
3. Elastic Collision

ES

3.1 Introduction

A collision is an interaction of two bodies during a short period of time, while momentum and

energy are being exchanged. It is called an elastic collision if no energy in the production of

heat, irreversible deformations, electronic excitations or other non-kinematic effects is used up.

During the collision, there are complicated forces at work between the two bodies. The laws of

conservation of momentum, energy, and (under certain circumstances) angular momentum allow

a satisfying determination of the behaviour of the interacting bodies after the collision. In this

experiment, this will be illustrated in the elastic collision of two balls.

In the first part of the experiment, a ball’s kinetic energy, after rolling down an inclined plane, that

can be transmitted onto a ball at rest is determined. The second part concerns itself with verifying

the law of conservation of momentum by measuring the momentum after the collision in relation

to the scattering angle for an initially resting ball. The result is then compared with theory.

3.2 Theory

a) Kinetic Energy of a Rolling Ball
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Figure 3.1: Experimental set-up

For a ball rolling down an inclined plane, as shown in fig. 3.2, the law of conservation of energy
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allows the calculation of the kinetic energy Ek at the end of the ramp if friction loss is ignored,

while the potential energy Ep and rotational energy Er are known:

Ek = Ep − Er (3.1)

1

2
m · v21 = m · g · (yS − yR) − 1

2
I0 · ω2 (3.2)

With parameters as follows:

m = Mass of the ball

v1 = Absolute value of the ball’s velocity

g = Gravitational acceleration = 9.81 m/s2

yS − yR = Difference in height between starting point and end of ramp

I0 = Moment of inertia of the ball

ω = Angular velocity of the ball

If r is the radius of the ball and the ball is in direct contact with the underlay in one point only,

then:

v1 = ω · r (3.3)

With

I0 =
2

5
m · r2 (3.4)

follows from eq. 3.2 the absolute value of velocity at the end of the ramp:

v1 =

√
10

7
g · (yS − yR) (3.5)

In this experiment, the ball is guided by a V-shaped chute (see fig. 3.2). While rolling, there is

direct contact with the underlay in two points. Instead of rolling on a great circle with radius r, the

ball rolls on two respective parallel circles with radius r′ = r · sinα. For this experiment α = 60◦.

Correspondingly, the condition of rolling becomes:

α
r r

α

Figure 3.2: Explanation of radius r′

v1 = ω · r′ = ω · r · sinα (3.6)
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thus

v1 =

√
1

k
· g · (yS − yR) (3.7)

with

k =
1

2
+

1

5 · sin2 α
(3.8)

After leaving the ramp and until the impact, the ball is falling during a time

τ =

√
2 yR
g

(3.9)

in the gravitational field of the earth and in the process covers the horizontal distance

x0 = τ · v1 =

√
2

k
· yR · (yS − yR) (3.10)

From the measurement of x0, the velocity of the ball when leaving the ramp can be determined

und compared with the theoretical value of eq. 3.7. When determining the values of yS and yR,

it is important to bear in mind that during the impact the center of mass of the ball and not the

point of impact is found in the y = 0 plane.

b) Velocities of the Collision Members after the Collision

The law of conservation of energy and momentum in a collision of two balls with the masses m1

and m2 is as follows:

1

2
m1 · v21 +

1

2
m2 · v22 =

1

2
m1 · v′1

2
+

1

2
m2 · v′2

2
(3.11)

m1 · ~v1 +m2 · ~v2 = m1 · ~v′1 +m2 · ~v′2 (3.12)

Where ~v1 and ~v2 are the velocities of the balls before the collision, while ~v′1 and ~v′2 are the velocities

after the collision.

If two balls have the same mass m = m1 = m2 and the second ball is at rest before the collision,

the law of conservation of energy is simplified to:

v21 = v′1
2

+ v′2
2

(3.13)

Following the Pythagorean theorem, the velocity vectors after the collision thus have to be perpen-

dicular to each other. With the conventions defined in fig. 3.3 we can derive the different velocity

components: If the collision happens in the x − z plane, the velocity of the first ball before the

collision has only a component in the x-direction. It follows for the x- and z-components of velocity:

x-components : v1 = v′1 · cosϕ1 + v′2 · cosϕ2 = v′1 · sinϕ2 + v′2 · cosϕ2 (3.14)

z-components : 0 = v′1 · sinϕ1 − v′2 · sinϕ2 = v′1 · cosϕ2 − v′2 · sinϕ2 (3.15)

with ϕ1 + ϕ2 = π
2 as sketched in fig. 3.3.

Solving eq. 3.15 for v′1 and inserting it in eq. 3.14 leads to the formula of v′2 as a function of

scattering angle ϕ2:

v′2 = v1 · cosϕ2 (3.16)

This means, as can be seen in fig. 3.4, that the tip of the velocity vector ~v′2 for an arbitrary scattering

angle ϕ2 is always located on a circle with a diameter defined by vector ~v1.
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Figure 3.3: Definition of scattering angles ϕ1 and ϕ2.
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Figure 3.4: Relation between v′2 and ϕ2

3.3 Experimental Part

a) Measurement of the Velocity of the Rolling Ball

The holder for the second ball (see fig. 3.5) will not be used before the second part of the experiment.

Make sure that it is removed for this part of the experiment. The ball would hit the holder in its

path and would thus be diverted.

Attach onto the impact plane some pressure-sensitive paper on which the ball leaves a dark mark

during the impact. The mark is larger and more visible if the surface of the impact plane is lined

with a soft material. Make sure that the paper cannot move.

Check with a water spirit level that the ramp and the impact plane are horizontally aligned. If

that is not the case, use one of the available adjusting screws to first align the impact plane and

then the ramp horizontally.
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Figure 3.5: The holder for the second ball (second part of the experiment)).

• Let the ball roll down the ramp and measure the distance x0 that the ball has travelled after

leaving the ramp until the impact happens. Repeat this experiment five times. Calculate

the mean and the error of the measurement (estimate the errors of the used quantities) and

compare the result with the expected value of eq. 3.10. The angle α of the used ramp is 60◦

with a tolerance of 1%.

• Determine from the measurement result the velocity of the ball at the exit point of the ramp.

• Answer the following questions:

– How would the result change if the ramp and/or the plane of impact were not horizontal?

– The chute, in which the ball is rolling down, is covered with a plastic coating to allow

a sufficiently high friction coefficient for the ball to roll and not to slide. What effect

would a sliding ball have?

b) Verification of the Law of Conservation of Momentum in the Collision

Attach the holder (see fig. 3.5) for the second ball. Make sure that the cams (bumps) of the holder

fit into the corresponding holes to achieve a firm hold. The holder can be used for the larger and,

if installed in reverse, also for the smaller balls. But the larger balls give better results.

• Why do the smaller balls give worse results?

For this part of the experiment, a ballstopper can be mounted, that can hold the balls in place

right after the collision. In the measurement for large scattering angles however, it will have to be

removed again.

Check the vertical placement of the equipment: Put one ball on the end of the ramp and a second

of same size on the holder and verify using the water spirit level that both balls have the same

height.

First, test the case of a central collision. Using the micrometer gauge adjustment knob, adjust

the horizontal position of the ball holder in relation to the ramp to achieve an impact parameter

between the two balls of z0 = 0 (the impact parameter z0 is the distance between the two balls

perpendicular to the direction of motion of the first ball before the collision, see fig. 3.3).
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• Let the ball roll down the ramp and hit the second ball of same size located on the holder at

rest. Measure the distance x0 that the second ball travels.

• Repeat this experiment five times and determine the mean and the error of the measurement

• By what distance should the location of impact of the pushed ball be ahead of the first

experiment if the entire momentum is transmitted from the first ball to the second ball?

Compare the result of your measurement with your prediction.

Now, the relation between scattering angle and the velocity of the pushed ball (eq. 3.16) will

be analysed. As the time of flight of the ball from collision to impact solely depends on the

height traveled (and is thus independent of horizontal velocity), velocity vectors are projected onto

locations in this experimental set-up. So if the tips of velocity vectors are located on a circle (see

fig. 3.4), then the locations of impact form a circle, too.

• Vary the impact parameter z0 in steps from 1 mm of z0 = −2 cm to z0 = +2 cm and do

an individual measurement for each setting. Note down for every location of impact of the

pushed ball the respective value of the impact parameter set on the micrometer gauge.

• Make sure that the measurement points are actually on a circle using the circle form at your

experiment station. Are significant offsets of the circular form measureable? If so, how can

you explain them?

• Determine the diameter of the circle that is formed by the measurement points and use it to

calculate the velocity v1 and the corresponding error.

• Depict the scattering angle ϕ2 as a function of the impact parameter z0. What relation ϕ2(z0)

do you suspect? Illustrate the two balls and their collision and indicate how the velocity

vectors of the pushing ball before the collision can be deconstructed into the two velocity

vectors after the collision. Draw the resulting function ϕ2(z0) in the measured diagram. Does

the suspected function correspond to the measurement?
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