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5. Fluid friction in liquids

5.1 Introduction

Generally the term fluid is understood to be matter either in the gaseous or liquid state. The physics
involved on the macroscopic scale is essentially the same; the difference is orders of magnitude in
density and therefore molecular distance and the corresponding forces acting. The experimental
techniques required for investigating gases or liquid are quite different, though. In this text fluid
refers to the liquid state, if not otherwise explicitly stated.

A fluid flows, e.g. in a tube, not as solid ’plug’, but with more or less complicated internal motion
with continuously changing velocities at all points of reference in the fluid. Resistance to flow stems
from attractive forces between the molecules, and therefore work is required if molecules are to be
separated, as in a flowing liquid. For the many molecules in a macroscopic fluid sample, it would
be impractical to try to calculate this work on the molecular level. Instead, at least for engineering
purposes, a different approach is adopted. As is often the case when the underlying physics is too
complicated for direct access, or the effort would not be rewarding, a phenomenological view is
applied, and the physical mechanisms described by using easily measured macroscopic material
parameters. One such case is friction of any kind, and in particular the internal forces that make
a fluid resist motion : the observed phenomenon is reduced to a parameter that we will examine
below: wiscosity; the collective resistance to motion by the molecular forces is referred to as fluid

friction.

Returning briefly to the molecular level, we recall that polyatomic molecules are stabilized by
internal, or intramolecular forces between atoms or groups of atoms, which are not of concern here,

whilst fluid friction is determined by the forces between the molecules, the intermolecular forces.

We also note that the intermolecular forces are attractive, but in a fluid rather weak. The weak
binding between molecules may typically be described as Van der Waals forces or hydrogen bonds,
the latter, e.g. for the important case of water and watery solutions.

Practical and economical consequences of engineering design are found in all kind of installations
involving extensive tubing, as is the case for heat exchangers, thermal (steam) power stations,
nuclear power reactors, hydropower stations, oil refineries, chemical processing plants, paper mills,
but also on a different scale, the system of human blood vessels; In all these cases careful design
was employed to balance tubing diameter and viscosity against desired flow characteristics.

In this laboratory we investigate fluid friction in two important cases: the flow resistance of liquids

3



4 5. Fluid friction in liquids

VU, F
‘I g
‘—» I Ly
»/
FR /
d v

<13\1

/

Abbildung 5.1: Principle of measuring the Newtonian fluid friction.

in capillary tubes, and its dependence on tube diameter, for water and castor oil (ricinus); In a
second experiment, the resistance to motion of spherical balls falling by gravity, again in water and
castor oil.

Both methods are developed for quantitative determination of fluid friction, and determine quan-
titatively the coefficient of viscosity

In particular we also introduce the Reynolds number as an important characteristic of fluid flow.

5.2 Theory

a) Newtons law for Fluids — Newtonian fluids

A Newtonian fluid (named so for Isaac Newton) is a fluid whose stress versus strain rate curve is
linear and passes through the origin. The constant of proportionality is known as the viscosity of
the fluid!.

In common terms, this means that the fluid continues to flow, regardless of the forces acting on it.
For example, water is Newtonian, because it continues to show fluid properties no matter how fast
it is stirred or mixed. In contrast, a non-Newtonian fluid changes its properties: stirring can leave
a "hole’ behind because the fluid becomes thicker (Rheopecty; this behaviour is seen in materials
such as pudding, starch in water). The non-Newtonian fluid may also become thinner with stirring,
the drop in viscosity causing it to flow better (Thixotropy; this property has been put to good
use in non-drip paints, which easily wet the brush because they flow easily, but become more
viscous(thicker) when applied by brushstroke on a wall).

Next we need to define two common notions used to describe fluid motion: laminar flow sometimes

known as streamline flow, occurs when a fluid flows in parallel layers. The appearance is smooth.

Flow that is not laminar is termed turbulent. It is characterised by whirls, or in more technical
language by eddies and vortices and generally by chaotic, property changes. There is rapid variation
of pressure and velocity in space and time. The appearance is rough.

Extended piping systems, as used for district heating or chemical industry, need to be designed for

!The material properties stress, strain and shear are introduced in laboratory TB.
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5.2. THEORY 5

laminar flow since this requires the least pumping power and causes less vibrations and material
detoriation. For applications where heat exchangers and reaction vessels are involved, turbulent
flow is essential for good heat transfer and mixing, since in this flow regime there is flow also
transversely to the general flow direction.

Employing a simple model for laminar flow, we may assume infinitely thin parallel fluid sheets move
with different velocities such that frictional forces Fg between the sheets act to set up shear stress.
We also characterise Fy r as drag. This model is depicted in Fig. 5.1 : A layer of fluid is enclosed
between two plates. If this frictional force causes the substance between the plates to undergo shear
flow (as opposed to just elastic shearing, as for a solid, until the shear stress balances the applied
force), the substance is called a fluid.

We assume here that the lower plate is stationary, and that the upper moves with a relative velocity
v. It is further assumed that the attraction between the plates and the fluid is such that next to
each plate there is a fluid sheet that does not move relative to the plate. As a consequence the
velocities for each sheet changes with distance, as shown in the figure. In particular we note already
here, that in the figure the change in velocity is linear with distance between the plate. This is not
trivial, and we return to this subject later. The principle shown may be directly implemented in
an apparatus for measuring fluid resistance, for instance by using two parallel rotating plates.

Under steady state conditions, an external force F' = Fp is required to maintain the velocity v of
the upper plate. For velocities not too high, and a plate distance d small compared to the area A
of the upper plate (in order to avoid edge effects), the force F' = Fj is proportional to the area and
velocity v of the upper plate and inversely proportional to the distance:

Here 7 is a property variable characterising the thicknessor tiffnessof the liquid. Written is this
form the relation is valid only for the chosen geometry of parallel plates; for the same liquid flowing,

e.g. in a tube, the ratio v/d, the rate of shear deformation, varies with distance.

For straight, parallel and uniform flow, as in this case, it was postulated by Newton, that the shear
stress, 7, between layers is proportional to the velocity gradient in the direction perpendicular to
the fluid sheets. This is the Newton’s criterion, and may taken as a definition of a Newtonian fluid.
The relation Eq. 5.1 then may be written on the equivalent but more general form:

;= g Y (5.2)

The factor of proportionality is by definition the viscosity, here designated n. Many fluids, such
as water and most gases, satisfy Newton’s criterion, that their flow be described by Eq. 5.2. By
definition, the viscosity depends only on temperature and pressure, but not on the forces acting
upon it.

It is worth noting, that it is the strength of the velocity gradient % perpendicular to the flow
direction that determines the drag, the resistance to flow. In our intuitive picture of laminar flow,
this is because of the friction in the fluid sheets gliding past each other. In practice this property
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6 5. Fluid friction in liquids

determines the time for a certain fluid to flow through a given tube, or the pumping power required

for a certain volume throughput.

The coefficient of viscosity 7, as defined through the relations Eq. 5.1 and Eq. 5.2, is the most
common variant, and is therefore often called just wviscosity or absolute viscosity. More specific
names are the dynamic viscosity, or the Newtonian viscosity. The reader is advised, that several
differently defined coefficient of viscosity are found in the literature (see below).

Non-Newtonian fluids exhibit a more complex relationship between shear stress and velocity gra-
dient than simple linearity as in Eq. 5.2. Examples include polymer solutions, molten polymers,
blood ketchup, shampoo, suspensions of starch?, many solid suspensions and most highly viscous
fluids. It is not the 'thickness’ per se that makes a fluid non-Newtonian, but the complicated in-
teraction between large molecules or chains of molecules. As already mention above, an indication
demonstrating the nonlinearity, is the drop in viscosity seen when stirring non-drip paints,

The viscosity is a strongly temperature dependent parameter, as we know already from everyday

experience.

Some common viscosity coefficients

Several different viscosity coefficients are in use, depending on the method for applying stress and
the nature of the fluid, i.e. the type of application targeted. Specialised methods of measurement,
and corresponding units are in use for industrial applications, in particular petrochemical. For
Newtonian fluids, dynamic viscosity and kinematic viscosity are common, and often confused. If
in doubt, always note the unit. We list some of the most common coefficients for the sake of
completeness here:

Viscosity coefficients for Newtonian fluids

e Dynamic viscosity (introduced above) determines the dynamics of an incompressible Newto-

nian fluid.
e Kinematic viscosity is the dynamic viscosity divided by the density for a Newtonian fluid.

e Volume wiscosity (or bulk viscosity) determines the dynamics of a compressible Newtonian
fluid.

Viscosity coefficients for non-Newtonian fluids

e Shear viscosity is the viscosity coefficient when the applied stress is a shear stress (valid for

non-Newtonian fluids).

o FExtensional viscosity is the viscosity coefficient when the applied stress is an extensional stress
(valid for non-Newtonian fluids; widely used for characterising polymers).

2Those of the readers having been exposed to a British education may be familiar with the substance oobleck,
which gets its name from the Dr. Seuss book Bartholomew and the Oobleck, where a gooey green substance, oobleck,
fell from the sky and wreaked havoc in the kingdom.
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5.2. THEORY 7

Shear viscosity and dynamic viscosity are the best known in each of the two groups: both defined as
the ratio between the pressure exerted on the surface of a fluid, in the lateral or horizontal direction,
to the change in velocity of the fluid as you move down in the fluid (this is what is referred to as a
velocity gradient).

Units and nomenclature

Dynamic viscosity: The symbol commonly used for dynamic viscosity by mechanical and chemical
engineers is ju, whereas 7 is commonly preferred by chemists and ITUPAC3.

The SI unit of dynamic viscosity is the pascal-second (Pa-s), which in SI base units is expressed

Ls=1 If a fluid with a viscosity of one Pas is put between two plates, and one plate

as kg-m™
is displaced horizontally, creating a shear stress of one pascal, it moves a distance equal to the

thickness of the layer between the plates in one second.

The cgs physical unit for dynamic viscosity is the poise (P)*. It is more commonly expressed,
particularly in ASTM?® standards, as centipoise (cP). Water at 20 °C has a viscosity of 1.0020 cP.

L.s~1. The relation between poise and pascal-seconds is: 10 P = 1 kgm™1.s7! =1

1P=1gcm™
Pa-s, 1 cP = 0.001 Pa-s = 1 mPa-s. The name ’poiseuille’ (P1) has been proposed for this unit, also
after Jean Louis Marie Poiseuille but has not been accepted internationally. Care must be taken in

not confusing these units where they might appear.

Kinematic viscosity: In many situations we are concerned with the ratio of the viscous force to the
inertial force per unit volume, p - g. For this purpose the kinematic viscosity v is defined as:

v=—= (5.3)

where, as before, 7 is the dynamic viscosity [Pas], p is the mass density [kg-m~>], and v is the

kinematic viscosity [m?s~!]. The cgs unit for kinematic viscosity is the stokes (St), named after

George Gabriel Stokes. It is sometimes expressed in terms of centistokes (cSt or ctsk). 1 stokes
= 100 centistokes = 1 cm?s™! = 0.0001 m~2-s7!. 1 centistokes = 1 mm?-s~! = 107m?.s~!. The
kinematic viscosity is sometimes referred to as diffusivity of momentum, because it is comparable
2.-1
s

to, and has the same SI-dimension [m as diffusivity of heat and diffusivity of mass. It is used

in dimensionless numbers for the comparison of the ratio of the diffusivities.

1Poise =1 =0.1Pa-s (5.4)

cm - S

3The International Union for Pure and Applied Chemistry

“named after Jean Louis Marie Poiseuille, who formulated Poiseuille’s law of viscous flow.

® ASTM International (ASTM), originally known as the American Society for Testing and Materials, is an interna-
tional standards organisation that develops and publishes voluntary consensus technical standards for a wide range
of materials, products, systems, and services.
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8 5. Fluid friction in liquids

b) The Hagen-Poiseuille Equation

Using Newton’s law of fluids, as discussed above, we now develop an expression for laminar flow in
a cylindrical tube of length [ and inner radius R (cf Fig. 5.2).

For the analysis we choose a concentric cylindrical volume element of fluid of radius r» < R. Because
of a pressure difference Ap = p; — po persisting between the ends of the tube, a net force F), acts
on the cylindrical element:

F,=m-r%-Ap (5.5)

According to Eq. 5.2, the velocity gradient perpendicular to the cylinder axis (dv/dr)|, gives rise
to a drag force Fr at the distance r from the axis:

d
FR:U.%.T.,.(U)

= (5.6)

T

For stationary conditions (no change in the velocity profile with time), a balance between the
pressure induced force Fp and the frictional drag Fr persists, which we write as:

7r-r2-Ap—|—r]-27r-r-l-<dv> =0 (5.7)

dr

From this we may express the velocity gradient at distance r from the cylinder axis

(%)

The actual flow speed v(r) may be obtained by solving this differential equation, which because of

Ap
= - 7
r 277l

(5.8)

the simple form amounts to an integration using the given boundary condition v(r = R) = 0:

Ap.

N (5.9

v(r)
This is a parabolic velocity distribution as shown in Fig. 5.3. The maximum velocity is found at
r = 0 in the centre of the tube, from where it decreases quadratically with increasing r, becoming
zero at the wall of the tube.

A

Abbildung 5.2: Forces and pressures acting on a fluid in a section of a cylindrical tube.
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5.2. THEORY 9

Abbildung 5.3: Velocity profile in a cylindrical tube.

Using the geometry of Fig. 5.4, the amount d@ of fluid flowing through an annular cylinder of

radius 7 in time ¢,) may be expressed as:

7-r-Ap- (R? —1r?)
2n-1

dQ=t-v(r)-27-r-dr=t- dr (5.10)

Integrating this equation over the cross section of the tube we arrive at the Hagen-Poiseuille Equa-
tion for for the amount ) flowing in tie ¢:

(5.11)

T =

Q=1 /RW‘T"A]?‘(R2—T’2) 7 R Ap ;
N 0 2n-1 8n-1

The reader is urged to perform a dimensional analysis of this expression in order to determine the
correct unit of Q.

If the dimensions of the tube is known, the viscosity n of the fluid given may be determined from
measured values of ), t and Ap.

c) Laminar and turbulent flow — Reynolds number.

Newtons equation 5.2 is valid only for the case of laminar flow, as discussed above. For flow that is
faster than a certain critical value vg.; the laminar flow lines are disturbed by an unruly behaviour
and may develop vortex patterns that depends on the given geometry. This is the regime of turbulent
flow that is characterised by fluid motion also transversely to the direction of flow. The complicated
flow pattern of turbulent flow requires more power for the same volume throughput, which is
equivalent to a higher flow resistance. For a given system of fluid and geometry, it is found that
the critical velocity wvg.; is determined by the mass density p the viscosity 1 and a characteristic
dimension d of the system (e.g. the diameter of the tube in case of a cylindrical tube). In the
study of macroscopic phenomenology of physics and engineering, surprisingly simple dimensionless
combinations of measurable entities have proved themselves to faithfully characterise otherwise
highly complicated systems.

\\ dr
0) ,

Abbildung 5.4: Geometry for the development of Hagen-Poiseuille Equation.
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10 5. Fluid friction in liquids

As a characteristic of fluid flow, the dimensionless number defined as

_prv-d
n

Re

(5.12)

has emerged through measurement and intuition. This is Reynold’s number, and it turns out that
below a certain value Rep,.;; laminar flow is present, whereas for Re > Rey,;; turbulent flow prevails.

For straight, cylindrical tubes Re. ~ 2300. Eq. 5.12 the gives us:

e

i+ = 2300
Vkrit - d

(5.13)
where d is the diameter of the tube. The flow remains laminar as long as the mean flow velocity
is below vg;. The remarkable feature of Reynold’s number, or any other of several dimensionless
number, is that any combination of the values of the measurable properties, consistently describe
properties of the materal.

d) Stoke’s equation

For highly viscous fluids (high 7), such as oil at low temperatures, the throughput in a capillary
would be so slow that the viscosity 1 could not practically be determined. In such cases an effective
and simple alternative method is to measure the time of fall by gravity of a sphere in the fluid
of interest. The forces acting on the sphere is shown in Fig. 5.5. The force of gravity F and the
bouyancy F4 are respectively:

4
Fo = m-g=gm-ripc-g
4
Fp = §7T'7“3'0Fl'9

where pg is the mass density and r the radius of the sphere and pp; the density of the fluid.

For the drag force Fr, we have for laminar flow the frictional law of Stoke:

Fr=67m1-n-r-v (5.14)
Fy K Fy
Fg
\j
z

Abbildung 5.5: Forces acting on a sphere falling through a viscous fluid.
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5.2. THEORY 11

where

n = viscosity of the fluid
= radius of the fluid

v = terminal velocity of the sphere

The frictional force Fgr is proportional to the velocity and thus for some velocity, the terminal
velocity, a stationary condition is reached with constant velocity (see appendix). The forces acting

on the sphere balances each other according to the relation:

4

If the mass density p and the radius of sphere R are known, the viscosity n may be determined
from a measured value of the terminal velocity.

2r2-g-(px — pm1)
9v

n= (5.16)
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12 5. Fluid friction in liquids

5.3 Experimental

a) Determination of the viscosity of water

The viscosity of water is determined according to Eq. 5.11. The amount of water @ collected from a
capillary of radius R and length [ in time At is determined®?. The measurement is made using three
different capillaries (five are provided, marked with roman numerals I - V). Check which capillaries
that work — the two smallest diameters probably does not allow laminar flow, and should therefore
not be used (recall that the equations developed are valid only for laminar flow). Make sure that
de-mineralized (or destilled) water is used in the experiment, since otherwise deposits are left in
the capillaries (de-mineralized water may be found in rooms 11 G 24 and 11 G 26: water taps with
green rings and text). With most capillaries there is some dripping at the same time as the water
flows nicely. It is left to the discretion of the experimentalist to handle this matter in a reasonable

way.

The experimental set-up is shown in Fig. 5.6. A vertical glass cylinder with volume markings has
a provision for mounting the capillaries at the output in the lower part of the cylinder. For given
height A of the fluid column, the pressure difference Ap = p; —p2 between the ends of the capillaries
will be:

Ap=pi—p2=prL+p-g-h—pr=p-g-h (5.17)

e Measure the length [ of the capillaries. The inner diameter is given at the lab desk. Mount
one of the capillaries at the outlet of the cylinder.

e Fill the cylinder with de-mineralised water. For each of the different capillaries there might
be a highest level above which the flow through the capillary will not be laminar. This has
to be tested. The same might be true for a lowest level.

5Make certain that you know the meaning of Q: what is the SI-unit in 5.11

atmospheric pressure
12

\

Abbildung 5.6: Set-up for determining the viscosity of water.
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Let the water running from the capillary collect in a cup during the time interval ¢, for known

heights h, and hy. The time should not be too short, since then errors might become large.

Determine the amount of water () using the electronic scale, and correct for the mass of the
empty cup.

Calculate the viscosity n according to Eq. 5.11. Use for Ap the average of the pressure
differences at the end and at the beginning of the experiment .

_ Apg + Ape
2

he + he

A
P 2

=pw-g (5.18)
Repeat the measurement for the other two capillaries. Calculate the average of the values for
the viscosity 7, and calculate the errors according to standard procedures. If the method is

sound, the value for 7 should not depend on the capillary. Comment upon this in your report.

For all three capillaries calculate the mean flow velocity, i.e. assume for this calculation that
the fluid is moving through the tube as a solid ’plug’. Verify that the this velocity is below
the critical velocity for laminar flow.

b) Determination of viscosity for castor oil

In this case of a viscous fluid, that certainly would not flow through our capillaries, we determine

the viscosity using Eq. 5.16. Spherical steel balls fall by gravity in a tube filled with castor oil, the

time for the balls falling a certain distance is registered. Balls with three different radii are used in

consecutive experiments. Since the viscosity depends strongly on temperature, the temperatre of

the oil will have to be measured continuously.

e As a preparation, perform the experiment for a mid-sized steel ball, and make qualitative

observation.

From this experience, choose a suitable vertical distance over which the falling balls will be
monitored. Mark off the beginning and the end of the distance on the cylinder and measure
the height Al. Make certain that the balls have reached the terminal velocity before you mark
off the starting point. The distance should be chosen so that the can be conveniently stopped

with a manual timer, without unnecessary large errors.

Chose another ball of the same size and measure the diameter with a micrometer. Measure the
time At for the balls to fall through the distance choosen. Calculate the velocity v = Al/At
and the viscosity n according to Eq. 5.16. Use the radius measured and the following values
for the densities:

— Castor oil: pp = 0.96 x 103 kg m™3

TA certain height h of water column corresponds to a pressure difference between the pressure at height h and

the pressure at the inlet of the capillary, or any other chosen reference point. It is therefore irrelevant from where h

is measured.
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— Steel ball: px = 7.86 x 10% kg m~3

e Repeat the measurement for five different mid-sized balls, and then for five different balls of
larger, and five different of smaller size. If necessary, chose different height distances for balls
of different size.

e Determine the average of the results and calculate the errors appropriately.
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5.4 Appendix

The equation of motion for the falling ball (Newton’s law of motion) is developed from the generic
form:
F=m-a (5.19)

For the acceleration we write:
a=——=— (5.20)

With notation and reference direction as in Fig. 5.5, the external forces acting are:
F=Fg—Fy—Fp (5.21)

In particular we know that Fr = 67 -7 -7 - v, which we for simplicity write as Fr = (- v. For the
same reason we write a = Fg — F4, from which we then have the equation of motion as a first
order ordinary differential equation (ODE) in v = dz/dt:

m-a:a—ﬁ-v (5.22)
Note, that « is always zero, if we may assume that the density of the ball is greater that that of
the fluid. The solution to the differential equation could be easily found with conventional methods
(it is an exponential determined by the boundary conditions), we chose here to discuss the relation
phenomenologically. Although we are interested only in the stationary solution, we start with a
general approach to this equation.

Positive reference direction is in the direction of gravitation. Assuming that the initial speed of the
ball is zero, then, since o > 0, the left side of the equation also have to be positive, i.e. dv/dt > 0
meaning that the speed increases (in a more direct view of matters, this has to be the case since the
ball falls by gravity because of the higher density of the ball) Since « is independent of the velocity,
and the term (- v now increases, but has a negative sign, the right side of the ODE will decrease,
requiring the derivative on the left side to become smaller. Eventually a stationary condition is
reached as the ball attains its (constant) terminal velocity.

In the limit ¢ — oo we have dv/dt = 0 and v, = a/[3, and the solution to the ODE:

u(t) = % (1= emm) (5.23)

The higher the viscosity, the faster the terminal velocity is reached. If the velocity of the ball has
some finite value, either larger or smaller than the terminal velocity, an equivalent reasoning may
be applied, leading in any case to an asymptotical approach of the terminal velocity v, = /5 as
shown in Fig. 5.7 for three different examples of v(t = 0).
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Abbildung 5.7: Change of velocity for a ball falling in a viscous fluid for three different initial
velocities: v(t = 0) = 0 (solid linie) and two different v(t = 0) > 0 (broken lines).
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