
12. AC properties of LCR-electric

circuits

WS2

12.1 Introduction

So-called passive electric components, such as ohmic resistors (R), capacitors (C) and inductors

(L), are widely used in various areas of science and electrical engineering. LCR-oscillatory circuits

deliver the time base for many electrically generated oscillation processes and RC-elements are

utilised as frequency filters for signal forming. The resonance behaviour of LCR-oscillatory circuits

features plenty of similarities compared to oscillation-capable systems in other physical areas.

In the first part of this lab course, the behaviour of a RC serial circuit compared to a square-wave

voltage shall be examined. In the second part we take a look at the properties of conductors

and inductors (coils) compared to harmonic alternating voltages (AC), where in the third part we

investigate on the resonance behaviour of a LCR parallel oscillatory circuit.

12.2 Theoretical part

a) Square-wave voltage on the RC serial circuit

A capacitor C and a resistor R are connected to a direct current voltage (DC) source, which creates

a constant voltage V0, via a switch S as it is shown in Fig. 12.1.

V0
R

S

C

Figure 12.1: Generation of a square-wave voltage with a RC serial circuit.

At time t = 0, the capacitor shall be completely discharged and the voltage V0 is being plugged by

turning the switch. After the power-up of the voltage it follows by the 2nd Kirchhoff’s circuit law

V0 = VR + VC = R · I +
Q

C
= R · dQ

dt
+
Q

C
(12.1)
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2 12. AC properties of LCR-electric circuits

This is a first-order differential equation for the charge Q which is stored on the capacitor. Con-

sidering the initial conditions VR = VC = Q = 0 for t = 0 the solution of the differential equation

becomes

Q(t) = Q0 · (1− e−t/RC) mit Q0 = V0 · C (12.2)

I(t) =
dQ

dt
= I0 · e−t/RC mit I0 =

Q0

R · C
=

V0
C

(12.3)

VC(t) =
Q(t)

C
= VC0 · (1− e−t/RC) mit VC0 =

Q0

C
= V0 (12.4)

The characteristic time constant which defines the behaviour of the circuit is τ = RC.

At time T � τ the capacitor shall be completely charged and the voltage is being broken by turning

the switch again. The initial conditions at time T become Q = Q0, VC = V0 and I = 0. Starting

with the differential equation for t > T

0 = VR + VC = R · I +
Q

C
= R · dQ

dt
+
Q

C
(12.5)

it follows:

Q(t) = Q0 · e−(t−T0)/RC mit Q0 = V0 · C (12.6)

I(t) =
dQ

dt
= I0 · e−(t−T0)/RC mit I0 = − Q0

R · C
= −V0

C
(12.7)

VC(t) =
Q(t)

C
= VC0 · e−(t−T0)/RC mit VC0 =

Q0

C
= V0 (12.8)

The temporal progress of the voltage for periodic power-up and shut-off is shown in Fig. 12.2, in

particular for the case T � τ . If this condition is not fulfilled then the capacitor is not completely

charged and the current hasn’t dropped down to zero yet when turning the switch. In this case the

temporal progress for the voltage is shown in Fig. 12.3.

b) Harmonic alternating voltage on the RC-circuit and the RL-circuit

The properties and behavior of a capacitance or inductance subjected to a harmonic voltage were

already introduced in experiment WS1 - Alternating currents and impedances. Here we briefly

recall the basics and introduce the description of impedances by complex numbers.

When plugging a harmonic alternating current

V (t) = V0 · cos (ωt) (12.9)

of frequency ω to an ordinary electrical circuit, then a harmonic alternating current of the same

frequency flows, which in general is shifted by a phase ϕ against the voltage V (t):
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Figure 12.2: Temporal progress of the voltage for periodic power-up and shut-off of the input

voltage for T0 � RC. The dashed line shows the voltage characteristic for a square-wave voltage

with mean zero, as it is being delivered from a square-wave generator.
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Figure 12.3: Temporal progress of the voltage for periodic power-up and shut-off of the input

voltage when the condition T0 � RC is not fulfilled.
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4 12. AC properties of LCR-electric circuits

I(t) = I0 · cos (ωt− ϕ) (12.10)

The behaviour of the circuit is completely described by this phase and the absolute value of the

impedance

|Z| = V0
I0

(12.11)

If the circuit contains only one single element, one receives the impedance with the help of Kirch-

hoff’s 2nd law:

• Ohmic resistor R:

~ RV(t)

V (t) = V0 · cos (ωt) = VR(t) = R · I(t)

I(t) =
V0
R
· cos (ωt)

|ZR| = R , ϕR = 0

• Capacitor of capacity C:

~ CV(t)

V (t) = V0 · cos (ωt) = VC(t) =
Q(t)

C

I(t) =
dQ

dt
= −V0 ω C · sin (ωt) = V0 ω C · cos (ωt+

π

2
)

|ZC | =
1

ω C
, ϕC = −π

2

• Coil of inductance L:

~ LV(t)

V (t) = V0 · cos (ωt) = VL(t) = −L · dI
dt

I(t) =
V0
ω L
· sin (ωt) =

V0
ω L
· cos (ωt− π

2
)

|ZL| = ω L , ϕL = +
π

2

The phase and the absolute value of the impedance can be displayed as a vector in the complex

plane. For the three described special cases this is shown in Fig. 12.4

ZL +
π
2ZR

ϕ = 0
ZC

_ π
2

Im

Re

Im

Re Re

Im

Figure 12.4: Depiction of the impedance in the complex plane.

In case the circuit contains multiple impedances serially, the total impedance is given by vector

sum of the single impedances. For the example of the RC serial circuit one receives:
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12.2. THEORETICAL PART 5

~
C

V(t) R

ZC = 1

R
ϕ

ωC

ZR =

Ztot

V = VR + VC = I · (ZR + ZC) = I · Ztot (12.12)

|Ztot| =
√
Z2
R + Z2

C =
√
R2 + 1/(ω2C2) (12.13)

tanϕ = − 1

ωRC
(12.14)

and for the amplitude of the current follows:

I0 =
V0
|Ztot|

=
V0√

R2 + 1/(ω2C2)
(12.15)

The voltage amplitudes at the capacity and the resistor are given by

VC0 = I0 · |ZC | =
V0√

1 + ω2R2C2
(12.16)

VR0 = I0 · |ZR| =
V0RωC√

1 + ω2R2C2
(12.17)

Their dependence on the frequency ω of the input voltage is shown in Fig. 12.5. At the capacity high

frequencies and at the resistor low frequencies of the input signal are being suppressed. Therefore

this circuit can be used either as a high-pass or as a low-pass filter. The frequency response of the

output voltage Va can be adjusted in both cases by varying the resistor R. A practical usage of

this circuit are tone controls in audio amplifiers.

V

ω ω

0

VC0

V0 V

V

a 

0

= V

V

C

R0

V0 Va = VR

High passLow pass

Figure 12.5: RC serial circuit as high-pass or low-pass filter.

In a similar manner one can combine a resistor and an inductance. In this case it holds that:

~V(t)

L

R

ZL = L

Z

ω
ϕ

R = R

Ztot

|Ztot| =
√
Z2
R + Z2

L =
√
w2L2 +R2 (12.18)

tanϕ =
ωL

R
(12.19)

and the output amplitude at the resistor is:

VR0 = I0 ·R =
V0
|Ztot|

·R =
V0R√

R2 + ω2L2
(12.20)
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6 12. AC properties of LCR-electric circuits

c) Electrical parallel oscillatory circuit (LCR-circuit)

~
IC IL IR

L VC

I

Rm
V(t) Rp p

Figure 12.6: parallel oscillatory circuit.

In this experiment we use the circuit which is shown in Fig. 12.6. The oscillatory circuit itself is

made up of a coil of inductance L which is parallel-connected with a capacity C and an ohmic

resistor Rp. Due to metro-logical reasons a further resistor Rm is connected in series with the

oscillatory circuit.

When a harmonic input voltage V (t) = V0 · cos ωt is applied to the circuit with Kirchhoff’s second

law follows

V (t) = Rm · I(t) + Vp(t) and therefore (12.21)

I(t) =
1

Rm
· (V0 · cos ωt − Vp(t)) (12.22)

and with Kirchhoff’s first law

I(t) = IC(t) + IR(t) + IL(t) = C · dVp
dt

+
Vp(t)

R
+

1

L
·
∫
Vp dt (12.23)

By equalling Equ. 12.22 and 12.23 and differentiating one time with respect to time the character-

istic differential equation for this oscillatory circuit follows:

−ω · V0
Rm
· sin ωt = C · d

2Vp
dt2

+

(
1

Rp
+

1

Rm

)
· dVp
dt

+
Vp(t)

L
· (12.24)

It is of the same form as the one for the forced oscillation of the harmonic oscillator in classical

mechanics (see lab course R from the winter semester). Its general solution is a superposition of a

freely damped oscillation and a forced oscillation with excitation frequency ω.

The free oscillation decays with the time constant τ = 2L/R and for times t � τ the system

oscillates only with the frequency ω of the excitation voltage and is shifted by a phase ϕ to this

excitation.

Vp(t) = Vp0 · cos (ωt+ ϕ) (12.25)

The amplitude Vp0 and the phase ϕ follow by plugging into the differential equation:
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12.2. THEORETICAL PART 7

Vp0 =
V0/Rm√(

1
Rp

+ 1
Rm

)2
+
(

1
ωL − ωC

)2 (12.26)

tanϕ =

(
1

ωL
− ωC

)/ (
1

Rp
+

1

Rm

)
(12.27)

Hence, the amplitude and the phase of the voltage that decays at the oscillatory circuit are depen-

dent on the excitation frequency ω and show the typical resonance behaviour of oscillation-capable

systems. The amplitude of the voltage drop is at the maximum for the resonance frequency

ω = ω0 =
1√
LC

(12.28)

Here, the impedances of the capacity and the coil cancel each other out and the phase is ϕ = 0.

The expression on the right side of Equ. 12.26 can be simplified for frequencies in the close region

of the resonance frequency as follows. First of all with ω2
0 = 1

LC one has

Vp0(ω) =
V0/Rm√(

1
Rp

+ 1
Rm

)2
+ C2

ω2 ·
(
ω2
0 − ω2

) (12.29)

Near by the resonance frequency we have ω ≈ ω0 and with ∆ω = ω − ω0 it is approximately true

that

ω2
0 − ω2 = (ω0 + ω) · (ω0 − ω) ≈ −2ω∆ω (12.30)

Plugged into Equ. 12.26 this approximation leads to

Vp0(∆ω) ≈ V0/Rm√(
1
Rp

+ 1
Rm

)2
+ C2

ω2 · (2ω∆ω)2
=

V0/Rm√(
1
Rp

+ 1
Rm

)2
+ 4C2 ∆ω2

(12.31)

The resonance curve is shown in Fig. 12.7. Its width is usually specified by the so-called half-power

width 2 ∆ω1/2, where ∆ω1/2 denotes the frequency difference for which the square of the amplitude

of the voltage drop – i.e. the power in the parallel oscillatory circuit – has fallen off to half of the

value at the resonance frequency ω0. For ∆ω1/2 the amplitude of the voltage drop itself has fallen

off to 1/
√

2 times the value at the resonance frequency. From Equ. 12.31 one gets

2 ∆ω1/2 =
1

C
·
(

1

Rp
+

1

Rm

)
(12.32)
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Figure 12.7: Resonance curve.

12.3 Experimental part

In this experiment we observe the measured quantities with a cathode-ray oscillograph. The func-

tional principle of the oscilloscope is explained in the appendix of the lab course manual for EM.

The oscilloscope can only display voltages. Currents can be displayed indirectly via the voltage

drop V on a known ohmic test resistor Rt, due to V = Rt · I. Therefore the resistor Rt has to be

included into the circuit, whereby its value has to be small enough such that it’s not affecting the

measurement. In this experiment a test resistor of 22 Ω is being used.

In order to display two measured quantities at the same time (e.g. input voltage and current in the

circuit) to determine their phase relation we use a two-channel oscilloscope as in teh preceeding

experiment WS1 - Alternating currents and impedances.

• Remember that the outer connectors (shieldings) of the coaxial inputs of the

oscilloscope are connected internally with the ground! Therefore, always link the

inputs such that both outer connectors lead to the same point in the circuit.

• For this experiment no error calculation has to be done.

a) Square-wave voltage n the RC-serial circuit

For an applied square-wave voltage the output voltages at the capacitor and the resistor of a RC

serial circuit shall be observed.

• Assemble the circuit to target the arrangement of Fig. 12.8. Use a resistor of R = 470 Ω and

a capacitor with a capacity of C = 1µF.

• With the voltage generator set up a square-wave voltage with an amplitude of 5 V and a

frequency of 100 Hz. On the oscilloscope, simultaneously study the input voltage V (t) and
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12.3. EXPERIMENTAL PART 9
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Figure 12.8: Measurements on the RC serial circuit.

the voltage VC(t) at the capacitor. Plot the voltage characteristic as a function against the

time graphically and from the curves determine the periods T and τ = RC. Compare your

results with the expected values.

• Repeat the measurement for a square-wave voltage with a frequency of 5000 Hz.

• Reset the square-wave voltage to a frequency of 100 Hz and simultaneously study the input

voltage V (t) and the voltage VR(t) at the resistor. Plot the voltage characteristic as a function

against the time graphically and from the curves determine the periods T and τ = RC.

Compare your results with the expected values.

• Repeat the measurement for a square-wave voltage with a frequency of 5000 Hz.

b) Resonance curve of the LCR resonance circuit

The resonance curve of a LCR parallel oscillatory circuit shall be measured for different values of

the resistor Rp.

• Assemble the circuit after Fig. 12.9. First, use a resistor of Rp = 19.1 kΩ.

• With the oscilloscope measure the oscillation amplitude of the oscillatory circuit as a function

of the input (excitation) frequency. Initially, raise the input frequency in big steps of 200 kHz

to 600 kHz and measure the range around the resonance frequency in more delicate steps.

Chose an appropriate step size to do that. Plot the amplitude as a function of the input

frequency and determine the half-power width.

• Repeat the measurement for a resistor of Rp = 57.6 kΩ.

• If you compare the resonance curve measured here with the one of a mechanical oscillator

(cf. experiment R - Resonance in the first semester), which role has the resistance Rp in the

present case?

• Plot the half-power width against 1/Rp and lay a straight line through both measurement

points. Determine the capacity C from the slope of the line and the resistor Rm from the ab-

scissa segment. Finally, determine the inductance L from the measured resonance frequency.
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Figure 12.9: Setup for the measurement of the resonance curve of a LCR parallel oscillatory circuit.
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