
7. The gyroscope

K

7.1 Introduction

This experiment concerns a special type of motion of a gyroscope, called precession. From the

angular frequency of the precession, the moment of inertia of the spinning wheel of the gyroscope

can be determined. In a second part, the moment of inertia will be measured using a simple method

based on the law of energy conservation.

7.2 Theory

a) The gyroscope

A body moving in such a way that only one single point of the body remains fixed in space, is called

a gyroscope or short gyro. The point is the center of rotation O. The motion has three degrees of

freedom and obeys the principle of angular momentum:

−→
dL

dt
=
−→
M. (7.1)

Here,
−→
L denotes the angular momentum of the gyro and

−→
M the external torque acting onto the

gyro. We describe the motion of the gryo as a rotation around a transient axis passing through the

pivot point O. The axis of rotation changes orientation with respect to space and with respect to

the body of the gyro. This general treatment of the gyro motion is exact but quite complex. We

will consider only the following simple case (see Fig. 7.1):

1. The gyro has cylindrical symmetry with respect to the body axis z′. The pivot point, which

is fixed in spcae, is situated on the axis z′.

2. The gyro is revolving fast around z′ compared to the motion of z′ in space. The moment of

inertia, i.e. the rotational analogon to the inertial mass for translations, be Iz′ .

3. The gyro is solely subject to the gravitational force.

Briefly, we consider a fast revolving gyroscope in the gravitational field of the Earth. If, in par-

ticular, the pivot point coincides with the center of gravity of the gyro, no net force or torque is
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Figure 7.1: Geometry of the gyroscope.

acting on the gyro. According to the principle Eqn. 7.1 cited above the angular momentum must

stay constant: −→
dL

dt
=
−→
M = 0, i.e.

−→
L = constant.

If the axis of rotation of the gyro z′ coincides with the space fixed axis of the angular momentum
−→
L , the axis of rotation z′ will be fixed in space as well. Otherwise, the z′-axis moves on a cone

around the space fixed angular momentum axis. This kind of motion is called nutation.

b) Precession

Now, we assume that the axis of angular momentum
−→
L and the body axis and axis of rotation z′

coincide. The absolute value L can be evaluated according to condition (2) above:

L ≈ Lz′ = Iz′ · ωz′ . (7.2)

The center of gravity be displaced by a distance rs off the pivot point O along the axis. Therefore,

gravity produces a torque
−→
M0 with

−→
M0 = −→rs ×

−→
G.

It follows for the absolute value of
−→
M0:

|−→M0| = M0 = rsM g sinϑ, (7.3)

where M denotes the mass of the gyro. The torque
−→
M0 is perpendicular to the plane spanned by

−→r and
−→
G . Moreover, the vectors −→r and

−→
G form a right-handed trihedron with

−→
M0.

Let us assume that the angular momentum has a direction
−→
L at time t. The change in angular

momentum
−→
dL during the infinitesimal time interval dt must have the same direction than the

torque
−→
M0 according to the principle of angular momentum Eqn. 7.1. At time t + dt the vector

of angular momentum
−→
L and, thereby, the axis of rotation z′ will have a new direction

−→
L +

−→
dL.

Since at the same time, the vector of the torque
−→
M0 rotates by the same angle dϕ (see Fig. 7.2)

the situation is the same then before and the whole movement continues: The end of the vector of

angular momentum moves on a horizontal circle around the space fixed vertical axis z. The center

of gravity of the gyro moves on a horizontal circle, too, perpendicular to the field lines of gravity.

This motion is called precession.
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Figure 7.2: Precession: angular momentum, torque and resulting change in angular momentum.

The angular velocity of the precession is ωp = dϕ/dt, where dϕ denotes the angle by which the

vectors
−→
L and z′ rotate around the space fixed axis z in the time interval dt. From Fig. 7.2 we can

deduce that

dϕ =
length of arc

radius
=

|−−→dL0|
|−→L0| · sinϑ

.

Since according to the principle of angular momentum Eqn. 7.1
−−→
dL0 =

−→
M0 dt we obtain

dϕ =
|−→M0| dt
|−→L0| · sinϑ

.

Inserting Eqns. 7.2 and 7.3 allows one to eliminate the angle ϑ. Finally we obtain for the angular

velocity of the precession

ωp =
dϕ

dt
=

rsG sinϑ

Iz′ ωz′ sinϑ
=

rsM g

Iz′ ωz′
, (7.4)

where we used the following definitions:

ωp = angular velocity of the precession around z and

ωz′ = angular speed of the revolution around the z′-axis with ωz′ � ωp.
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7.3 Experimental

a) Experimental setup
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Figure 7.3: Setup of the gyroscope.

A gyroscope with a wheel be mounted like shown in Fig. 7.3. The mass of the wheel be compensated

by a mass m1 such that no net force or torue is acting on the gyro. An additional mass m, fixed

at a distance r from the pivot point produces a torque
−→
M0, which is given by the additional mass

−→
FG = m−→g and which yields:

−→
M0 = −→r ×−→F = m · −→r ×−→g .

This leads to precession with angular frequency

ωp =
mg r

Iz′ ωz′
. (7.5)

In order to determine the angular velocity, the time of period of the rotation shall be measured.

Using Eqn. 7.5 the moment of inertia Iz′ can be calculated from the angular velocity.

b) Realization and data analysis

By adjusting the mass m1 and without additional mass m, the gyro is put into an indifferent

equilibrium. Before each measurement the wheel is set into rapid revolution (ωz′ � ωp).

1. Qualitative observation: a little kick makes the axis of the gyro z′ deviate from the direction

of the angular momentum
−→
L0. The gyro starts to nutate. Repeat this experiment with the

wheel revolving in the opposite sense.

2. By adding a mass m the horizontal gyroscope starts to precess. In order to avoid nutation,

the gyro should be gently guided in the beginning. This is justified by the fact that Eqn. 7.4

was derived under the assumption of a stationary angular velocity of the precession. It is

necessary to measure both time Tz′ and Tp simultaneously because the wheel slows down

owing to friction.
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The experiment is to be carried out 5 times. In order to observe the vector relation between
−→
M0

and
−−→
dL0 , the wheel shall revolve in the opposite sense of rotation at least once. The result for the

moment of inertia and the corresponding measurement error are obtained by means of Eqn. 7.5

from averaging over the five measurements.

c) Acceleration of free fall; energy conservation
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Figure 7.4: Prinziple of the second method.

For the second experiment the gyroscope is blocked. A mass m is suspended at the end of a cord,

which is wound around and fixed at the wheel. The mass falling from a height h above ground

produces a constant torque on the wheel. The angular velocity of the wheel increases until the

mass touches ground.

Energy balance: the sum of potential and kinetic energies of wheel and mass m is a constant.

Comparing the situation before and directly after the free fall we obtain

mg h + 0 + 0 = 0 +
mv2end

2
+
Is ω

2
end

2
. (7.6)

This means that the potential energy of mass m at beginning equals the sum of kinetic energies of

mass and wheel at the end. The final translational speed vend of mass m equals the speed of a

point on the circumference of the wheel

vend = vUmfang = ωend ·R,

where R denotes the radius of the wheel and vUmfang the speed on the circumference of the wheel..

d) Realization and calculation

It is important to check that the cord is always tangential to the circumference of the wheel. Repeat

this experiment 5 times and vary the mass m and the height of the free fall h.
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• Determine the angular velocity by measuring the time of revolution Tend = 2π/ωend during

the first three revolutions after the mass has touched the ground.

• The moment of inertia Is is to be calculated from Eqn. 7.6 for the second method, Is,Fall
as well as the measurement error. Compare these values with the results from the first

experiment.
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