is of advantage

for graphical purposes, the first for calculations.
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Figure 9.7: Determination of the damping coefficient α.

• Plot the amplitudes on semi-log paper versus time.

• Draw the best-fitting straight line passing through the data and determine α from the slope

(pay attention to the y-scale when working with semi-log paper!) No error calculus is required.

• Calculate the half-value period of the damped oscillator.

• Repeat the measurements for the second current value given.

c) Determination of the damping coefficient from the resonance curve

• Set the damping current to the same value than in the previous part b).

• Connect the motor and power it up. The pendulum will start forced oscillations.

• Determine the driving frequency ω by measuring the time for 10 revolutions of the motor

axis.

• Wait until the eigen oscillation decay and measure the amplitude of the forced oscillation.

• Change the frequency of the motor and repeat the measurements. Take the full resonance

curve. Choose large frequency steps when far from resonance, but small steps around the

resonance (should be at least 6 data points on the resonance peak).

• Plot the amplitude as function of driving frequency ω. Determine the FWHM and calculate

the damping coefficient α according to Eqn. 9.24 (see Fig. 9.8). There is no error calculus

required.

• Repeat this experiment for the second damping current value.

• Compare these results with values obtained in part b).
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Figure 9.8: Full width at half maximum of the resonance peak.
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