
1. Experiments with capacitors

C

1.1 Introduction

In many processes in physics, chemistry, and biology, the change in time of a quantity often is

proportional to its momentary value. Examples include:

• The number of decays of instable atoms in a radioactive sample within a certain time is

proportional to the number of instable atoms present in the sample.

• The change in concentration of a reactant during a chemical reaction is proportional to the

concentration.

• The growth rate of a given population is proportional to the number of individuals in that

population.

• A body moving through a viscous liquid experiences a force of friction (and thereby an

acceleration), which is proportional to its velocity.

• The current during the discharge of a capacitor across an electrical resistance is proportional

to the charge of the capacitor.

All these processes are quantitatively described using exponential functions. Using the example

of charging and discharging of a capacitor, we will introduce the bascis characteristics of exponential

functions. Some keywords:

• exponential function,

• electric circuits,

• Kirchhoff’s laws,

• charging and discharging of a capacitor, and

• measurement of electrical currents and voltages.
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2 1. Experiments with capacitors

1.2 Theory

1.2.1 Charging and discharging of a capacitor

The generic electrical circuit of these experiments is shown in Fig. 1.1: The capacitor with capacity

C is charged across the (Ohmic) resistor R if the switch is in positions 1, and discharged when in

position 2.
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Figure 1.1: Generic circuit.

Charging

A power supply providing the DC voltage V0

is connected in series to a resistor R and a

capacitor C. At time t = 0, the switch S

is put into position 1; as a consequence, the

capacitor is charges via the resistor R. We

will derive an expression describing the time

dependence of voltage V (t) and current I(t).

Discharging

The capacitor C is charged; the correspond-

ing voltage between the two contacts be V0.

At t = 0 the switch S is switched to position

2: the capacitor is discharged across the re-

sistor R. Again, we are interested in voltage

V (t) and current I(t) as function of time.

The initial conditions at time t = 0 are:

Q(0) = 0 Q(0) = Q0 = V0C

Using the first one of Kirchhoff’s laws we obtain in both cases:

V0 = I R +
Q

C
0 = I R +

Q

C

Inserting the relation I = dQ/dt yields:

V0 =
dQ

dt
R +

Q

C
(1.1) 0 =

dQ

dt
R +

Q

C
(1.2)

This means that the change in charge on the capacitor is proportional to the charge Q(t).
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The solution of the inhomogeneous differen-

tial equation Eq. 1.1 is given by the sum of

the solution of the corresponding homoge-

neous equation Eq. 1.2 and one particular

solution of the inhomogeneous equation.

In the limit of very long times t → ∞ the

charge approaches the final value Q0 = V0C:

Q(t =∞) = Q0 = V0C.

The general solution of Eq. 1.1 becomes:

Q(t) = A′ e−
t

RC +Q0

The solution of the homogeneous equation

Eq. 1.2 is found by seperating the variables

Q and t:

dQ

Q
= − dt

RC
.

Integration leads to:

lnQ = − t

RC
+ lnA.

Using the constant of integration lnA we ob-

tain

Q(t) = A e−
t

RC . (1.3)

Determination of the constants from the starting conditions:

Q(0) = A′ + Q0 = 0 ⇒ A′ = −Q0

Q(t) = Q0 (1− e−
t

RC )

= V0C (1− e−
t

RC )

Q(0) = Q0 = A

Q(t) = Q0 e
− t

RC = V0C e
− t

RC

Calculation of the current I = dQ/dt:

I(t) =
V0

R
e−

t
RC (1.4) I(t) = −V0

R
e−

t
RC (1.5)

I(t)

V0
R

t

t

V0
R

I(t)

Figure 1.2: Current during charging and discharging of a capacitor.

Calculation of the voltage VC = Q/C:

VC(t) = V0 (1− e−
t

RC ) (1.6) VC(t) = V0 e
− t

RC (1.7)
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V0
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Figure 1.3: Voltage during charging and discharging of a capacitor..

Often, the characteristic timescale t0.9 (rise time) is given, which is defined as time needed to reach

90% of the value in the asymptotic limit VC = 0.9V0:

V0
0.9V0

VC

t t0.9

VC(t0.9) = 0.9V0 = V0 (1− e−
t0.9
RC )

Figure 1.4: Definition of the rise time t0.9.

Problem 1: • Determine t0.9 for given values of R and C.

• How should R and (or) C be changed in order to obtain a shorer rise time

t0.9?

1.2.2 Properties of the exponential function

The exponential function f(t) = A e−αt possesses the following properties:

• At any time t, the derivative df/dt with respect to time is proportional to the current value

f(t):
df

dt
= −αAe−αt = −αf(t).

The negative sign indicates that f(t) is monotonically decreasing.

• For equidistant steps ∆t, the value of f(t) always changes by the same factor at each step:

e−α∆t.

The latter can easily be seen in a graphical representation of an exponential function, like in

Fig. 1.5.

The function f(t) = Ae−αt reaches the value 0 in the asymptotic limit t → ∞. For this reason,

processes described by a decreasing exponential function are characterized by a time called half-life

T1/2 or alternatively by the characteristic time constant τ .
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f(t)
A

A
9

A
3

A
27 tΔt 2Δt 3Δt

Figure 1.5: Exponential function: decrease by a factor of one third in each interval δt.

Half-life:

After the half-life period T1/2 the function f(t) is dropped by half of its initial value:

f(0) = A

f(T1/2) =
A

2
= Ae−αT1/2

ln
1

2
= −αT1/2

T1/2 =
ln 2

α

Figure 1.6: Illustration of the half-life.

α1<α2

f(t)

A

A
e

α2

t(T1/2)2 (T1/2)1

(Characteristic) Time constant:

After a time corresponding to the time constant τ the function f(t) reaches 1/e of its initial value:

f(0) = A

f(τ) =
A

e
= Ae−1 = Ae−ατ

τα = 1 ⇒ τ =
1

α

Figure 1.7: Illustration of the time constant.

e    = 2.7183...
1/e = 0.3679...

f(t)
A

A
e

α2
α1<α2

τ2 τ1 t
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6 1. Experiments with capacitors

Ex.: Discharging of a capacitor

According to Eq. 1.6) the voltage behaves as:

VC = V0e
− t

RC

α =
1

RC

ergo: τ = RC (1.8)

T1/2 = RC ln 2 (1.9)

Figure 1.8: Discharging of a capacitor.

V0

VC

V0
e

tT1/2

V0
2

τ
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1.3 Experimental Part

1.3.1 Goal of this experiment

A capacitor is charged and discharged through a resistor R. Voltage across the capacitor and the

current through the resistor are monitored as function of time for two different RC time constants

τ1 ' 10s and τ2 ' 15s.

1.3.2 Setup

2

1 R

V0

C

S

VC

I

1 C2 CiC3

Figure 1.9: Electric circuit.

The power supply and volt- and amperemeter are connected to the corresponding jacks. Using the

switches On-Off (Ein-Aus) the number of capacitors can be varied. Since the capacitors are con-

nected in parallel, the total capacitance of the circuit is given by the sum of the single capacitances:

Ctot =
∑
Ci

The resistor R is to be plugged onto the corresponding jacks. Choose a combination of R and C

which leads to a time constant RC ' 10..15 s according to Eq. 1.8.

Internal resistance of the voltmeter

Every real voltmeter has a finite internal resistance RV . If we take this internal resistance into

account we obtain the following circuit:

R

V0

C RV

I
VC

The voltmeter used here has an internal

resistance of 107Ω. Therefore RV � R,

i.e. the current passing through the

voltmeter can be neglected here.

Figure 1.10: Internal resistance of the

voltmeter.
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8 1. Experiments with capacitors

1.3.3 Assembly

• Connect the power supply and the instruments.

• Choose the time constant and the corresponding combination of R and C.

• Plug in the resistor R.

• Activate the capacitors required.

• Turn on the voltage and set the voltage to 15 V.

1.3.4 Measurements

Charging the capacitor (Switch in position 1):

• The voltage across the capacitors is to be measured as function of time after switching to

position 1 (t = 0): for doing so read and note the voltage VC every 5 s.

• Discharge the capacitors.

• For the second time, record the current as function of time in the same way than the voltage

before. In particular, pay attention to the current at t = 0 when switching on.

Problem 2: Why the voltage does not reach V0?

Discharging the capacitor (Switch in position 2):

• Charge the capacitors up to a voltage V .

• Put the switch in position 2 and record voltage and current as function of time in the same

way as during charging.

1.3.5 Report

• Answer the questions in the text.

• Briefly resume the goal and the experiment itself. In particular, mention the following topics:

– Characteristic properties of the exponential function.

– Meaning of half-life and time constant τ

• Analysis:

– Plot the voltage VC(t) and the current I(t) on linear graph paper.
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1.3. EXPERIMENTAL PART 9

– Moreover, plot the decreasing curves (current for charging, voltage for discharging) on

semi-logarithmic paper.

– Determine the time constants τ from these plots as outlined below. Compare the values

obtained with the values calculated from the resistance and the total capacitance.

Hint: If you use semi-logarithmic graph paper, the slopes are given by the difference of the

logarithms of the values plotted on the logarithmic axis, as shown in Fig. 1.12. Alternatively,

the values lnV (t) and ln I(t) may be plotted against a linear scale (normal linear graph paper)

if no semi-logarithmic paper is at disposal.

Determination of the time constant from the plots

• From the linear representation of the exponantial function:

I
V0
R

V0
R·e

tτ

As shown in the figure, the characteristic time

constant can be read directly from the plot.

Figure 1.11: Determination of the time constant

τ from the linear plot.

• From the logarithmic representation of the exponential function:

Logarithmizing

I =
V0

R
e−

t
RC

leads to

ln
RI

V0
= − t

RC
.

Note: Only values can be logarithmized, not units. Therefore, the units must cancel. Then

we can rewrite the equation:

ln I + ln
R

V0
= − t

RC
. (1.10)

Using the logarithm at base 10, we obtain the same relation except for a correction factor

log e:

log
IR

V0
= − t

RC
log e

and, after the units having canceled:

log I + log
R

V0
= − t

RC
log e. (1.11)
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10 1. Experiments with capacitors

Equations (1.10) and (1.11) represent straight lines. For the slopes we obtain:

∆(ln I)

∆t
= − 1

RC

RC =

∣∣∣∣ ∆t

∆(ln I)

∣∣∣∣
∆(log I)

∆t
= − log e

RC

RC = log e

∣∣∣∣ ∆t

∆(log I)

∣∣∣∣

Δ (ln
Δt

ln

Δt

Δ (log I)

log I

log V0
R

I)

ln I

t t

V0
R

Figure 1.12: Calculations of the slopes using natural (left-hand-side) and common logarithm (right-

hand-side).

Demonstration

The assistant will demonstrate sawtooth oscillations (also termed relaxation oscillations) using

several different combinations of resistor and capacitor in the electric circuit shown in Fig. 1.3.5.

Observe the changes in frequency and ignition time. The circuit is explained in detail in the

appendix.

V0 C

R

GL
KO

The voltage VC(t) is measured on the oscillo-

scope.

Figure 1.13: Electric circuit used for the

demonstration. The polarity of the bulb is im-

portant!
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1.4 Appendix

1.4.1 Generation of sawtooth oscillations using a glow lamp

A glow lamp is a bulb filled with gas and equipped with two electrodes.

two wire
electrodes

disk and ring
electrodes

Figure 1.14: Types of glow lamps.

I

VL VVZ

Figure 1.15: I −V -curve of a glow lamp. VZ
denotes the voltage at which the lamp ig-

nites, VL the voltage at which the lamp goes

off.

A voltage is applied to the electrodes. Free electrons present in the gas are accelerated by the electric

field. If the field is sufficiently strong, the electrons acquire enough energy between two collisions to

ionize gas atoms. The number of free charges, thereby, increases generating an avalanche of charge

carriers and ionized atoms. The current is large and the inner resistance Ri of the bulb decreases

strongly. The critical field or voltage is called ignition voltage of the bulb VZ .

Circuit for generating sawtooth oscillations

V0 C

R S

GL
KO

Figure 1.16: Electric circuit.

A capacitor C is connected in parallel to

a glow lamp, both are linked to a voltage

source through a resistor R. The resistor

R shall be large compared to the inner re-

sistance of the ignited bulb Ri. As long as

the current through the bulb is small, i.e.

VC < VZ , the capacitor is slowly charged

through the resistor R. When the voltage

VC reaches the ignition voltage, the bulb ig-

nites and the capacitor is rapidly discharged

through the bulb Ri.

Since R� Ri, the re-charging of the capacitor through R is slow and VC decreases until it reaches

the voltage VL, at which the bulb goes off. Then, the capacitor start charging again and the whole

cycle repeats. If the voltage VC is measured using an oscilloscope we will see the following curve:

(compare to Fig. 1.3):
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12 1. Experiments with capacitors

V0

VZ

VL

T1 T2

TB

t

VC

TB = bulb is ignited,

T2 − T1 = recharging of the capacitor from

VL to VZ .

Figure 1.17: Voltage of the capacitor.

Calculation of the frequency

Charging of the capacitor according to Eq. 1.6)):

VL = V0 (1− e−
T1
RC ) ⇒ V0 − VL

V0
= e−

T1
RC

VZ = V0 (1− e−
T2
RC ) ⇒ V0 − VZ

V0
= e−

t2
RC

Division of both equations and logarithmizing leads to

V0 − VL
V0 − VZ

= e−
1

RC
·(T1−T2)

ln
V0 − VL
V0 − VZ

= − 1

RC
· (T1 − T2)

T2 − T1 = RC ln
V0 − VL
V0 − VZ

.

In the case R� Ri, we may neglect the ignition time TB with respect to T2−T1. Hence we obtain

for the frequency ν of the oscillations:

ν ≈ 1

T1 − T2
=

1

RC

1

ln V0−VL
V0−VZ

≈ 1

RC
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1.4.2 Some important applications of the exponential function

a) Radioactive decay

N (t)

N0
2

N0

T1/2 t

N (t) = N0 e-α t
N0 = number of unstable nuclei at time t = 0

N(t) = number of unstable nuclei at time t

At half-time T1/2, half of the nuclei did not yet

decay.

Figure 1.18: Radioactive decay.

Depending on the stability of the isotopes, typical half-life times range from 10−22 seconds up to

thousands of years.

b) Absorption of light in matter (electromagnetic radiation including γ-rays)

I0

I (x)

I0
2

d1/2 x

I (x) = I0e-μx light

x=0

I0

x

I(x)

x

Figure 1.19: Absorption of electromagnetic

radiation.

Be I0 the intensity at x = 0. I(x) denotes the intensity of the radiation after having passed a layer

of thickness x of the material. d1/2 corresponds to the thickness of the layer at which 50% of the

radiation is absorbed.

Note: The intensity of γ−-radiation never reaches zero even for very thick radiation shielding.

c) Motion in viscous liquids

In viscous liquids the friction is proportional to and opposite to the speed. The equation of motion

of a body moving through a liquid reads:

m
d2x

dt2
= m

dvx
dt

= −β vx + F0
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14 1. Experiments with capacitors

t

v0

 v(t) = v0 (1- e-b/m t) 

v(t) F0 = driving (constant) force, e.g. gravity or

electric field

βvx = friction in a viscous liquid

v0 = stationary speed

Figure 1.20: Motion through a viscous liquid.

d) In biology

In many biological processes like decomposition, resorption, or excretion, for instance, several

processes following exponential functions with different time constants are superimposed in complex

ways.
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